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Abstract. Federated learning is a distributed machine learning method
that is well-suited for the Industrial Internet of Things (IIoT) as it en-
ables the training of machine learning models on distributed datasets.
One of the most important advantages of using Federated Learning for
Automated Guided Vehicles (AGVs) is its capability to optimize resource
consumption. AGVs are typically resource-constrained systems and must
operate within tight power and computational limits. By using Federated
Learning, AGVs can perform model training and updating on-board,
which reduces the amount of data that needs to be transmitted. This
paper presents experiments to assess the consumption of resources of
the Jetson Nano edge IoT device while training the Federated Learning
model, and compares it with referential machine learning approaches.

Keywords: Federated Learning · predictive maintenance · smart pro-
duction · Artificial Intelligence · resource consumption · recurrent neural
networks

1 Introduction

Federated Learning (FL) is a cooperative Machine Learning (ML) technique
that relies on the idea of gaining experience in local environments by many dis-
tributed, locally built ML models and sharing the experience to build the global
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inference model [16]. Local models can be trained on edge IoT devices that usu-
ally have limited storage and computing capabilities compared to typical work-
stations. This approach reduces communications needs and energy consump-
tions, since after training local models on locally available data, only the local
experience (e.g., ML model parameters) is shared, not the data itself. Therefore,
Federated Learning is well suited to Industrial Internet of Things (IIoT) systems
and IIoT-based monitoring of AGV-enabled production lines thus contributing
to smart and agile manufacturing.

Automated Guided Vehicles (AGVs) and collaborative robots (cobots) play
an important role in computer-integrated smart manufacturing as they support
assembly tasks in an autonomous manner [23]. They can independently analyze
signals from a variety of sensors to complete their operational tasks without hu-
man intervention. This requires accumulating a wealth of local data and making
decisions in the context of the current environmental conditions, monitored by
sensors and transportation commands acquired from external systems, such as
the Transportation Management System (TMS) [17].

The inherent properties of FL make it also a suitable approach for moni-
toring the health of the intelligent machines working in smart production lines,
like the AGVs or cobots (Fig. 1). Since smart factories employ many such au-
tonomous units, they all can gather their experience based on operational cycles
implemented in the factory. All these devices are equipped with local, edge IoT
devices capable of collecting data and building local ML models for various pur-
poses, e.g., predicting the inability to complete specific operational cycles due to
low battery levels or predicting necessary maintenance tasks by finding anomalies
in analyzed signals [22].
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Fig. 1. AGVs performing edge IoT-based local inference and sending local models to
the IoT cloud to build a global inference model.
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These predictive tasks can be performed locally, but blending the experience
of other AGVs with the local knowledge may bring additional improvements
in the quality of inference, and opens the vehicles for the broader spectrum
of operational conditions and abnormalities. However, a perfect inference model
would require ideal datasets and an excellent algorithm for predictive tasks. This
is not easy to achieve. The first factor depends on the existing working conditions
and can evolve over time. The second factor is constrained by the capabilities of
the IoT device hosting the local ML model. In this paper, we focus on the second
factor. We investigate the resource and power cost of performing the predictive
tasks with FL/ML algorithms on the NVidia Jetson Nano edge device mounted
on the AGV. By performing predictive tasks for momentary energy consumption
(MEC) of the AGV as a whole, we compare the energy cost of FL and referential
ML.

The rest of the paper is organized as follows. In Section 2, we review the
works related to Autonomous Guided Vehicles and Federated Learning. Section 3
explains the concept of the Federated Learning approach we rely on and the
inference algorithm we implemented on edge IoT devices mounted on AGVs.
Section 4 shows the results of experiments concerning the resource costs while
performing the inference with Federated Learning. Finally, Section 5 discusses
the obtained results and summarizes the paper.

2 Related Works

2.1 Automated Guided Vehicles

Since Automated Guided Vehicles (AGVs) operate as portable robots that trans-
port objects with autonomous navigation, they are widely used in industrial fa-
cilities such as manufacturing plants, assembly lines, and warehouses [6]. Some
AGVs consist of trailers or plates to transport materials in factories and support
the development of smart factories [3, 10].

Literature shows that navigation is an essential task for AGVs and aims to
reduce manual work and increase onboard autonomy to control the AGV [7].
Traditional AGVs are guided and navigated by cables, and the next genera-
tion of AGVs consists of wireless guidance systems without physical guidance
paths [18]. The wireless guidance systems require environmental information for
AGV navigation, such as the arrangement of AGVs, the destination, and the
paths. The environment information can either be provided by the central man-
agement system or acquired by AGV sensors such as radar, lidar, ultrasound,
and an optical camera [15]. Furthermore, with the basic function of navigation,
the AGV system could perform route planning, which makes path decisions for
AGV navigation with multiple constraints or optimized destinations [1]. Apart
from individual AGV routes, the AGV management system also handles traffic
management and load transfer to avoid collisions and optimize AGV resource
consumption [11].
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2.2 Federated Learning

Federated learning has attracted researchers’ attention since 2017 [8] with feder-
ated averaging (FedAvg) as a typical model [9] outperforming Federated Stochas-
tic Variance Reduced Gradient (FSVRG) [5] and asynchronous Cooperative
Learning (CO-OP) on most real-world datasets [13]. Federated learning is widely
used in various research areas, such as healthcare [19], Internet of Things [12],
and smart factory [4]. It is known for privacy and has a distributed nature [20],
which contrasts with centralized learning algorithms (collecting and training
based on all data at a powerful machine). In [2], Cho et al. studied the conver-
gence analysis of FL for biased scheduling methods and investigated the con-
vergence speed of FL. In [21], the authors reported a framework for federated
edge learning that can adaptively schedule users to reduce total energy con-
sumption. However, none of these works considered the power costs of the FL
approach. Meanwhile, Nishio et al. noted the importance of resource consump-
tion and designed a new FL protocol to perform the scheduling process according
to computational resources channel conditions [14]. In [16], we also analyzed var-
ious training scenarios to improve the performance of the FL-based prediction
model. However, in [16], we didn’t focus on the consumption of resources and
power efficiency. In this paper, we investigate these fields for the NVidia Jetson
Nano edge device that we use in the AGV environment.

3 Federated Learning in the Distributed AGV
Environment

In the AGV environment, Federated Learning (FL) is accomplished by training
local models on edge IoT devices residing on the AGVs. The learning process is
performed in so-called rounds.

Definition 1. A round is a single iteration of distributed training of local mod-
els, sharing experience, building the global model, and updating local models with
global wisdom.

A single round consists of the steps that are presented in Fig. 2. This process
is iterative, and we should repeat the course of the round periodically or when
we get the needed amount of new data.

The first step of a round covers training many local models Mi on AGVs
with locally acquired and collected data. Local models may rely on various al-
gorithms, e.g., different architectures of recurrent neural networks (RNNs), but
once chosen, the architecture is homogeneous for all AGVs. Next, local models
are sent to the data center in the IoT cloud (step 2). In the next step (step 3),
we build the global model M by averaging the weights of local models (local
RNNs):

M =

N∑
i=1

Mi ∗ IMi
(1)
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Fig. 2. Federated Learning performed in the distributed AGV environment.

where Mi is the local model built on the i-th AGV, IMi is the influence of a
specific local model Mi when creating the global model, N is the number of
AGVs, and ∗ is point-wise multiplication.

Definition 2. The influence of the local model is the average relative comple-
ment of the contribution of the partial loss generated by the local model to the
total loss produced by all local models.

The influence IMi
of a local model Mi can be calculated according to the

following formula:

IMi
=

1

N − 1

∑N
j=1 LMj

− LMi∑N
j=1 LMj

, (2)

where LMi
is the loss calculated for the i-th AGV (MSE or Validation loss).

The global model is built specifically for the inference task performed, and
its architecture should be appropriate. Within this work, we focus on predicting
momentary energy consumption (MEC). We decided to predict MEC, as this
parameter is important in the operation of AGVs. Any deviation of this value
may indicate a particular malfunction of the vehicle or its parts. We plan to use
this value to detect anomalies reflected in the significant difference between the
value received by the device and the one predicted by our neural network. Our
previous work [16] proved that LSTM networks for building the inference model
and Mean Square Error (MSE) as a metric for verifying the influence of local
models perform well when predicting MEC.

Once the global model is built centrally, it is sent back to the AGVs (step
4) and overwrites the local models Mi on each AGV (step 5). This way, global
wisdom updates local knowledge, and the round completes. After acquiring an-
other portion of data by each AGV, training local models can start in the next
round.
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4 Determining Jetson Nano’s Resource Consumption in
Federated Learning

For the experiments, we used NVidia Jetson Nano acting as an edge device on
the AGVs. The edge device mounted on the AGV collects data by itself. Then, it
uses the data to train a prediction model for the Momentary energy consumption
(MEC) value over time, which is one of the indicators for faults or improper use
of the AGV. During this process, we observed the resource consumption on the
edge device with and without Federated Learning.

As the prediction model was implemented on edge Jetson Nano device, all
the data collected by the device were used to train and build the prediction
model locally without directly sending the data anywhere. Since we predicted
the value of the MEC in time, we decided to use a recurrent neural network
(RNN) based on the LSTM cell since this type of architecture copes quite well
with time series.

In order to assess the effectiveness of Federated Learning in predicting AGV
energy consumption, we collected data from nine test runs of Formica-1, one
of the AGVs developed by AIUT Ltd., for which our group provides AI-based
solutions. The entire data set contained roughly 12,500 samples collected with a
frequency of 1 Hz.

During the test drives, we executed various scenarios, including repeated
circular and counterclockwise paths, driving forward and backward at a speed
of 0.2 m/s, repeated emergency braking, fast acceleration in both directions,
and moving the lifting plate up and down. We performed each scenario with an
empty vehicle and a half-loaded payload compartment (weighing 425 kg).

In order to see how Federated Learning affects the resource consumption
of edge devices at the time of training, we decided to test the following three
situations:

1. Using the LSTM-based MEC prediction model without FL model trained
on the entire data set (12,000 training samples).

2. Using the LSTM-based MEC prediction model trained in 4-round FL (4-R
FL) on three Jetson Nano edge devices. We used three edge devices, and
each of them collected 4,000 samples in 4 rounds of training (1,000 training
samples per round).

3. Using the LSTM-based MEC prediction model trained in 8-round FL (8-R
FL) on three Jetson Nano. We used three edge devices, and each of them
collected 4,000 samples in 8 rounds of training (500 training samples per
round).

In summary, we analyzed how many Jetson Nano resources are required for
training the prediction model without FL, for one round of 4-R FL and one round
of 8-R FL. To see how many resources are used when training the recurrent neural
network, we used the jetson stats Python library. For all considered experiments,
we were using Jetson Nano in the highest performance mode.
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4.1 Using LSTM without Federated Learning on the entire data set

In the first series of experiments, we decided to check how many resources the
edge device consumed without the use of Federated Learning. In this case, we
trained our neural network on the entire training data set (12,000 samples).
Fig. 3 shows average resource consumption during training on this data set.

Fig. 3. Resource consumption on the edge device while training the MEC prediction
model on the whole data set.

The training took 1,472 seconds, and from Fig. 3, we can observe that all
four processors of the Jetson Nano were 45 percent loaded. Additionally, 1.0 GB
of RAM and observed momentary power consumption of 3,153 mW during the
experiment, equate to 4,641 J of total energy consumption on this device while
training.

The results of the MEC prediction with the LSTM model without FL are
presented in Fig. 4. We tested our model on 500 samples that were not part of
the training data, resulting in an MSE value of 924.23. This figure shows two
signal values, real (represented in blue) and predicted by our neural network
(represented in orange). The greater the difference between these signals, the
worse our neural network model performs. In this case, we see that the signal
values are similar, indicating that our model performs well.

4.2 Using LSTM with 4-round Federated Learning

In this series of experiments, we launched Federated Learning on three devices.
Moreover, we used 4-R FL on each device to execute four learning rounds, build
a global MEC prediction model, and share weights between these devices. This
means each edge device collected 1,000 samples per round (12,000 samples in
total for four training rounds). In this case, we recorded how many resources
were consumed by the edge device when we trained the MEC prediction model
with 1,000 samples (in one round). The average resource consumption during
training on this dataset is shown in Fig. 5.
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Fig. 4. Prediction performance of the LSTM model trained on the entire training data
set.

The training took 133 seconds per round, and from Fig. 5, we can observe
that all four processors of the Jetson Nano were 46 percent loaded. Addition-
ally, 1 GB of RAM and observed momentary power consumption of 3,232 mW
during the experiment, equates to 5,158 J of total energy consumption while
training. Generally, we consumed almost the same resources as in the case with-
out Federated Learning. However, we split this resource consumption between
three devices.

The MEC prediction results obtained with the LSTM model trained in 4-R
FL are presented in Fig. 6. We tested our model on 500 samples that were not
part of the training data, which resulted in an MSE value of 948.28.

4.3 Using LSTM with 8-round Federated Learning

In this series of experiments, three edge devices collected 500 samples per round
(12,000 samples for 8 training rounds). The average resource consumption during
the training round on this data set is shown in Fig. 7.

The training time took 66 seconds, and from Fig. 7, we can observe that all
four Jetson Nano processors are, on average, 44 percent loaded. Additionally,
1GB of RAM and observed momentary power consumption of 2,570 mW during
the experiment, equates to 4,070 J of total energy consumption while training.

The MEC prediction results obtained with the LSTM model trained in 8-R
FL are presented in Fig. 8. We tested our model on 500 samples that were not
part of the training data, resulting in an MSE value of 849.39.

In this training scenario, we observed lower power consumption and noticed
that the processor works at lower frequencies, which, in our opinion, is related
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Fig. 5. Resource consumption on the edge device while training the MEC prediction
model in 4 rounds of Federated Learning.

to the lower consumption of power. Such results indicate that the 8-round Fed-
erated Learning option consumed the least edge device resources. Moreover, this
approach allowed us to obtain the best prediction accuracy, which converges
with the observations presented in [16].

5 Discussion and Conclusions

Time, CPU utilization, RAM usage, and IoT device power consumption are all
critical performance indicators for building the prediction models working on-
board Autonomous Guided Vehicles. They all directly impact the consumption
of energy (MEC) from the batteries of the AGVs, and, ultimately, their capabili-
ties to function effectively and efficiently. For these reasons, we investigated how
these resources were consumed during the training of a neural network locally
on them.

This study demonstrates that the most effective and resource-saving way to
train neural networks locally on Autonomous Guided Vehicles is by using a larger
number of Federated Learning (FL) rounds. Table 1 summarizes the results of
the different stages of the experiment. As we can observe, using 8-round training
allowed for significant resource savings, reduced the overall load on the device,
and improved the MEC signal prediction effectiveness, which is crucial for de-
tecting anomalies in AGVs. Also, obtained results of Total Energy Consumption
show that by using 8 rounds of Federated Training, we consume 12% less energy,
not taking into account that this consumption will be additionally distributed
between edge IoT devices. Furthermore, using FL provides better security for
industrial data by processing data locally on the devices, reducing communica-
tion needs and the amount of data transferred. These findings can help develop
more efficient and secure neural network training methods for AGVs. In future
work, we plan to compare the prediction effectiveness and resource consumption
of several different types of neural networks using Federated Learning. Since any
neural network can be applied in FL, we have a large selection of models as an
alternative to LSTM, which we used in this work.
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Fig. 6. Prediction performance of the LSTM model built in 4-round Federated Learn-
ing.

Table 1. Resource consumption for each of the tested scenarios for training the MEC
prediction model.

Approach Time per
round CPU RAM Momentary power

consumption
Total energy
consumption

LSTM without FL 1472 sec 45% 1 GB 3,153 mW 4,641 J
LSTM with 4-R FL 133 sec 46% 1 GB 3,232 mW 5,158 J
LSTM with 8-R FL 66 sec 44% 1 GB 2,570 mW 4,070 J
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