
Smart Control System for Sustainable Swimming Pools 

Cristiano Cabrita1[0000-0003-4946-0465], Jailson Carvalho1[0000-0001-8310-2595], Armando In-

verno1, Jânio Monteiro2[0000-0002-4203-1679], and Miguel J. Oliveira1[0000-0002-3042-0802] 

1 ISE, Universidade do Algarve, Portugal 
2 INESC-ID & ISE, Universidade do Algarve, Portugal 

ccabrita@ualg.pt 

Abstract. Specific research programs, legislation and funding intend to protect, 

conserve and enhance the EU's natural capital, transforming the EU into a green, 

competitive, low-carbon and resource-efficient economy. These guidelines aim 

at protecting European citizens from health and environmental risks. Indeed, 

there is an increasing interest on decarbonization of the electricity generation, 

with a special focus on the introduction of Renewable Energy Resources (RES).  

This paper is a preliminary insight into a new control approach from where 

smart decision is made based on predictions returned by models of sustainable 

thermal systems (local renewable sources generation devices) and on information 

gathered from an array of sensors in order to regulate swimming pool’s water 

temperature. The information (ambient variables and sub-systems internal trans-

fer function modelling) is then combined with an optimization framework which 

goal is to ultimately, reduce the requirements for human intervention in the swim-

ming pool maintenance and provide resources savings for the final user in terms 

of financial and natural resources, contributing to a sustainable environment. The 

research work is developed within the scope of the Ecopool+++ project: Innova-

tive heated pools with reduced thermal losses. 

Keywords: Renewable Energy, Model Predictive Control, ARMAX, Outdoor 

Swimming Pools. 

1 Introduction 

The European Union and its national governments have set clear objectives to guide 

European environmental policy up to 2020 and a longer-term vision (for the next 30 

years). Specific research programs, legislation and funding intend to protect, conserve 

and enhance the European Union’s (EU) natural capital, to transform it into a green, 

competitive, low-carbon and resource-efficient economy. These guidelines aim at pro-

tecting european citizens from pressures and risks to health and well-being related to 

the environment.  

In this context, a significant portion of research is dedicated to exploring the usage 

of wind power, biomass and solar power for replacing traditional energy sources as they 

pose many advantages such as little environmental risk and are envisaged as a means 

to comply to European and global environmental norms [1]. 
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 Consulting the power consumption data supplied by Portuguese statistics portal 

Pordata [2], and for the case of Portugal, in the civil year 2020 it was observed a total 

of 15215 thousand tep (tons equivalent petrol) due to energy consumption. The figures 

also show that the energy sources like petrol corresponded to 6260 thousand tep, gas to 

1740 thousand tep, renewable energy mix of wind, hydro and solar a total of 2905 thou-

sand tep, and the remaining consumption was due to electrical energy. 

As such, the previous figures identify Portugal as one of the European countries 

where the effective penetration of renewable energy (power usage) is significant (as it 

is responsible for 19% of the overall energy consumption) with a higher impact when 

compared with the average value of 11,7% in the EU. Therefore, demand for new 

sources of flexibility and growing recognition of the multi-energy nature of districts are 

increasing interest in the interaction between energy sectors, like electricity, heat-

ing/cooling, gas and in the significant amount of flexibility available from heating [2, 

3]. 

Solar energy, a form of renewable energy not only is abundant in our environment 

but can reduce the harmful environmental gas emissions resulting from the burning of 

fossil fuels. The most common way of using solar power is to convert sunlight into heat 

energy to produce hot water, through the usage of solar thermal collectors. In such case, 

the basic mechanism uses the incident solar radiation for generating heat as it converts 

the irradiated energy into thermal energy. There are many different applications where 

solar heat energy can be used, such as domestic water-heating systems, pool-heaters, 

and space-heating systems [4, 5]. 

In this scope, this paper proposes a new scheme to increase and control a swimming 

pool’s water temperature using sustainable thermal systems (local renewable sources 

generation devices). The aim of the control system is to coordinate the functioning of a 

set of thermal energy sources and thermal storage, to adjust the water temperature of 

outdoor swimming pools according with user requirements. It relies on information 

gathered from an array of sensors and on weather variables forecast which are then 

combined with an optimization framework. 

The system goes way beyond traditional systems [6, 7] where typically only effi-

ciency is addressed and the number of systems is small (solar and gas based thermal 

systems). Further, we address the development of methods for system identification 

and future time-based forecasting, using machine learning methods, and employ opti-

mization based in simulated data, to control the water temperature in the swimming 

pool’s tank. The control of the water temperature is set according to a setpoint as spec-

ified by the user. The idea employed explores the ability of the control system to make 

a proper decision on the required control signal. 

The remainder of this work has the following structure. We start by addressing other 

works related to this work in Section 2. Next, a description on the problem is made in 

section 3. Section 4 specifies the mathematical formulation of the problem. Section 5 

presents the results of the three scenarios considered. Finally, section 5 draws results 

and presents perspectives on future work. 
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2 State of the Art 

The work in [8] proposes a new scheme for monitoring and controlling the swimming 

pool's quality (pH, chlorine, water level, temperature, water pressure) through a low-

cost system based on wireless sensor networks. Despite having economic benefits by 

consuming less natural and material resources, it does not consider thermal comfort and 

does not include sustainable thermal systems.  

In a similar manner, a web-based swimming pool information system was presented 

by Marais et al. [9]. Numerous elements of pool maintenance, for instance pH, chlorine 

levels and water level can be remotely monitored and further configured according to 

user-defined schedule. 

One of the most popular heating technologies for outdoor swimming pools which is 

also environment friendly is based on PCM (Phase Change Material) storage tanks. In 

[10], Y Li and G Huang discussed their application to outdoor swimming pools and 

showed that they can bring out economic benefits by simply shifting electricity con-

sumption from on-peak to off-peak periods. The water temperature regulation is made 

by ON-OFF control of a pump using a model of the swimming pool where the assump-

tion that the temperature of the pool water was equal to the outlet temperature of the 

pool. The numerical analysis and simulations were performed within a platform that 

combined Matlab and TRNSYS.  

In a more recent work [11], Y Li and G Huang show that performance of the PCM 

storage tank can further be improved by proposing a new approach where thermal com-

fort is regarded instead of using the outlet water temperature in the pool. As such, they 

have incorporated solar irradiation recorders, data logger, ultrasonic anemometer, tem-

perature sensors, and other sensors to collect field data.  

Other authors [6], analyzed the energy efficiency using a combined hot water system 

composed of solar thermal collectors and natural gas thermal power plant. They con-

clude that thermal energy sources using natural gas and solar energy remain the best 

solutions in terms of energy efficiency, low pollution and operating costs. 

In [12], the authors use predictive control to show that indoor swimming pools water 

temperature’s regulation can become more energy efficient when a hybridized solar + 

boiler system (possibly powered by biomass) is used as a thermal supply. Their results 

indicate that regulation based on predictive control can maintain pool thermal condi-

tions while reducing energy demand. Moreover, they also show that this approach con-

sumes less fuel when compared to traditional Proportional Integral Derivative (PID) 

control. This system is yet to be applied to outdoor swimming pools. 

In [13], Dong et al, propose an integrated control system composed of a fuzzy auto-

matic optimization algorithm and the Smith predictor compensator to adjust the tem-

perature of pool water. The simulations show it can achieve good control effects for 

serious delay and serious inertia pool temperature control system. 

With our proposal, the system not only is able to use more than the usual renewable 

systems but it also has the ability to address future time-based forecasting in conjunc-

tion with machine learning methods. 
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3 Problem formulation 

Typically, a dynamical system is affected by external stimuli. On one hand, there are 

the inputs, which are commonly associated with the external signals and can be manip-

ulated by the observer. There are also Disturbances, which correspond to signals which 

can or cannot be measured. Of interest to the observer there are also the outputs. Fig. 1 

illustrates the relations between the inputs, disturbances and outputs of a typical dy-

namical system.   

 

Fig. 1. System with output y, input(s) u, measured disturbance w and unmeasured disturbance v 

(adapted from [14]). 

Generally speaking, a dynamical system is one that the future output value is related to 

the past inputs and disturbances according to some nonlinear function f(y,u): 

 

𝑦(𝑡) = 𝑓(y(t − 1), y(t − 2), … y(t − n), u(t − 1), u(t − 2), … 

… u(t − m), 𝑤, 𝑣)   (1) 

 

Where n refers to the time instants or lags into the past for the output signal y and m the 

time instants into the past for the control signal u.  

In its simplest description, the system considered in this work (see Fig. 2) is composed 

of several thermal sub-systems, which include: (1) the water tank (POOL), (2) Phase 

Change Material (PCM) accumulator, (3) solar collectors (flat-plate type SC), (4) Ter-

race Heat Exchanger (PC), and (5) Geothermal accumulator (PCGeo).  

The various thermal sub-systems are connected by one or several ducts (one or more 

inputs), and monitoring valves which under activation promote water flow at a constant 

rate and preestablished direction regarding the retention valves setup. The complexity 

of the system is high because weather variables (seen as disturbances) condition the 

system response. Inclusion of weather variables as inputs is recommended as long as 

they can in some way be foreseen or predicted. In this work these data samples are 

considered available through WebApi requests to an online weather data server. 

Due to multitude of sub-systems, several scenarios of operation (or setups) can be 

considered during the system operation. For example, to make water circulate through 

the solar collectors and the Pool, requires the operation of pump B1 and the opening of 

valves V2 and V9. Another scenario includes water circulation from the solar collector 

into the duct system of the PCGeo sub-system.  
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Ultimately, the goal is to regulate the water temperature at the Pool. Readings the 

sensors Ti (i=1…12) they allow the monitoring of the temperature in each of the sub-

systems and provide additional information to allow the control mechanism to decide 

which setup is the most effective at a given moment.  

 

 

 

 

 

 

 

 
 

 

 

  

Fig. 2.    Model of the Swimming Pool’s water heating system using Renewable energy sources 

4 Systems identification 

System identification concerns finding the appropriate model for a “real” system. This 

includes finding the appropriate inputs and estimating the appropriate parameters val-

ues for the model. When seen as a black-box, the utilization of the model becomes 

simple and provides alternative control techniques in order to identify the best control 

signal to apply at the input of the system. 

 Systems identification can be performed through the analysis of time-series records 

for each of the scenarios or setups previously mentioned. Appropriate algorithms help 

define a ARMA (Auto-Regressive-Moving-Average), ARIMA (Auto-Regressive-Inte-

grated - Moving-Average), or SARIMA (Seasonal ARIMA with exogenous inputs) 

models. 

 The choice of an autoregressive model depends on the compromise between the sim-

plicity of the model and the properties of a time series. If a time series is said to be 

stationary (i.e., if its properties are not affected by a change in the time source) the 

models chosen are normally the Autoregressive with Exogenous Input (ARX) and/or 

the Autoregressive Moving Average with Exogenous Input (ARMAX). ARMAX is 

more complex than ARX due to the fact that it has the ability to deal with stationary 

time series whose error regression is a linear combination. If a time series is non-sta-

tionary, the Autoregressive Integrated Moving Average with exogenous input 
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(ARIMAX) and/or the Seasonal Autoregressive Integrated Moving Average with ex-

ogenous input (SARIMAX) model can and should be used. Both models, ARIMAX 

and SARIMAX, are capable of handling both stationary and non-stationary series. 

However, if the time series has seasonal elements, the best option would be SARIMAX. 

In [15], an analysis was made to forecast load demand in the context of smart grids, 

using ARX, Artificial Neural Networks (ANN) and Artificial Neural Networks opti-

mized by Genetic Algorithm (ANN-GA). In this same analysis, the ARX presented a 

higher mean absolute percentage error but lower execution time but when compared to 

the ANN and ANN-GA solutions. 

In [16], a hybrid model was developed to predict electricity demand as a function of 

outdoor temperature. It then was compared with the ARMAX model. Despite the good 

performance of both, and having the ARMAX presented higher forecast errors, it is 

simpler to define than the hybrid model. 

In the current work, it was found that the modelling the system using ARMAX pro-

duced acceptable results. To this end, next we will describe the equations that define 

the ARMAX models. 

ARMAX 

 

Like ARX [16], Autoregressive Moving Average with Exogenous Input (ARMAX) 

includes additionally the moving average component. ARMAX modelling is, again, 

applied when a time series has regression characteristics, and the error is a linear com-

bination [17]. The ARMAX model is ruled by the following equations: 

𝛟(𝐿)𝑦(𝑡) = ∑ 𝛃𝑖(𝐿)𝒖𝑖(𝑡)

𝑛

𝑖=1

+ 𝛙(𝐿)𝑒(𝑡) 
(2) 

with 

𝛟(𝐿) = 1 + 𝜙1𝐿−1 + ⋯ + 𝜙𝑝𝐿−𝑝 (3) 

𝛃𝑖(𝐿) = 𝛽𝑖1 + 𝛽𝑖2𝐿−1 + ⋯ + 𝛽𝑖𝑝𝐿−𝑝+1 (4) 

𝛙(𝐿) = 1 + 𝜓1𝐿−1 + ⋯ + 𝜓𝑞𝐿−𝑞 (5) 

 

where  

• 𝛙(𝐿) is the moving average component; 

• 𝑞 is the order for the moving average component; 

and, 

𝛟𝑡 = [𝜙1, 𝜙2, … , 𝜙𝑝],𝑇  (6) 
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𝒚𝑡 = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑝)], (7) 

𝛃t = [𝛽11 , 𝛽12, … , 𝛽1𝑝, 𝛽21 , 𝛽22, … , 𝛽2𝑝, 𝛽n1 , 𝛽n2, … , 𝛽n𝑝],𝑇 (8) 

[𝑢11(𝑡), 𝑢12(𝑡 − 1), … , 𝑢1𝑝(𝑡 − 𝑝 + 1), 𝑢21(𝑡), 𝑢22(𝑡 − 1), …  

… , 𝑢2𝑝(𝑡 − 𝑝 + 1), 𝑢𝑛1(𝑡), 𝑢𝑛2(𝑡 − 1), … , 𝑢𝑛𝑝(𝑡 − 𝑝 + 1)] (9) 

𝛙 = [1, 𝜓1, 𝜓2, … , 𝜓𝑞], (10) 

𝒆𝑡 = [𝑒(𝑡), 𝑒(𝑡 − 1), 𝑒(𝑡 − 2), … , 𝑒(𝑡 − 𝑞)]. (11) 

 

The coefficients of the 𝛟, 𝛃 and 𝛙 polynomials are defined by equations 9-11, and 

estimated using the CSS-MLE method [18]. 

 

4.1 Modelling the system 

One reason for using a SMart system is to provide a forecast into a specified time step 

into the future depending on the actuation of the thermal system in action. Here, we 

assume that the variables influencing the model parameters are known (predictable and 

available) for the prediction horizon of the controlling scheme. 

As the system is based on simulation, the TRNSYS 18.0 [19] simulation tool is ap-

plied for developing the mathematical models for the sub-systems that comprise the 

global system. 

Since at a later stage every sub-system will be employed at a local testbed, the mod-

elling approach requires using sampled data to perform model identification. In this 

sense, the simulated data is retrieved from the TRNSYS tool using a specified sampling 

period. 

The model identification procedure carried on this work is given by algorithm 1. Its 

goal is to find an ARMAX model for each one of the sub-thermal systems. 

 

Algorithm 1: System modelling 
Input: a matrix of the past sampled data for the  n_inp input (includes three weather variables, 
wind velocity, ambient temperature, relative humidity and Pool input water temperature) and 
the one output sampled data, size of the training data (Train_size), size of the testing data 
(Test_size) 
Output: the best representation of the system according to its forecasting performance on 
forecasting the testing data (Best_model) 

Generate a set of M ARMAX models with randomly chosen polynomials order 
For each ARMAX model 
    Estimate the polynomial parameters using the Maximum-LikeLihood-Estimator (MLE) 
    Calculate the Sum-of-Squared-Error (SSE) and R2 on the training data. 
    Calculate the prediction values over the testing data 
    Calculate SSE value for the predicted values (SSE_predict) 
Best_model = the model with the lowest SSE_predict  
return Best_model 
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Model Predictive Control.  

 

The typical control approach to swimming pool water temperature regulation is based 

on classic control methodologies where heat exchangers such as pumps or boilers are 

either switched ON or OFF. 

In scenarios where the right conditions are met, the application of predictive control 

makes it possible to anticipate the control action in advance, regarding the correct iden-

tification of the system and, consequently, the model’s ability to predict the system's 

operation for future instants. Typically, the methodology employed uses the concept of 

optimization for deciding on the effective control input value (u) to be applied to the 

system (see Fig. 3). 

 

Fig. 3. Flow diagram for Model Predictive Control. 

As shown in Fig. 4, using the past Ne sampled data an estimation of the best model is 

carried out. The model is then used to provide a sequence of control signals to the sys-

tem for the prediction horizon, or Np future steps. 

 

Fig. 4. System response based on generalized model predictive control. 

Using an optimizer (based on a Genetic Algorithm) an optimal solution can be found, 

evaluating solutions that best satisfy the restrictions imposed and, in the end, selecting 

the best one. The optimizer considers as objective the minimization of equation 12: 
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{
∑(𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − y𝑖(𝑢𝑖))

2

𝑁𝑝

𝑖=1

𝑠𝑡   ⌊𝑢⌋ ≤ 𝑢𝑖 ≤ ⌈𝑢⌉, 𝑢 ∈ ℜ

                                                                              (12) 

where u translates the control signal, and y the output of the model, as shown in Fig. 1. 

 Under the aforementioned conditions, the control strategy to adopt must consider 

modelling each of the sub-systems that constitute the overall system, for each and every 

control scenario. 

It follows that the renewable sources integrated in the system do not allow the im-

mediate availability of the required control signals so an alternative approach must be 

adopted. So, from the standpoint of optimal control the system poses a drawback: not 

only each of the sub-systems have serious inertia (i.e., slow input-output responses), 

i.e. they cannot provide the required inlet water temperature in the Pool immediately 

(water flow regulation is possible but water temperature regulation is not) because they 

are highly dependent on weather conditions.  

One of the most common approaches for water heating in swimming pools [6] uses 

a gas boiler. This type of action can be classified as Assured Effort. The boiler’s output 

water temperature (Bout) is regulated and considered to be attainable instantly (within 

a pre-defined duration control step). This scenario is depicted by Fig. 5, left. 

 

 
 

Fig. 5. The scenario considered for regulating the water temperature. Left: the boiler is used as 

the heating element. Right: a solar collector is used as heating element. 

The type of service supported by the boiler is compared with the one supported by a 

solar collector of 50m2, represented in Fig. 5 right. The type of service provided by it 

could be considered as Best Effort, as it will not assure that the target temperature could 

be met, since it depends on weather conditions that are not controllable. 

The core of the control system is based in an Energy Management System (EMS), 

with a Model Predictive Controller, which is responsible for finding the optimal value 

for the pool inlet water temperature (control signal) and according with the predicted 
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values on the weather variables. In this sense, the system accounts for user preferences 

as it estimates the required set of water temperatures of the output of the boiler that will 

drive the swimming pool’s water temperature to the desired setpoint. This scenario is 

accomplished with the help of an optimizer, using the Genetic Algorithm (GA). 

In the following sub-section the genetic algorithm basics principles are explained. 

4.2 The genetic algorithm for controlling the boiler system 

The Genetic Algorithm was used to find the most appropriate set of future water 

temperatures for the boiler output, in a pre-defined prediction horizon. The fitness of 

the candidates was computed according with Eq. 12. 

In this case, the encoding of the chromosome in the genetic algorithm consists of a 

list of real-valued genes where the ith position element encodes the expected tempera-

ture value of the boiler output at the ith future time step, for a pre-defined range of 

possible values. For instance, for a prediction horizon of 4 steps, and possible values in 

the range [4.0, 33.0], the ith individual chromosome could be translated by: 

 

4.0 15.0 23.4 33.0 

As crossover a uniform operator using single point was used. Mutation probability was 

based on a gaussian distribution. In summary, the default crossover and mutation oper-

ators were used. The termination criteria was the number of generations. 

5 Simulation tests and results 

To execute the simulations, sampled data (with a sampling period of 30 minutes) was 

obtained from the TRNSYS numerical simulation of the swimming pool. It was then 

divided into the training and testing parts. Weather records such as ambient tempera-

ture, wind speed and relative humidity were also collected and added to the training 

data. 

The training data used a set of past values. In the following, N translates a parameter 

that indicates the number of past time steps used to define the training data. Initially 

different values of N were used to compare the variations of the model. The best value 

was then set constant. The testing data includes sampled values for the future time steps 

according to the prediction horizon considered, and considered being available at pre-

sent time.  

The performance of the models were evaluated using several metrics. The metrics 

were the Sum-of-Squared Errors (SSE), and Mean Relative Error percentage (MRE%). 

The first metric was also used by the search algorithms during model estimation, while 

the second metric is a key figure for comparing performance between solutions.  
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5.1 Results with the ARMAX model  

As it was pointed out before, the weather variables were used as exogenous inputs 

to the ARMAX model, and so, was the water temperature at the output of the collector 

(Cout in the right image of Fig. 5).  

The period of the year used for testing was in the month of April (specifically in the 

second half of April) when the weather conditions traditionally are not adequate to raise 

the pool’s water temperature above 20ºC without introducing complementary equip-

ment. Fig. 6 represents the water temperature of the swimming pool, without solar col-

lector versus using a solar collector. 

 

 

Fig. 6. Comparison of the water temperature of the swimming pool, without solar collector versus 

using a solar collector, between the 22nd and the 1st of May. 

Data measures (from the TRNSYS simulation) before 8h of April the 28th, were used 

as training data. The following interval of 12 hours was used as testing data (which 

correspond to 24 time steps of 30 minutes), i.e., predicting the system output from 8h 

till 20h on that day. 

Table 1 shows the metrics obtained from a list of ARMAX models retrieved using 

the procedure described by algorithm 1 (section 4.1) where M=10, for several sizes of 

training data sets. As it can be observed the size of the training data plays a decisive 

role in the model’s ability to give adequate predictions in the horizon considered. This 

trend is observed not only for the SSE value for the training data, but also for the SSE 

value on the testing data. It follows that the value for SSE is size dependent which is 

not the case for the MSE. 

The best model is the one which presents a SSE value for the testing data of  

9.86×10-2 which used a total training data set of N=320. The prediction for 24 steps into 

the future (in steps of 30 minutes) is given in Fig. 7. 

Then, to assess whether this model (the one with lowest SSE for testing data) is also 

capable of achieving accurate predictions, the model was used to make predictions for 

24 future time steps beginning at other specific hours, according to Table 2. The results 

show that the MRE prediction error ranges from 0.086 % to 0.24 %. 
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Table 1.  Models performance metrics for different training data sizes  

 

 
Polynomial or-

ders {𝛟, 𝛃𝒊, 𝛙} 

SSE 

(training 

data) 

SSE 

(testing data) 

MRE % 

(testing data) 
MSE 

80 {5, [4 2 2 5],1} 5.97 5.98 1.96 1.23×10-4 

80 {10, [8 6 4 2],7} 7.45×10-1 1.26 8.62×10-1 6.41×10-5 

160 {9, [10 1 6 1],9} 1.19×10-1 9.52×10-1 8.03×10-1 1.22×10-4 

160 {8 [2 9 10 6],9} 6.0×10-2 1.48 9.06×10-1 9.40×10-5 

320 {6, [5 9 3 5],10} 1.72×10-1 9.86×10-2 2.44×10-1 1.18×10-5 

320 {5, [7 1 9 6],9} 1.86×10-2 3.26×10-1 4.11×10-1 1.26×10-5 

1920 {5, [2 4 10 6],10} 2.82×10-2 1.03 7.94×10-1 2.38×10-4 

1920 {7, [8 5 7 2],10} 2.26×10-1 9.14×10-1 7.34×10-1 2.41×10-4 

 

 

Fig. 7. ARMAX Pool Water temperature 24 steps forecast  

Table 2.   The best model SSE metric when used to predict 24 steps into the future, beginning 

at 8h, 12h, 15h and 19h into the 28th of April 

Starting hours MRE% 

8h 
(day and hour used for finding 

the model) 

2.4×10-1 

12h 8.6×10-2 

15h 1.2×10-1 

19h 6.4×10-2 

 

The three scenarios were then compared on April the 28th.  In general, the system needs 

to decide at a given time instant, if it fully relies in the forecasted generation given by 

the solar collectors, or if it requires using the gas heater. In particular, and based on the 

difference between the highest predicted pool water temperature and the target setpoint, 

the system was made to decide that at 8h it needed to regulate the water temperature at 

the boiler output to achieve the target temperature of 25º C. To this aim it runs the 
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genetic algorithm, and together with the model’s predictions combined with the fore-

cast weather data it estimates the required water temperature at the boiler output (Bout) 

minimizing equation 12, as discussed in section 4.1 (case of assured effort). 

Fig. 8 shows how the three scenarios compare for a temperature setpoint of 25ºC for 

that particular day. A closer response to the setpoint temperature is expected in the 

assured effort case, as this is driven by the usage of the genetic algorithm capacity to 

find a suitable sequence of the boiler’s output water temperature. Nevertheless, if sus-

tainability is a priority, the best effort guarantees a good profile for the water tempera-

ture, although not always reaching the desired temperature, in these specific weather 

conditions.  

 

Fig. 8. Comparison between control based on assured effort (Boiler) with a MRE% value of 

11.38%, best effort (Collector water temperature) with a MRE% value of 16.05% and no control 

(Pool water temperature) with a MRE% value of 45.65%. 

The estimated temperature values of Bout (the required control signal of the system 

as illustrated in Fig. 4) defined by the GA optimizer for the 12 hours prediction horizon 

(24 steps, starting at 8h) are given in Fig 9. 

 

Fig. 8. Comparison between: (*) the estimated values of boiler output water temperature as a 

result of applying control based on assured effort and (o) the solar collectors output water tem-

perature as a result of best effort.  
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6 Conclusions 

This paper gives insight into a new scheme for setting up the swimming pool’s water 

temperature through the usage of sustainable thermal systems (local renewable sources 

generation devices). Because of the complexity of the system, a list of several setups 

are considered beforehand and their application over time is set automatically according 

to their performance at a particular time range.  

A simple setup case is explored where only the solar collectors are applied to control 

the pool’s water temperature. The performance of this control system was compared to 

a setup where, traditionally, heating systems such as boiler are applied.  

The results have shown that not always is the system able to satisfy the specifications 

set by the user but the inclusion of the renewable based system (solar collector) can 

make the system more eco-sustainable while ensuring the desired water temperature 

under very specific environmental conditions. When the user preferences become very 

strict the usage of the boiler can lead to an acceptable water temperature in the Pool.  

This approach of control based on scenarios and having the system a degree of au-

tonomy, requires lower human intervention in the swimming pool maintenance is grad-

ually attained.  

Future work will address the application of the SMART control approach where the 

selection of the setup scenario will be automatically defined within a pre-defined pre-

diction horizon. In that case the model forecast ability here addressed will be prominent 

for defining which of the setups will be prioritized ahead as to guarantee that the best 

combination of setups will be applied.  

It is the authors conviction that incorporating this methodology will provide re-

sources savings for the final user in terms of financial and natural resources, contrib-

uting to a sustainable environment. 
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