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Abstract. This paper presents methods of prediction of casting me-
chanical parameters based on direct microstructure image analysis using
deep neural networks and graphite forms recognition and classification.
These methods are applied to predict tensile strength of iron-carbon
alloys based on microstructure photos taken with the light-optical mi-
croscopy technique, but are general and can be adapted to other applica-
tions. In the first approach EfficientNet architecture is used. In the sec-
ond approach graphite structures are separated, recognized using VGG19
network, counted and classified using support vector machines, decision
trees, random forest, logistic regression, multi-layer perceptron and Ad-
aBoost. Accuracy of the first approach is better. However, the second
allows to create a classifier, for which the accuracy is also high, and can
be easily analyzed by human expert.

Keywords: Prediction of mechanical properties · Microstructure image
analysis · Deep neural network · Graphite forms classification.

1 Introduction

The main goal of this work is to present two methods for prediction of the
mechanical parameters of castings based on the analysis of the microstructure
image.

Initially, the prediction of mechanical properties was based on the analy-
sis of phase diagrams. However, already in the 80s it was indicated that these
techniques will be replaced by mathematical models and artificial intelligence
methods [18]. In early works, neural networks were applied to predict Ferrite
Number (FN) based on weight percentage of 13 elements [15, 28]. In our research
we also started with machine learning methods applied to process parameters
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and chemical composition [29]. However, approach described this paper is based
on microstructure image classification.

In [3] Deep Neural Networks are applied for lath-bainite segmentation in
complex-phase steel. Vanilla U-Net and VGG16 neural architectures are used.
In our research, which is continuation of work [11], we predict tensile strength of
iron-carbon alloys based on microstructure photos taken with the Light-Optical
Microscopy (LOM) technique. The first approach is similar to one proposed in
[3] – EfficientNet deep neural network is applied to process the images directly.
In the second approach, which is our main contribution, graphite structures are
extracted from the image, and their types (forms) are recognized using VGG19
network. Feature vector consists of numbers of graphite structures assigned to
every type. Classification algorithm is used to predict tensile strength based on
these features. We have applied support vector machines, decision trees, random
forest, logistic regression, multi-layer perceptron and AdaBoost. Performance
measured by F1 score of the first approach was better in evaluation. However,
the second approach allows to create classifier which can be easily analyzed by
human expert. This method garnered a lot of positive feedback from domain
experts because it was not a black box solution.

Another important contribution of this research is creation of a dataset con-
sisting of microstructure images of ductile iron and their labels from a number
of experiments that was used in evaluation. This dataset will be made available
to interested researchers upon email request.

In the following sections related research and methodology are presented.
Next experiments are described. Conclusions and future works summarize the
paper.

2 Related Research

Metal-characterising properties have been a consistent subject of scientific inter-
est for many years, due to their significant industrial importance. Consequently,
various historical works attempted to automatically predict their actual val-
ues [15, 21, 5]. One of the first worth noting was the research conducted by Babu
et al. [5], who proposed a model for predicting ferrite numbers exhibiting accu-
racy comparable to that of WRC-1992. Notably, this model was later improved
even further by Vitek et al [28].

Classical machine learning techniques yielded similarly promising results for
other analogous tasks. For instance, Badmos et al. [6] investigated prediction
quality for a large array of traits, such as tensile strength, durability, hardness,
and deformation rate. Similarly, Javier et al. [12] examined chemical composition,
casting size, cooling speed, and thermal treatment using linear classification,
k-nearest neighbours, decision trees, and Bayesian networks (BN). Yuxuan et
al. [30] used a simple neural network with 20 input variables (such as chemical
composition, heat treatment conditions, and test temperature) to predict the
tensile characteristics of stainless steel. Additionally, as showcased by Penya et.
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al. [20], BNs were successfully applied to recognise the presence of micro-damages
in the casting exhibited before or during the casting process itself.

Sachin et al. [22] incorporated data from electron backscatter diffraction
(EBSD) and designed a way to effectively identify and quantify ferrite micronu-
trients in complex microstructures of various steel grades. However, in a report
authored by Britz et al. [9], a correlation approach based on EBSD and LOM
was used — instead of using those common methods independently. Finally, a
work by Gola et al. [13] dealt with the classification of the components of the
microstructure of low-carbon steel by employing a data mining approach.

Presently, the employment of deep neural networks has become the prevalent
approach for image-driven prediction tasks, with convolutional architectures [27]
or transformers [8] being particularly favoured. Research by Durmaz et al. [3]
applied U-Net networks for structure segmentation in complex phase steel, and
similar methods have been effective in predicting the properties of castings [4]. In
this research, transfer learning through the VGG19 [24] architecture was utilized
for microstructure-based classification, while the simpler direct classification was
carried out using EfficientNet [25].

3 Methodology

3.1 Direct image classification using deep neural networks

The primary aim of this approach is to establish a baseline for the casting quality
prediction task (a binary classification problem, where one has to distinguish low
tensile strength samples from those characterised by high Rm values) without
over-engineering the pipeline for this specific problem. To achieve this objec-
tive, we treated the target classifier as a single-step black box and ignored the
domain-specific knowledge used by the other presented approaches. Due to the
limited size of the utilised dataset, we determined that employing a dedicated
architecture would offer minimal advantages and may even lead to indirect over-
fitting. Similarly, interpretability concerns are postponed to the future works,
as they were not the critical focus. Thus, we concentrated on well-established
pre-trained techniques with a proven record of successful deployments.

Our initial search for a suitable foundational model showed that vanilla VGG-
like arrangement [24] is enough for single graphite structure classification (see
below) but together with the deep residual network ResNet50 [10] is severely
underperforming in direct microstructure image classification when compared
with the third candidate — a group of convolutional networks jointly known as
the EfficientNets [25].

EfficientNets represent a family of convolutional networks specifically de-
signed to balance model depth, width, and resolution. They leverage a scalable
architecture that can be tuned to various sizes while maintaining a consistent
level of accuracy. The main building block of EfficientNets is the mobile inverted
bottleneck, first introduced as a part of the MobileNetV2 network [23]. More re-
cently, the machine vision community proposed numerous other architectures as
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their successors, including EfficientNetV2 [26] (with its potentially faster fused
residual blocks) and ConvNeXt [16] (proven to be a viable alternative even to
the modern vision transformer models). However, we remain convinced that the
original EfficientNets are still the safest choice for establishing a realistic and
reproducible baseline result, mainly due to the sheer number of successful ap-
plicative studies profiting from them.

We employed the largest member of the family - the B7 model consisting of
66 million weights, pre-trained on the ImageNet dataset. The task of cast iron
assessment significantly deviates from the standard object recognition problems.
Specifically, the input images are near-monochromatic and uniformly filled with
content. Consequently, fine-tuning the entire network (instead of adjusting only
the top fully-connected layers) was deemed advantageous.

To pick the hyperparameters for the fine-tuning process, we utilised the Au-
toKeras meta-optimisation system [14]. The complete configuration consisted of
the elements listed in Table 1. The automatic tuner itself is a hybrid oracle that
performs a chosen number of trials (50 in our case). First, it aggregates parame-
ters into conceptual categories (e.g. "augmentation" or "architecture"). Then, it
generates new values for one category at a time with a greedy strategy — while
using the best result obtained so far for the rest.

Table 1. EfficientNet fine-tuning parameters

Hyperparameter The set of considered values
Adam learning rate (α) {0.001, 0.0001, 0.00002}

top layers spatial reduction (ts) {GlobalAverage,GlobalMax}
classification head dropout rate (pd) {0.0, 0.25, 0.5}
translation augmentation factor (gt) {0.0, 0.2}

zoom augmentation factor (gz) {0.0, 0.2}
contrast augmentation factor (gc) {0.0, 0.2}
rotation augmentation factor (gr) {0.0, 0.2, 0.5}

horizontal flip (gh) {0, 1}
vertical flip (gv) {0, 1}

Both the parameter selection and the actual fine-tuning operated on a col-
lection of images that were initially of varying sizes and aspect ratios. To en-
sure consistency, we first applied a pre-processing step in which each image was
cropped to a square shape and rescaled to a resolution of 224x224 — resulting
in 3525 positive (high Rm) and 1455 negative (low Rm) samples.

The reported scores were obtained as a result of a standard 10-fold cross-
validation procedure. In the case of the first analysed fold, the training set was
additionally subdivided into two smaller subsets (in a ratio of 8 to 2). Those
subsets were utilised to conduct an initial AutoKeras hyperparameter search.
The winning arrangement of parameters obtained that way was then saved and
used unchanged throughout all the remaining folds of the experiment.
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Fig. 1. Graphit forms in cast irons [1]

3.2 Microstructure-based classification

Microstructure-based classification idea is based on analysing graphite struc-
tures appearing in the microstrucutre LOM picture. According to the norms [1],
the structures can be classified into six principal forms, which are presented in
Figure 1.

The algorithm gets LOM picture and mechanical property prediction model
as input and returns predicted property, see Algorithm 1. At the beginning
graphite structure type counters are initialized with 0 (lines 1-3), next separate
graphite structures are distinguished in the picture P (line 4) and stored in a list
S. These structures are classified to one of the structure types t and a number
of structures for recognized type is updated (lines 5-8). These numbers form

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_42

https://dx.doi.org/10.1007/978-3-031-36030-5_42
https://dx.doi.org/10.1007/978-3-031-36030-5_42


6 Bartlomiej Sniezynski et al.

a feature vector X describing the picture. Next, mechanical property can be
predicted using model M (line 9).

Input: P – LOM picture, M – mechanical property prediction model
Output: Predicted mechanical property

1 foreach structure type t do
2 X[t]← 0
3 end
4 S ← Separate structures in picture P ;
5 foreach structure picture s ∈ S do
6 t← type of structure s;
7 X[t]← X[t] + 1;
8 end
9 c← prediction of mechanical property M(X);

10 return c;
Algorithm 1: Microstructure-based classification

This algorithm depends on three main procedures that should be specified:
structure separation (line 4), structure type classification (line 6) and mechanical
properties prediction (line 9). They are described below.

Structure separation To separate the structures, their edges are discovered using
Canny’s edge detection [7] approach. For every separate edge region, part of
the image surrounded by the edge is cut off and put in the middle of a white
rectangle (dimensions 335 x 251 pixels were used in experiments). It happens
that several graphite structures are in contact with each other and recognized
as one, big structure. Frequency of such error is very low, below 1%.

Structure type classification To determine type of the separated structures,
VGG19 convolutional neural network [24] and transfer learning were applied.
The last three layers of VGG19 were replaced by three fully connected layers
consisting of 512 neurons each and softmax output layer. These last layers were
updated during training on examples of forms of graphite structures that were
manually assigned to one of six forms (Fig. 1), to which additional type 0 form,
containing merged structures described above, was created.

To improve quality of classification three transformations were tried. Data
augmentation was used to balance the data. Gaussian blur was applied to merge
cracked structures. Image thresholding was also applied to decrease color depth
to 1-bit and eliminate gray levels.

Mechanical properties prediction In our research several machine learning algo-
rithms were applied to build the model M predicting mechanical properties of
casting represented by the feature vector X. Mechanical property was categori-
cal and represented low and high tensile strength. However, presented approach
is general and can be also used for other properties.
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The following algorithms were applied for classification: Support vector ma-
chines, decision trees (CART algorithm), random forest, logistic regression, multi-
layer perceptron and AdaBoost. Training data were only lightly unbalanced
(3358 examples with high tensile strength versus 1337 with low). Training was
also applied for balanced data (using random elimination of examples from over-
represented category), but results were worse than on the original training data.
Data augmentation techniques could be applied here but this topic is left for
future research.

4 Experiments

4.1 Source data

Photos of microstructures subjected to classification were created as a result of
experiments (research projects) carried out in the former Foundry Research In-
stitute in Krakow (currently Łukasiewicz Research Network - Krakow Institute
of Technology). The basis for the classification was the information contained
in the standards regarding the shape of graphite and qualifying them to the
appropriate groups / classes. Another issue that should be taken into account
when classifying the microstructure is the possibility of defects related to the
arrangement of the graphite precipitate. The size of the precipitates and signif-
icant differences in the size of the precipitates may be an important factor. The
best mechanical properties can be obtained with spheroidal graphite compared
to cast iron with flake precipitates. When observing the microstructure of cast
iron with flake graphite, defects related to graphite degeneration may also occur,
which also deteriorate the mechanical properties.

The set consists of 223 images in two magnification levels: a hundredfold
and five hundredfold magnification. Images with lower magnification have reso-
lution 2080x1540 and with higher 1388x1040. Samples were manually classified
by domain expert according to tensile strength Rm. Examples of these images
are presented in Fig. 2. All images are in RGB format. Images with a hundred-
fold magnification are cut into 25 smaller pictures to achieve five hundredfold
magnification.

Based on CRISP-DM methodology pictures with low quality and large amount
of noise were removed, together with pictures done other than LOM technique
and representing other types of castings, see Fig. 2-(c) for example.

4.2 Direct classification

The initial hyperparameter search concluded by finding the following arrange-
ment: α = 0.00002, ts = GlobalAverage, pd = 0.0, gt = 0.2, gz = 0.0,
gc = 0.0, gr = 0.5, gh = 1, gv = 1. The gathered values are in line with our prior
knowledge and expectations about the problem domain. The images of cast iron
microstructures do not have a natural orientation, i.e., they have no inherent
concept of top, bottom, left, right, or centre. This means that they can be freely
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(a) (b) (c)

Fig. 2. Examples of LOM images representing microstructure of iron-carbon alloys
with low tensile strength (a), high tensile strength (b) and outlier image removed from
the training data set (c)

flipped, rotated, and shifted without affecting the representation of the under-
lying structures. Hence, we can easily augment our training dataset by applying
those transformations to the images, without risking a negative impact on the
accuracy of the final model.

The preference for low learning rates supports our decision to start with a pre-
trained model, implying that a slight correction of the initial weights was enough
to achieve satisfactory results for the studied problem. Finally, we acknowledge
that the observed leaning towards less regularization may be a byproduct of the
assumed limited epoch budget, where training was halted after 30 epochs. This
is due to the fact that high-dropout networks tend to converge more slowly than
their no-dropout counterparts.

Table 2 outlines the aggregated experiment results obtained for the aforemen-
tioned optimal parameter set. The small number of the utilised samples resulted
in a significant between-fold variance and score deviation. The same phenomenon
can be spotted when scrutinising Figure 3: there are two clear outliers among
the ROC trends, corresponding to splits that are harder to classify. On the other
hand, the healthy shape of the discussed curves and the good balance between
the calculated precision and recall metrics show that, fortunately, the skewed
class distribution in the training set had a negligible effect on the ultimately
attained performance.

4.3 Microstructure-based classification

Structure type classification Training data for structure form classification con-
sisted of 1572 examples. Numbers of examples in every category are presented in
Table 3. The network was trained in 100 epochs using Adam optimizer. Accuracy
of the trained network was equal to 82% on test data (10% of the training data).

Table 2. Baseline results of a direct classification with a fine-tuned EfficientNet

Accuracy Precision Recall F1 Score AUC
90.9%± 1.4% 92.9%± 1.7% 94.3%± 2.1% 93.6%± 1.1% 96.44%± 0.93%
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Fig. 3. Receiver Operating Characteristic (ROC) curves for direct classification. Dark
red line denotes the mean ROC curve, black crosses — its standard deviation in certain
points, dotted light red lines — the curves corresponding to cross-validation splits.

F1 metrics was equal to 0.79. As it may be noticed in confusion matrix generated
for types I-VI, which is presented in Fig. 4, the main problem is distinguishing
form IV, which is mistaken with III and V. Also form II is mistaken with form
III and I.

Accuracy of structure form classification using VGG19 convolutional neu-
ral network trained on data with various transformations applied are presented
in Tab. 4. Augmentation resulted in drop of accuracy. Adding Gaussian blur
allowed to improve results for classes V and VI. However, other classes were
miss-classified more often (especially I and II). Therefore the overall improve-
ment was minimal. Image thresholding resulted in accuracy decrease.

Mechanical properties prediction Results obtained in 10-fold cross-validation for
chosen algorithms are presented in Tab. 5. Hyper-parameters of these algorithms

Table 3. Number of examples in every form type

Form Number of examples
0 14
I 278
II 122
III 292
IV 76
V 289
VI 501
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Fig. 4. Confusion matrix for VGG19 convolutional neural network for structure form
classification

were tuned using Optuna framework [2]. Models were trained on original and
balanced data. As we can see, the best Accuracy and Log loss achieved AdaBoost
(83,4%, 0.67). The highest F1 values were achieved by Support vector machine
and Random forest (0.90). The best Average precision achieved Random forest
and AdaBoost. Accuracy of the reset of algorithms is similar. Other metrics differ
more.

What can be also observed, results for balanced data are worse than for
unbalanced. Better balancing techniques should be applied in the future to check
their influence.

Because Decision tree algorithm achieved results close to the best models,
decision trees learned were analyzed and consulted with domain expert. Example
of such decision tree is presented in Fig. 5. Its accuracy is 81.2%. The expert
confirmed that the decision tree is consistent with the domain knowledge.

Table 4. Accuracy of structure form classification using VGG19 convolutional neural
network trained on data with various transformations applied

Augmentation Gaussian blur Thresholding Accuracy
No No No 82.2%
Yes No No 78.0%
Yes Yes No 79.7%
Yes Yes Yes 77.1%

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_42

https://dx.doi.org/10.1007/978-3-031-36030-5_42
https://dx.doi.org/10.1007/978-3-031-36030-5_42


Prediction of mechanical parameters based on microstructure image analysis 11

Table 5. Results of chosen machine learning algorithms applied to mechanical prop-
erties prediction

Model Balanced data Accuracy Log loss F1 Average precision
Support vector machine No 83.3% 0.39 0.90 0.90
Support vector machine Yes 76.9% 0.49 0.78 0.81

Decision tree No 81.6% 0.46 0.89 0.81
Decision tree Yes 69.5% 0.58 0.74 0.65

Random forest No 83.3% 0.40 0.90 0.92
Random forest Yes 78.4% 0.47 0.79 0.83

Logistic regression No 82.2% 0.41 0.89 0.91
Logistic regression Yes 77.1% 0.52 0.78 0.80

Multilayer perceptron No 82.7% 0.41 0.88 0.91
Multilayer perceptron Yes 80.6% 0.46 0.83 0.84

AdaBoost No 83.4% 0.67 0.89 0.92
AdaBoost Yes 72.0% 0.62 0.76 0.77

Fig. 5. Sample decision tree for mechanical properties prediction

5 Conclusions

In this paper we have shown that it is possible to predict casting mechanical
parameters based on direct microstructure image analysis and recognition and
classification of graphite forms. These methods were applied to predict tensile
strength of iron-carbon alloys, but they can be used to predict other parameters
too.

Direct image classification has better accuracy (90.1%) and F1 metrics (93.6%)
than recognition and classification of graphite forms. However the latter ap-
proach allows to create models with high interpretability and still high accuracy.
Decision tree allows to achieve accuracy equal to 83.3% and F1 equal to 90%,
and the model learned is very simple. It was consulted with domain experts and
they confirmed that it is consistent with their knowledge.

Interpretability of the model is especially important in decision support sys-
tems. Application of such a model would allow to add explanation functionality,
which is very important in engineering.

In the future research we are planning to apply Grad-CAM for producing
visual explanations for direct microstructure image analysis. We would like to
apply other methods for data augmentation in recognition of graphite forms and
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other architectures than VGG19 for structure classification. We would also like
to use other methods with symbolic knowledge representation for classification,
e.g. scoring systems [19] that we have applied in medical domains or rule based
systems, which correspond to human way of thinking well [17]. Last but not
least, we would like to apply this methodology for prediction of other mechanical
properties, like elastic limit (Rp) of iron-carbon alloys.
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