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Abstract. Today, android devices like smartphones, tablets, etc., have
penetrated very deep into our modern society and have become an in-
tegral part of our daily lives. The widespread adoption of these devices
has also garnered the immense attention of malware designers. Many
recent reports suggest that existing malware detection systems cannot
cope with current malware challenges and thus threaten the android
ecosystem’s stability and security. Therefore, researchers are now turn-
ing towards android malware detection systems based on machine and
deep learning algorithms, which have shown promising results. Despite
their superior performance, these systems are not immune to adversarial
attacks, highlighting a research gap in this field. Therefore, we design
and develop EvoAAttack based on a genetic algorithm to expose vul-
nerabilities in state-of-the-art malware detection systems. The EvoAAt-
tack is a targeted false-negative evasion attack strategy for the grey-box
scenario. The EvoAAttack aims to convert malicious android applica-
tions (by adding perturbations) into adversarial applications that can
deceive detection systems. The EvoAAttack agent is designed to convert
mazximum malware into adversarial applications with minimum pertur-
bations while maintaining syntactic, semantic, and behavioral integrity.
We tested EvoAAttack against thirteen distinct malware detection sys-
tems based on machine and deep learning algorithms from four different
categories. The EvoAAttack was able to convert an average of 97.48%
of malware applications (with a maximum of five perturbations) into
adversarial applications (malware variants). These adversarial applica-
tions force misclassifications and reduce the average accuracy of thirteen
malware detection systems from 94.87% to 50.31%. Later we also de-
signed a defense strategy (defPCA) to counter the adversarial attacks.
The defPCA defense reduces the average forced misclassification rate
from 97.48% to 59.98% against the same thirteen malware detection sys-
tems. Finally, we conclude that threat modeling improves both detection
performance and adversarial robustness of malware detection systems.

Keywords: Adversarial Learning - Android Malware - Evasion Attack
- Genetic Algorithm - Malware Detection.
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1 Introduction

The 21°¢ century has witnessed a massive adoption of computing and communi-
cation devices (like smartphones, tablets, etc.) in every aspect of our daily life.
Smartphones are currently used by more than two-thirds of the world’s popu-
lation for their professional as well as personal needs [8]. All these computing
devices need an operating system for their resource management. Here, android
is a dominant player and holds a market share of 71% and 48% in the smart-
phone and tablet ecosystem [1]. These android devices store vast amounts of
users’ personal as well as business data. Therefore, they have become an attrac-
tive target for malware designers who want to steal data (like contacts, SMS,
pictures, videos, etc.), disrupt devices, cripple services, etc. Several recent reports
indicate that numerous malware and potentially unwanted applications exist in
the android ecosystem [2][13]. The latest AV-ATLAS report suggests that the
total number of malicious android applications and potentially unwanted appli-
cations have reached 60 million as of January 2023 [2]. It also notes that 77.8%
of newly discovered malware file types were packaged as an APK, making it
the most commonly used entry point for attackers. These malware attacks can
execute security breaches and result in severe consequences for users’ data and
privacy in the android ecosystem.

Anti-virus and anti-malware software offer the first line of defense against
malware attacks. However, many recent reports suggest that the existing mal-
ware detection techniques (like signature, heuristics, etc.) are ineffective against
new, complex, sophisticated malware attacks [6][13]. Researchers are now turn-
ing towards android malware detection systems based on machine and deep
learning algorithms, which have shown promising results [6]. Arora et al. (2019)
proposed PermPair to identify android permission pairs for malware detection
and achieved 95.44% accuracy [4]. Wozniak et al. (2020) designed a recurrent
neural network model for malware threat detection and achieved more than 99%
accuracy [20]. Wang et al. (2019) designed LSCDroid based on locally sensitive
APIs [19]. They developed a random forest model that achieved more than 96%
accuracy. As more and more machine and deep learning solutions are getting in-
tegrated into real-world malware detection systems, the potential for adversarial
attacks on them has gained attention.

Malware designers can develop adversarial attacks to target malware detec-
tion systems based on machine and deep learning with the aim of decreasing their
performance. An adversarial attack involves introducing small perturbations to a
sample to force misclassification in a malware detection system. Many researchers
have demonstrated vulnerabilities in various machine and deep learning models
to such adversarial attacks [16][17]. Cara et al. (2020) proposed injecting system
APT calls in order to force misclassification in a multi-layer perceptron model
[7]. Li et al. (2020) designed a generative adversarial network that forces mis-
classifications in detection models [12]. These studies highlight vulnerabilities
of the machine and deep learning detection systems that malware designers or
adversaries can potentially exploit. On the other hand, the anti-malware commu-
nity can use this information to improve the adversarial robustness of malware
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detection systems. The threat modeling of adversarial attacks on malware detec-
tion systems depends on the attacker’s intel about the target system. It includes
information about the training dataset, features, classification algorithms, and
the architecture of the detection system. If the attacker possesses comprehensive
knowledge about the target system, it is called a white-box scenario. Conversely,
if the attacker has zero or partial knowledge about the target system, it is called
a black or grey box scenario, respectively.

In this work, we propose a novel targeted false-negative evasion attack strat-
egy (EvoAAttack) to generate malware variants that can force misclassifications
in state-of-the-art malware detection systems. The EvoA Attack is designed based
on a process of natural evolution (genetic algorithm) that aims to break the
Classification Robustness of a machine and deep learning based target systems
in the grey-box scenario. The EvoAAttack agent is designed to add minimum
perturbations in malicious android applications and converts them into adver-
sarial applications (malware variants) that can deceive detection systems. It
also aims to convert maximum malware into adversarial applications by adding
perturbations while ensuring their syntactic, semantic, and functional integrity.
Therefore, the EvoAAttack ensures Perturbation Measurability to quantify the
deviation of an application after perturbations, and the Perturbation Invertibility
to enable the reconstruction of the original application after applying perturba-
tions. The EvoAAttack investigated the adversarial robustness of thirteen dis-
tinct malware detection systems. These systems were constructed using thirteen
machine and deep learning algorithms from four categories: machine learning,
bagging, boosting, and neural networks. Later, we also designed and developed
an adversarial defense strategy (defPCA) to counter the evasion attacks. We
make the following contributions with this work:

1. We designed EvoA Attack, a novel targeted false-negative evasion attack strat-
egy based on an optimized genetic algorithm to generate adversarial applica-
tions (malware variants) that can force misclassifications in next-generation
malware detection systems.

2. The FvoAAttack exposes adversarial vulnerabilities in thirteen different mal-
ware detection systems based on four categories of classification algorithms
(machine learning, bagging, boosting, and neural networks).

3. The EvoAAttack converted an average 97.48% of malware applications (with
maximum of five perturbations) into adversarial applications (malware vari-
ants) that can force misclassifications in thirteen malware detection systems.
The EvoA Attack reduced the average accuracy of thirteen malware detection
systems from 94.87% to 50.31%.

4. We also designed defPCA defense strategy to counter the adversarial attack.
The defPCA defense reduces the average forced misclassification rate from
97.48% to 59.98% against the same thirteen malware detection systems.

The paper is structured as follows. Section-2 explains the proposed frame-
work for adversarial robustness, and Section-3 describes the experimental setup.
Section-4 discusses the experimental results, and Section-5 explains the related
work. Finally, Section-6 concludes the paper.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36030-5_43 |



https://dx.doi.org/10.1007/978-3-031-36030-5_43
https://dx.doi.org/10.1007/978-3-031-36030-5_43

4 Rathore et al.

2 Proposed Framework for Adversarial Robustness
In this section, we first describe the proposed framework that improves the

adversarial robustness of android malware detection systems. It is followed by a
detailed discussion on the EvoAAttack and defPCA defense strategy.

2.1 Framework Overview
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Fig. 1. Framework to improve adversarial robustness of malware detection systems.

Figure-1 illustrates the proposed five-stage framework pipeline to develop
adversarially robust malware detection systems. Stage-1 involves data curation
of malware and benign android applications from authentic sources. Stage-2 en-
tails feature extraction from collected android applications and the construction
of malware detection systems based on machine and deep learning algorithms.
In Stage-3, we will put ourselves in the adversary’s shoes and proactively design
an adversarial attack strategy (EvoAAttack) against malware detection systems.
Stage-4 involves performing an actual FvoA Attack on malware detection systems
developed in the second stage. The EvoA Attack aims to reduce the performance
of detection systems. Then in Stage-5, we will develop the defense strategy (def-
PCA) to counter adversarial attacks. We employed evaluation metrics like accu-
racy, ROC, forced misclassification rate, etc., at various stages of the proposed
pipeline. Finally, the proposed framework pipeline is expected to improve detec-
tion accuracy as well as the adversarial robustness of android malware detection
systems.

2.2 Evolutionary Adversarial Attack (EvoAAttack)

Threat modeling is used to investigate the adversarial robustness of systems.
Therefore we perform threat modeling of malware detection systems by step-
ping into adversaries’ shoes and designing adversarial attacks. We propose Evo-
lutionary Adversarial Attack (FvoAAttack), a targeted false-negative evasion at-
tack strategy for the grey-box scenario against malware detection systems. The
EvoAAttack aims to convert malware android applications (by adding pertur-
bations) into adversarial malware applications that can force misclassifications
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in malware detection systems. The evasion attack is designed for the grey-box
scenario that assumes the attacker possesses knowledge about the dataset and
features but has no information about the classification algorithm and system
architecture. The EvoAAttack agent aims to convert maximum malware applica-
tions into adversarial applications with minimum perturbations in each applica-
tion. The proposed EvoA Attack agent performs perturbations while maintaining
modified android applications’ syntactic, semantic, and functional integrity.

The FvoAAttack strategy is an optimized variant of the Genetic Algorithm
(GA). The GA employs probability-based methods such as random selection and
mutation to generate new solutions and examine the solution space. These algo-
rithms are capable of solving problems represented as linear systems or graphs
through the use of linear algebraic techniques. These necessitate the application
of calculus, including gradients and partial derivatives, in the computation of
the fitness function and identification of optimal candidates. The efficacy of GA
is evaluated using statistical metrics like mean and standard deviation.

2.2.1 Optimization Function: The genetic algorithm optimizes the objec-
tives using two approaches: Pareto Optimization and Weighted Sum of fitness
function based optimization. The Pareto set contains Pareto-optimal solutions,
representing the best trade-offs between objectives. We used Weighted Sum
method that involves normalizing individual objectives for comparison and using
a fitness function to calculate overall fitness as a weighted sum.

o o
fraw = ZOi * W; Wlth Zwl =1 (1)
i=1 =1

where f;qq is the raw fitness value and o; represents the objective functions
and their corresponding weight w;. Our objective is to maximize the probability
of an adversarial application to be forcefully misclassified as benign. Therefore
o, wy are set to 1 and 0; = 0.5 — ¢, where g, is the probability of the application
being malicious. Here, q. is 0 when the label is benign and 1 when the label is
malicious.

2.2.2 Mutation and Crossover Function: A mutation event can be mod-
eled as a Bernoulli trial with a random probability p of transferring a genetic
marker from an exogenous genome b to a representative specimen in the genetic
repository P. The objective is to imitate the benign profiles in b so that the de-
ception of the malware detection system C' is optimized. In the domain of genetic
recombination (crossing over), two specimens in P, p; and p;, undergo a partial
exchange of their genetic markers (perturbations), X; and X; where the exchange
mechanism is defined by the operator: E(X;, X;) = X; UX; and X; N X; = ¢.
This exchange is subject to a fixed restriction, such that if || Xs|| > 0, where
|| Xs|| represents the magnitude of genetic markers in a specimen, a process of
genetic rejuvenation R must be initiated (also known as hard restart).
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The strength of each application in the gene pool is evaluated using the fitness
function. The fitness of each application is calculated after every generation, and
the algorithm terminates upon reaching the first sample with positive fitness.
The trace of the evading malware application is finally stored in the trace file.
The application is marked as not evaded if the generation limit is reached before
finding an evading/adversarial application. The EvoA Attack operates as follows:

1. The EvoAAttack commences by setting up the environment, where the at-
tack parameters are registered, and benign dataset B along with adversarial
perturbations from the past Trace are stored in memory. Given a malicious
application m, the attack iterates through B to find the closest matching
benign application b based on the Fuclidean L2 norm. This sample is used
as the external genome to transfer perturbations to the target application.

lz]| = \/2% + a3 + ... + 22 (2)

Here x is the difference between b and m and x; represent the dimensions.
2. The next step involves populating the gene pool where a significant portion
of the maximum pool capacity is filled with copies of the target sample m to
which perturbations from the trace file have been added. Duplicates of the
target sample take up the remaining slots. With every successive generation,
EvoAAttack performs crossover and mutation operations on the gene pool.

Algorithm 1 shows the FvoAAttack policy to convert malware applications
into adversarial applications. The algorithm’s input is the set of benign B and
malicious M applications and other hyperparameters. A target malware appli-
cation m is selected from the set malware dataset M to convert it into an ad-
versarial application. The population P is initialized with copies modified with
respect to the data present in trace histories T" or plain repetitions of m. Cross-
ing over and mutations are executed with each evolving generation. The fitness
value of each population member p is calculated, and the process stops with
the first positive value after recording its perturbations in the trace T'. The tar-
get is labeled as not evaded if the generation limit is reached before finding an
adversarial application.

2.3 Adversarial Defense (defPCA)

We designed a novel defense strategy (defPCA) to improve the robustness of the
malware detection systems. The approach involves reducing the dimensionality
of the feature space using a technique known as principal component analysis.
Feature reduction has been shown to help increase the generalization in various
machine and deep learning systems.

The defPCA strategy begins by centering the data, where the mean of each
android permission (refer Section 3.1) is subtracted from each android applica-
tion. Let D be mean-centered dataset matrix. The covariance matrix of centered

data is calculated to measure the linear relationship between each pair of per-

D.DT

=, where n is the number of instances in the dataset.

missions VarCov =
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Algorithm 1 Evolutionary Adversarial Attack (EvoAAttack) Strategy.

Input:

B: set of benign applications

M: set of target malware applications

C: target android malware detection model
MAX_POP_SIZE: maximum size of population
MAX_ITER: maximum number of generations
MUT_PROB: probability of mutation
Output:

M’: set of adversarial malware applications and perturbations

1: T=] // Traces to store perturbations

2: Select a sample m from M without repetition, if empty then GOTO Step 7
3: P=]] // Population

4: Initialize POPULATION

4.1: If T is not empty
4.1.1: Generate new sample t for each trace and add t to P
4.1.2: While len(P) < MAX_POP_SIZE
4.1.2.1: Add m to P
5: while iteration < MAX_ITER
5.1: MUTATION
5.1.1: Each sample p is selected with probability MUT_PROB
5.1.2: The closest benign sample b (from B) to p is selected
5.1.3: A random feature is transplanted to b from p
.2:  CROSSING-OVER
5.2.1: Select a pair of samples p; and ps from P
5.2.2:  Exchange a random set of features between them
5.3: FITNESS-TEST
For each sample p in P
1 Query label from C and calculate malicious probability g.
2: If0.5—¢q.>0
1
1

5

Add p to M’
. Store trace of p in T'
5.3.1.2: GOTO step 2
6: Mark m as NOT_EVADED and GOTO Step 2
7: return M’ and T

Let A be a square matrix of size m x n. The eigenvector v of A is a non-zero
vector that satisfies the following equation: Av = Av, where A is the eigenvalue
corresponding to the eigenvector v. The characteristic equation of the matrix A
is given by det(A — AI) = 0, where I is the identity matrix and det is the deter-
minant operator. The eigenvalue decomposition of the matrix A is then given by:
A =QAQ™ ', where A is a diagonal matrix containing the eigenvalues of A and
Q is the eigenvector matrix of A. Eigen-decomposition is performed on VarCov
to diagonalize it as VarCov = V(A)VT where V is the orthonormal matrix
containing the eigen-permissions of VarCov in decreasing order of importance.

A lower dimensional representation of the data can be obtained by retaining
only the top k eigen-permissions. The optimal value for k£ was set as 8 based
on experiments. It was determined by evaluating the average accuracy of three
malware detection systems (RF + LR+ HGB) before and after subjecting them
to the FvoAAttack. Finally, the centered data is transformed to the lower di-
mensional space using the principal component matrix, resulting in a reduced
representation of the data: D’ = D -V’ where V' is the eigen-permission ma-
trix with k leading columns and T is the transpose of the matrix. The malware
detection systems are then trained on the reduced feature space.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36030-5_43 |



https://dx.doi.org/10.1007/978-3-031-36030-5_43
https://dx.doi.org/10.1007/978-3-031-36030-5_43

8 Rathore et al.

3 Experimental Setup

This section presents the experimental setup details, including data curation
(malware and benign applications), the feature extraction process, classification
algorithms, and evaluation metrics used in this work.

3.1 Data Curation and Feature Extraction

We conducted all the experiments using a large dataset collected from authen-
tic sources. The malware applications were collected from benchmarked Drebin
Dataset proposed by Arp et al. [5], and benign applications were downloaded
from Google Play Store [3]. The dataset contains 11,281 android applications of
which 5,560 were malware, and 5,721 were benign. The malware dataset con-
tains malicious applications from over twenty families, including DroidKungFu,
Opfake, BaseBridge, etc. On the other hand, all the benign applications were val-
idated using VirusTotal. Later, we disassemble each android application using
Apktool to perform static analysis on them. We developed a parser that scans
through each disassembled android application to extract its android permission
usage and develop the feature vector. The rows in the feature vector represent
android applications and the columns represent their permission usage.

3.2 Classification Algorithms

We examine the adversarial robustness of thirteen distinct malware detection
systems based on various classification algorithms from four different categories.
Table-1 lists thirteen distinct classification algorithms and their corresponding
category. The detailed design and implementation of these malware detection
systems are well explained in another paper [15].

Table 1. Classification algorithms and their categories for constructing malware de-
tection models.

Category Classification Algorithm(s) |Abbreviation
Machine Decision Trees ' DT
Learning Support Vector Machine SVM

Logistic Regression LR

Bagging Random Forest RF

based Learning Extra Trees ET
Bagged Decision Trees BagDT

. Adaptive Boosting AB

basl:((i)fs;r;ﬁing Gradient Boosting GB
Histogram-based Gradient Boosting HGB

NN with 1 hidden Layer NNI1L

Neural Network (NN) NN with 3 hidden Layers NN3L
based Learning NN with 5 hidden Layers NN5L
Long Short Term Memory LSTM
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3.3 Platform

All the experiments were conducted in the Google Colaboratory environment.
The runtime had a storage limit of 70 GB and a RAM limit of 12 GB. The CPU
was an Intel Xeon with 1 core and 2 threads running at 2.2 GHz. Python was
used as the main programming language. The principal libraries used include
scikit-learn, TensorFlow, Keras, and NumPy. Pandas was used to handle CSV
files, and all graphs were generated using Matplotlib and Google Sheets.

3.4 Other Parameters

The population size during EvoAAttack is the number of samples actively par-
ticipating in the genetic evolution and was set to 32. The generation cap was
determined to be 100, based on empirical verification that the chances of finding
an evasive sample (adversarial application) were slim after many generations.
The trace size or the number of trace histories stored in memory was set to 24.
The mutation probability was set to 0.8. The crossover rate was set to 0.2. The
mazimum number of perturbations allowed for each sample in the gene pool was
set to 5.

3.5 Evaluation Metrics

The following evaluation metrics were used to measure the detection performance
and adversarial robustness of malware detection systems in our work:

— True Positive (TP) is the number of malware applications correctly clas-
sified as malicious by the malware detection system.

— True Negative (TN) is the number of benign applications correctly clas-
sified as benign/good by the malware detection system.

— False Positive (FP) is the number of benign applications incorrectly or
wrongly classified as malicious by the malware detection system.

— False Negative (FIN) is the number of malware applications wrongly clas-
sified as benign by the malware detection system.

— Accuracy is the percentage ratio of correctly classified applications to the
total number of classifications performed by the malware detection system.

TP+ TN
Accuracy = TPIFPL TN+ FN x 100 (3)
— Receiver Operating Characteristic (ROC) is the degree of separability
between malware and benign classes predicted by malware detection system.
— Forced Misclassification Rate (FMR) is the percentage of malware ap-
plications successfully converted into adversarial malware applications by
the adversarial attack agent.

# of Adversarial Apps — F Npgseline
# of Malware Apps — F Npaseiine

x 100
(4)

Forced Misclassification Rate =
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4 Experimental Results

This section explains the detailed experimental results achieved by EvoAAttack
and defPCA for thirteen distinct malware detection systems.

4.1 Baseline Android Malware Detection Systems

The Stage-1 of the proposed framework is data curation and feature extraction
as discussed in Section 3.1. The Stage-2 focuses on the construction of thirteen
distinct android malware detection systems based on data gathered in Stage-1.
These systems were based on thirteen distinct classification algorithms from four
different categories (machine learning, bagging, boosting, and neural network)
(refer Table-1). The idea is to investigate the adversarial robustness of malware
detection systems based on different classification algorithms from various cat-
egories. The performance evaluation of these detection systems was evaluated
using accuracy, ROC, F1 score, precision, recall, etc.

Table-2 shows the performance of thirteen baseline android malware detec-
tion systems. The highest accuracy was achieved by the RF model based malware
detection system (97.48%) followed by the ET model (97.47%). On the other
hand, the lowest accuracy was attained by the AB model (90.70%). The thir-
teen detection systems achieved an average accuracy of 94.87%. Similarly, the
highest and lowest ROC was achieved by the RF model (0.977) and AB model
(0.91). The thirteen systems achieved an average ROC, precision and recall of
0.95, 0.97 and 0.93, respectively. The bagging based learning models performed
best with an average accuracy of 97.41%, while machine learning models per-
formed the worst with an average accuracy of 91.91%.

Table 2. Performance of thirteen distinct android malware detection systems based
on various classifications algorithms from four different categories.

iﬁ;ﬁi}ﬁ;ﬁ:{; I)l Ac?;:)acy ROC Score|F1 Score|Precision|Recall
DT 97.46% 0.97 0.97 0.99 0.96
SVM 92.03% 0.92 0.92 0.95 0.89
LR 91.79% 0.92 0.91 0.94 0.89
RF 97.48% 0.97 0.97 0.99 0.96
ET 97.47% 0.97 0.97 0.99 0.96
BagDT 97.29% 0.97 0.97 0.99 0.96
AB 90.70% 0.91 0.90 0.93 0.88
GB 91.92% 0.92 0.92 0.94 0.89
HGB 95.83% 0.96 0.96 0.98 0.94
NN1L 92.03% 0.92 0.92 0.94 0.90
NN3L 96.14% 0.96 0.96 0.98 0.94
NN5L 96.04% 0.96 0.96 0.98 0.94
LSTM 97.14% 0.97 0.97 0.99 0.95
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4.2 EvoAAttack against Malware Detection Systems

The Stage-3 in the proposed framework is to investigate the adversarial robust-
ness of all the above thirteen baseline malware detection systems. We designed
EvoAAttack, a genetic algorithm based targeted false-negative evasion attack for
the grey-bozx scenario. The fundamental idea is to emulate the process of natural
evolution into the creation of new malware variants that are much deadlier and
can easily deceive state-of-the-art malware detection systems. The EvoAAttack
agent aims to convert maximum malware applications (by adding perturbations)
into adversarial applications that force massive misclassifications in detection
systems. The performance of adversarial attacks against malware detection sys-
tems was measured using forced misclassification rate, accuracy drop, etc.

4.2.1 Forced Misclassification Rate @EvoA Attack: The Stage-4 of the
proposed framework is to perform actual FvoAAttack against thirteen baseline
malware detection systems constructed in Section 4.1. Figure-2 shows the per-
formance of EvoA Attack, where the y-azis represents the forced misclassification
rate, and the z-azxis represents the maximum number of perturbations performed
by EvoAAttack. The EvoA Attack agent initially adds only one perturbation and
gradually increases it to a maximum of five. The EvoA Attack with just one per-
turbation achieved an average forced misclassification rate of 66.81% against
thirteen baseline android malware detection systems. The highest forced mis-
classification rate (with a maximum of one perturbation) was achieved against
the AB model based malware detection system (99.94%), while the lowest was at-
tained against the RF model (16.02%). The EvoA Attack with a maximum of five
perturbations achieved an average forced misclassification rate of 97.48% against
thirteen detection systems with a 100% forced misclassification rate against six
malware detection systems. Furthermore, RF and ET models exhibit the highest
resistance to the evasion attack with FMR of 82.92% and 86.46%, respectively.

100 00% - DT
= SVM
LR
= RF
- ET
BagDT
AB
GB
HGB
NNIL
NN3L
0 1 2 3 4 5 NNSL
LSTM

75.00%

50.00%

25.00%

Forced Misclassification Rate

Maximum Number of Perturbations

Fig. 2. EvoAAttack against different android malware detection systems.
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® android.permission READ_CALL_LOG

@ android.permission USE_CREDENTIALS
android.permission. GET_ACCOUNTS

® android_permission KILL_BACKGROUND_PROCESSES

® android.permission.SYSTEM_ALERT_WINDOW
andraid permission WRITE_USER_DICTIONARY
android.permission. READ_SYNC_STATS
android.permission ACCESS_NETWORK_STATE
andraid.permission READ_EXTERNAL_STORAGE
android.permission SET_TIME
andraid.permission VIBRATE
Cthers

Fig. 3. Top 10 most frequently perturbed android permissions by EvoAAttack agent.

4.2.2 Vulnerable Android Permissions: Figure-3 presents data distribu-
tion of the most frequently perturbed android permissions by the EvoAAttack
agent against thirteen malware detection systems. The pie chart clearly shows
that few android permissions were perturbed majority of the time by EvoAAt-
tack agent to force misclassification in malware detection systems. The top three
perturbed android permissions were android.permission. READ_CALL_LOG, an-
droid.permission. USE_CREDENTIALS, and android.permission. GET_ACCOU-
NTS, which together accounted for over 55% of all perturbations. This finding
suggests that malicious actors could also potentially use these android permis-
sions to evade state-of-the-art malware detection systems.

4.3 defPCA Defense Strategy

The Stage-5 of the proposed framework is to develop a defense strategy for
malware detection systems to counter adversarial attacks. We propose defPCA
based on principal component analysis that improves the generalizability and
robustness of machine and deep learning systems.

Figure-4 shows the overall performance of various malware detection sys-
tems at different stages of the proposed framework. The blue bars represent the
accuracy of thirteen different baseline malware detection systems, whereas the
red bars represent the accuracy of detection systems after EvoAAttack. The yel-
low bars represent the accuracy of detection systems after implementing defPCA
defense strategy, and the green bars represent EvoA Attack on defPCA based mal-
ware detection systems. The thirteen baseline malware detection systems (blue
bars) achieved accuracy between 90.70% to 97.46%. Then, we performed threat
modeling and designed EvoA Attack against detection systems. The EvoAAttack
forced a massive number of misclassifications that drastically reduced accuracy
(red bars) in all thirteen malware detection systems.

4.3.1 Detection Performance @ defPCA Systems: The yellow bars in
Figure-4 represent the accuracy of different defPCA based malware detection
systems. The thirteen defPCA systems achieved an average accuracy of 92.31%.
Here, the RF model based detection system accomplished the highest accuracy
of 97.46%, whereas the LR model attained the lowest accuracy of 87.05%. On
the other hand, the thirteen detection systems achieved an average ROC of 0.92.
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Fig. 4. Overall detection performance and robustness of malware detection systems.

4.3.2 Adversarial Robustness @ defPCA Systems: Now, we again per-
formed EvoAAttack on the defPCA malware detection systems to investigate
their adversarial robustness. The green bars in Figure-4 show the accuracy of
defPCA systems after EvoA Attack. The thirteen defPCA systems after EvoA At-
tack achieved an average accuracy of 65.65%, which is a 15.34% improvement
without any defense strategy. The LR and SVM models with defPCA showed
the biggest improvement at 26.09% and 19.74%, respectively. On the other hand,
DT models with defPCA showed the least improvement of 1.25%.

5 Related Work

Table-3 lists the existing literature on adversarial attacks on malware detection
models and compares them with our proposed approach. Grosse et al. (2016) used
the computation of forward derivatives to create adversarial samples against neu-
ral network models and attained a misclassification rate of 85% [10]. Though it
provides a good stepping stone, the lack of generalization is quite a vulnerability
in the work. Hu and Tan (2017) developed a GAN-based attack model with a
substitute detector to mimic the target classifier, making it a white box attack
[11]. Taheri et al. (2020)[18], and Rathore et al. (2021)[14] also proposed white
box strategies to fool different machine and deep learning models. However,
this falls short when it comes to real-world applications, as the working mecha-
nisms of most malware detection systems are hidden from the adversary. Fang et
al. (2019) proposed grey-box approaches based on deep reinforcement learning
that use limited knowledge about the target system, obtaining a success rate of
19.13% and 75%, with a maximum of 100 perturbations [9]. However, it failed
to achieve a significant drop in accuracy after the attack. Taheri et al. (2020)
performed random perturbations on the ranked feature space of the dataset to
achieve an accuracy drop of just 12% [18]. In contrast, Rathore et al. (2021)
attained a forced misclassification rate of 44.28% using a single policy attack
based on g-learning [14]. They failed to perform in-depth feature vulnerabilities
analysis or suggest suitable countermeasures to enforce robustness.
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Table 3. Comparison of our proposed work with existing literature.

Attack Max # of| Forced Mis- # of Vulner- | Robust-
Paper Scenario Perturb- | classification| Models ability ness
ations Rate Analyzed |Analysis|Analysis
Grosse et al. .
(2016) [10] White Box 20 40.97%-84.05%|Only DNNs No No
Hu and Tan .
(2017)[11] White Box All 99% 6 No No
Fang et al.
(2019) [9] Grey Box 80 46.56% 1 No No
Cara et al. o
(2020) [7] Grey Box 100 80% 1 No No
Li et al. o
(2020) [12] Grey Box 100 85% 9 No No
Rathore et al. . o
(2021) [14] White Box 5 44.28% 8 No Yes
Proposed
(EvoAAttack|Grey Box 5 97.49% 13 Yes Yes
& defPCA)

There are many limitations in the existing literature that we have addressed
in this work. Authors have assumed a white box scenario for threat modeling,
which is impractical since most details about the target system are generally
unknown. Also, authors have achieved very low forced misclassification rates
even with a very high number of perturbations. The perturbations should be
minimized to decrease the overall cost of generating adversarial samples. Detailed
analysis of perturbations is also not discussed in the existing literature. The
defense strategy is incomplete without investigating its adversarial robustness,
and it is hardly discussed in the literature.

6 Conclusion

Android malware have exploded in the last few years and have become a real
threat to smartphones and tablets. Researchers propose next-gen malware detec-
tion systems based on machine and deep learning. These systems have demon-
strated encouraging results but might be at risk against adversarial attacks.

In this work, we performed threat modeling of malware detection systems to
explore their vulnerabilities. We designed and developed FEvoAAttack, a novel
targeted false-negative evasion attack against state-of-the-art malware detection
systems for grey-bozx scenario. The EvoAAttack agent converted an average of
97.49% of malware applications into adversarial applications (malware variants)
that forced massive misclassifications in thirteen malware detection systems.
The EvoAAttack also reduced the average accuracy of thirteen malware detec-
tion systems from 94.87% to 50.31%. We also published the list of ten android
permissions that adversaries might use to generate more malware variants. Later,
we develop a defense strategy (defPCA) to counter the attack on malware de-
tection systems. The defPCA reduced the average forced misclassification rate
from 97.48% to 59.98% against the same thirteen malware detection systems.
Finally, we conclude that threat modeling improves both detection performance
and adversarial robustness of malware detection systems.
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