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Abstract. Promoting sustainable transportation necessitates understand-
ing what makes people select individual travel modes. Hence, classifiers
are trained to predict travel modes, such as the use of private cars vs bikes
for individual journeys in the cities. In this work, we focus on parking-
related factors to propose how survey data, including spatial data and
origin-destination matrices of the transport model, can be transformed
into features. Next, we propose how the impact of the newly proposed
features on classifiers trained with different machine learning methods
can be evaluated. Results of the extensive evaluation show that the fea-
tures proposed in this study can significantly increase the accuracy of
travel mode choice predictions.
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1 Introduction

Accurately modelling travel mode choices (TMCs) is an important part of trans-
portation planning [2, 7]. It makes it possible to predict, based on multiple fea-
tures such as a person’s age, journey distance, and whether the person owns a
car, whether the journey is likely to be made by e.g. walking, or by private car.
An overview of factors impacting which mode of transportation is selected by
individuals to move around can be found inter alia in [7]. However, the data
used so far to predict travel modes do not include parking-related features even
in comparative studies of different classifiers [2], or include a very limited set of
features such as the parking permit feature used in [7]. Importantly, mobility is
expected to be influenced, among other things, by the financial costs of mobility
alternatives, which include but are not limited to parking costs [1]. Another fac-
tor related to comfort and total travel time is the time it takes to find a parking
space. However, how to estimate parking difficulty for mode choice modelling is
an open issue.

Hence, this work focuses on how the features capturing parking difficulty
can be calculated. The proposed methods rely on the demand matrices of a
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traffic model and predicted time of finding a parking space and getting from it
to the ultimate journey destination. All these methods provide features used by
machine learning (ML) models. To evaluate these features, we investigate their
impact on mode choice models trained with different classification methods. The
results obtained with three datasets documenting real journeys show that the
features proposed in this study can help predict transport modes used for the
analysed journeys.

The remainder of this work is organised as follows: in Sect. 2 the use of ML for
TMC modelling is summarised. Novel parking features are proposed in Sect. 3,
and evaluated in Sect. 4. Conclusions are made in Sect. 5.

2 Related works

The travel mode prediction problem is frequently stated as a classification prob-
lem [4, 2]. A multitude of methods has been used for the task, including but not
limited to Support Vector Machine (SVM), Random Forest (RF), and XGBoost
(XGB). Systematic reviews of ML methods for modelling passenger mode choice
can be found in [4, 7, 2]. An important aspect of studies on TMC modelling is
the data used to evaluate the models. Salas et al. in their recent work on TMC
modelling with ML methods [7] observe that most of the previous studies focus
on a single empirical dataset. Moreover, datasets typically used in the works,
such as Dutch National Travel Survey data [8], include features such as distance
travelled, age, education, and land use index, but not parking features related to
journey destination. Salas et al. in [7] consider four datasets, out of which only
one refers to parking issues by including the parking permit feature. An exten-
sive review of datasets made in [4] shows that most datasets rely on trip diaries.
Still, the issue of parking-related factors and their impact on mode choices is
gradually being addressed. In [1], the impact of parking fees on TMC in urban
environments is analysed. In [9], a fixed average parking time for the entire city
is assumed. Many other works do not consider parking difficulties in TMC pre-
diction [10, 6, 3] or consider features possibly related to parking difficulties such
as population density [10], global traffic congestion [5] or trip density [8].

The impact of individual features on TMC models is frequently analysed. Trip
distance, travellers’ age, number of cars/bicycles owned, and trip density were
among the predictors influencing the predictions of the models in [8]. We aim to
extend extant TMC research by proposing and evaluating parking features.

3 Estimating parking difficulty and costs

The goal of this work is to provide a proposal for parking-related features that
would help explain some TMCs. Let X = {(x1,M1), . . . , (xN ,MN )} denote the
set of journeys xi for which travel mode Mi actually used in the past is known.
Our objective is to extend the x vectors by appending parking-related features
i.e. use for the training and evaluation of travel mode prediction models vectors
[xi, f1(xi), . . . , fF (xi)] including both original and F parking-related features.
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Fig. 1: Points, areas, and distances considered for parking difficulty estimation.

The estimation of parking time For some cities, data documenting the
parking time tp, which we define as the approximate time needed to park a car
and get from its location to the actual journey destination P is available. The
higher the parking time at location P is, the more reluctant travellers may be
to use private cars to travel to this destination. Hence, we propose building a
regression model predicting the parking time based on records documenting tp
for individual locations (x, y). Let T be the set of parking time tuples (x, y, h, tp),
where x and y stand for the geocoordinates of the journey destination, h denotes
the hour of the day at which the destination was reached and tp denotes the
parking time reported by a person reaching the destination by car. Next, a
regression model MREG(x, y, h) can be developed to predict parking time tp
and provide the value of the PRED PTIME feature based on input data (x, y, h(t)),
where t denotes the approximate time of reaching the destination present in
journey record x and h(t) denotes the hour of the day.

The estimation of parking difficulty and cost We propose three meth-
ods to estimate parking difficulty, which we will explain using Figure 1. Let
P = (x, y) be a point at which we wish to estimate the parking difficulty pa-
rameter, i.e. the journey destination in which a car ideally would be parked if
used for the journey. Let B(P,R) be a circle around the point P with radius
R, which defines the approximate area likely to be considered by a driver to
park a car. Let Z1, Z2, . . . , Zn be the transport zones (polygons) that have non-
empty intersections with the ball B(P,R). For all zones, we denote the average
number of arrivals to the zone Z at hour h ∈ {0, 1, . . . , 23} by Ah(Z). Next, let
I1, I2, . . . , In denote the area of the intersection of zone Zi with the ball B(P,R).
Moreover, let cZ1

, cZ2
, . . . , cZn

denote centroids of the corresponding zones, and
cI1 , cI2 , . . . , cIn centroids of the intersections with the corresponding zones. Let
d(◦, ⋄) denote the distance between two points. Using the above notation, we
define the parking difficulty feature fm() for the point P = (x, y) at time t using
the method m as fm(P, t) = 1

n

∑n
i=1 Wm

(
Zi, B(P,R)

)
·Ah(t)(Zi).

We propose three methods m to calculate the weight Wm(Zi, B(P,R)). The
first provides the PDIFF IS AREA feature in which the weight is proportional
to the area of the intersection Ii, i.e., WIA(Zi, B(P,R)) = Ii. The second fea-
ture is PDIFF IS CENTR, where the weight is proportional to the area of the
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(a) Voronoi diagram of re-
ported parking time.

(b) Parking difficulty at
hour h = 8.

(c) Parking difficulty at
hour h = 17.

Fig. 2: Spatial distribution of parking time and difficulty values. log10 scale

intersection Ii and inversely proportional to the distance between the parking
point and the intersection centroid, i.e., WIC(Zi, B(P,R)) = Ii

d(P,cIi )
. Finally, in

PDIFF ZONE CENTR, the weight is proportional to the area of the intersection Ii
and inversely proportional to the distance between the parking point and the
zone centroid, i.e., WZC(Zi, B(P,R)) = Ii

d(P,cZi
) .

These features can be calculated for any point P in the entire city area,
covered by the transport model. The features differ in how they quantify the
influence of different zones. Most likely the decisions of travellers will be more
affected by expected parking difficulties in the area closer to the journey desti-
nation. This is why features giving different weights to data from different zones
are proposed. To illustrate both the data used to calculate the parking time fea-
tures and selected PDIFF IS CENTR values, sample values for the City of Warsaw
are provided in Figure 2.

The feature estimating parking cost takes as an input arrival date and time sa,
departure date and time sd, and the journey destination (x, y) i.e. the location at
which a car could ideally be parked, all coming from a journey record x. Based
on the parking pricing policies of the city and these input data, the value of the
PCOST feature is calculated. This yields only estimated parking costs, as factors
such as the use of private parking spaces could influence actual parking costs.

4 Results

Reference data We selected three journey datasets to evaluate the methods
proposed in this study. The datasets were collected in the City of Warsaw in
2022 and document journeys made by a representative sample of the parents of
primary school children (PAR W1 and PAR W2 datasets) and a representative
sample of all citizens of Warsaw (CIT W1 dataset). The PAR W1 includes jour-
neys made by parents of children from three reference schools, while PAR W2 in-
cludes journeys of a representative sample of parents of children from all schools
in the city. All the datasets were prepared based on the travel diaries of re-
spondents and included all journeys of respondents within the City of Warsaw
irrespective of origin and destination i.e. also including non-school journeys.
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Table 1: Summary of datasets used for training and evaluation of TMC models.
Dataset Respond. Journeys CAR PT BIKE WALK

PAR W1 523 1861 895 (48.54%) 344 (18.66%) 89 (4.83%) 516 (27.98%)
PAR W2 316 798 323 (41.15%) 232 (29.55%) 18 (2.29%) 212 (27.01%)
CIT W1 1170 2961 1044 (36.43%) 1181 (41.21%) 109 (3.80%) 532 (18.56%)

Table 1 presents the number of instances and the share of transport mode
classes in the datasets. There are four modes considered in this work including
public transport (PT). The survey answers were not limited to these modes, but
other modes were rarely reported, which resulted in an insufficient number of
examples. The raw journey records describe a respondent, i.e. education, gen-
der, and year of birth; and information about reported journeys, such as origin,
destination, departure time, and aim. Additional features were calculated using
OpenTripPlanner1 and include, separately calculated for each of the analysed
travel modes, features such as distance, duration, waiting time (for PT), or esti-
mated travel duration considering street congestion (for CAR). In this way, the
journey records xi used in the remainder of this work were obtained.

The calculation of parking features During the surveys, respondents were
asked how long it took them to find a parking space. Answers to this question
were given only if someone travelled by car. The direct usage of this data would
create data leakage and bias the results. To avoid this, the missing parking
time for the remaining journeys xi was imputed using estimation from the k
nearest neighbours (kNN) model and multivariate imputation made by the MICE
algorithm overwriting the original values. Moreover, as a reported parking time
equal to zero may mean not providing true data or not leaving a car at the
destination at all, two attempts were used to treat zeros. While the first one used
tp = 0 in parking time tuples as correct values, the second one considered zeros
as missing values to be imputed with proper values. The kNN-based regression
model was used to predict parking time based on the set T . During optimisation,
k = 9 was selected as an optimal value for all datasets. The average mean
absolute error (MAE), calculated on the known values, reached 5.07 and 5.39
minutes for the estimation with and without zero parking times, respectively.

The MICE algorithm cannot be used directly to create an estimation model.
The algorithm calculates only new values to replace missing data. This is done
using multiple imputations, in our case, based on the parking attempt’s longi-
tude, latitude and hour. Therefore, the algorithm had to be modified. In the first
step, the predictive mean matching was used 5 times to calculate new values.
Next, all original values were removed, and the imputation was applied again
(with the same parameters) to overwrite the original data. The errors obtained
by the MICE algorithm are higher and more diverse than for kNN. For the
dataset with zeros considered as proper values, the MAE reached 6.46 minutes;

1 https://www.opentripplanner.org/
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Table 2: Summary of parking feature sets
Feature set Features used

BASELINE x

C TIME [x, PCOST(), PRED PTIME()]

C DIFF [x, PCOST(), PDIFF IS CENTR(), PDIFF IS AREA(), PDIFF ZONE CENTR()]

C TIME DIFF BASELINE ∪ C TIME ∪ C DIFF

after removing such instances, i.e. once zero parking time values were removed
and imputed with MICE, the error exceeded 8.15 minutes. Thus, four parking
time features PRED PTIME were provided, i.e. two by kNN and two by MICE.
Finally, radius R was set to 1000 meters to calculate parking difficulty features.
This value reflects the distance for which walking is used most of the time.

Algorithm 1: The evaluation of the importance of parking features

Input: D - matrix of n feature vectors, P ∈ Rn - vector of corresponding n
transport modes, K - the number of CV folders, r - the number of runs

1 begin
2 for i = 1, . . . r do
3 {Dj , Pj}j=1,...,K = DivideSetUsingStratifiedCrossValidation(D,P ,K);
4 for k = 1 . . .K do
5 DT = Dk; DV = D(k+1) mod K ; DL = D \DT \DV;
6 h = FindBestHyperParameterV alues(DL, P (DL), DV, P (DV));
7 M = TrainWithBestHyperParams(i,DL, P (DL), DV, P (DV),h);
8 ET((i− 1) ∗K + k) = E(M(DT), P (DT));

9 ET = [mean(ET()),median(ET())] ;

The evaluation of features Alg. 1 was applied separately for each dataset
described in Sect. 4 and each feature set listed in Table 2. It was executed with
r = 10 and k = 10. For higher diversity, a different ML technique was used for
each i = 1, . . . , r. Moreover, the best hyperparameter values were determined
first for each of the following methods: kNN, multi-layer perception, SVMs with
linear and radial kernels, XGBoost and XGBDart, ranger, naive Bayes, decision
tree, and RF.

Table 3 shows the mean and median accuracy (ACC) ET obtained for all
ML methods considered together, i.e. based on 100 tests per one feature set-
dataset pair. Next, for each dataset, the ML method yielding the highest median
accuracy for C TIME DIFF was determined.

For the PAR W1 dataset, extending the features to C TIME DIFF increases
the mean and median ACC by about 3%, similarly to C TIME. For the PAR W2
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Table 3: The accuracy (ACC) of mode choice predictions on testing subsets
(a) All methods (b) Best method

Dataset Feature set mean [%] median [%] method mean [%] median [%]

PAR W1

BASELINE 63.95 66.00 XGBoost 67.42 67.67
C DIFF 64.02 66.67 XGBoost 70.43 70.33
C TIME 66.80 69.00 XGBoost 77.26 77.33
C TIME DIFF 66.82 68.67 XGBoost 75.82 76.33

PAR W2

BASELINE 57.62 58.93 XGBDart 64.18 63.39
C DIFF 57.78 60.38 XGBDart 63.93 63.39
C TIME 57.74 59.65 XGBDart 61.45 60.96
C TIME DIFF 57.96 58.93 XGBDart 65.02 67.25

CIT W1

BASELINE 57.03 58.56 XGBDart 62.14 62.67
C DIFF 57.12 58.46 XGBDart 60.55 60.00
C TIME 56.41 57.92 XGBDart 60.10 60.04
C TIME DIFF 56.91 58.78 XGBDart 61.77 61.71

dataset, C TIME DIFF provides the highest mean ACC, but the median ACC
is better for C DIFF. The ACC changes for CIT W1 are only minor ones.

However, the best classifier for each dataset is sought in practice. Applying
the best classifier – XGBoost – and the C TIME set increases the mean ACC
for PAR W1 to 77.26% i.e. by nearly 10 per cent points. For PAR W2, while the
mean ACC can be slightly improved using XGBDart and all parking time fea-
tures, the median ACC was improved to 67.25% when all features were included.
The results for the PAR W2 dataset show that the best classification method
may yield a much higher ACC benefit arising from exploiting C TIME DIFF
features, than suggested by mean ACC. The reason for the difference in the
ACC gains between PAR W1 and PAR W2 may be higher MAE for parking
time predictions for PAR W2 than for PAR W1.

The best predictor, i.e. XGBDart, cannot improve the average ACC on the
CIT W1 dataset. The method overfits training data and adding more features
reduces the ACC of the models. These results show that whether additional
features are helpful should be decided separately for each dataset.

5 Conclusions

In this work, we propose two novel categories of parking-related features to
be used for travel mode choice modelling. The first category necessitates the
use of data showing how much time it took drivers to find a parking space in
different areas of the city of interest. The second group of features transforms
data describing travel demands into parking difficulty features. Both feature
groups contribute to the development of travel choice models. Which of them
should be used depends inter alia on the available data sources. The case of the
city-wide data for primary school parents (the PAR W2 dataset) shows that the
use of both feature types together may be needed to help model development.
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In the case of one of the datasets, the introduction of parking-related fea-
tures negatively affected some ML methods. Still, the case of the two remain-
ing datasets shows that significant accuracy gains can be expected once these
features are used together with survey-based features. This suggests that the
features proposed in this work should be considered in future travel mode choice
studies.
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