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Abstract. As network scale expands and concurrent requests grow, un-
expected network anomalies are more frequent, leading to service inter-
ruptions and degraded user experience. Real-time, accurate troubleshoot-
ing is critical for ensuring satisfactory service. Existing troubleshooting
solutions adopt ensemble anomaly detection (EAD) to detect anomalies
due to its robustness. However, the fixed base classifier parameters in
EAD set by expert experience may reduce the efficiency of anomaly de-
tection when faced with different data distributions. Furthermore, the bi-
nary results fed to the secondary classifier in EAD cause information loss,
leading to compromised accuracy and inaccurate root cause localization.
Besides, key performance indicators (KPIs) are crucial for measuring the
system performance, but relying on multiple redundant KPIs to identify
the root causes of anomalies is time-consuming and error-prone.
To address the above issues, we propose a fully automatic troubleshoot-
ing system, ATS. A new EAD method is introduced to detect anomalies,
then a module is designed to trigger the root cause localization. Specif-
ically, the EAD method updates the parameters of base classifiers to
dynamically adapt to different KPI data distributions. The ensemble of
soft labels generated by base classifiers is subsequently fed into the sec-
ondary classifier to achieve information-lossless anomaly detection. Then,
a heuristic module is proposed to select the most appropriate KPI data
based on the metric i.e., bilayer relative difference to trigger the efficient
root cause localization. Extensive experiments demonstrate that ATS
is more than twice as fast as most state-of-the-art solutions while with
higher troubleshooting accuracy.

Keywords: Troubleshooting · Ensemble Anomaly Detection · Soft La-
bel · Bilayer Relative Difference

1 Introduction
With the continuous expansion of network scale and rapid growth of concur-
rent requests, unexpected network anomalies are becoming increasingly com-
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Fig. 1: Process of troubleshooting.

mon, such as unusual traffic patterns, data packet loss, and sudden spikes or
drops in network traffic. If the anomalies are not addressed, they may result in
service interruptions for users and significant deterioration in user experience.
In online commercial services, such issues can even harm business profits [3, 10].
Therefore, a real-time and accurate troubleshooting scheme is crucial for pro-
viding satisfactory service and ensuring a seamless user experience by rapidly
identifying and resolving network anomalies.

As shown in Figure 1, the troubleshooting process can be summarized in
three steps: Key Performance Indicator (KPI) extraction, anomaly detection,
and root cause localization (RCL). Firstly, operators extract various real-time
KPIs by aggregating and calculating from the raw data. Secondly, Ensemble
Anomaly Detection (EAD) algorithms [1, 4, 26, 37, 40] are typically employed to
monitor system status by detecting variation of KPIs. In detail, the KPIs are
initially input into the base classifiers, i.e. base learners [37], which generate pre-
liminary classification results. These binary outcomes are then simultaneously
fed into the secondary classifier to make the final classification decisions [30].
Finally, after detecting an anomaly, many Root Cause Localization (RCL) al-
gorithms [2, 18, 22, 29, 35] are introduced to identify the anomaly root cause to
specific dimensions such as province, city, or server ID. Considering the inevitable
false positives of anomaly detection, they utilize all KPIs flagged as anomalous to
locate the candidates of root cause individually. Subsequently, each candidate is
scored and the one with the highest score is ultimately selected as the conclusive
result.

Despite the strong performance of these methods, there still exist several im-
portant challenges to achieving an efficient troubleshooting method in practice.

Firstly, base learners are the foundation of EAD. By combining more accu-
rate results from base learners, a more precise and robust result can be achieved.
However, existing EAD schemes mostly concentrate on optimizing the parame-
ters of the secondary classifier, while the parameters of the base learners are set
based on expert experience and remain fixed [31, 34]. The fixed parameters of
base learners lead to low accuracy in handling different data distributions, which
ultimately affects the final accuracy of the secondary classifier.

Secondly, the final decision of EAD heavily depends on the preliminary clas-
sification results of base learners. Many EAD algorithms [1, 4, 37, 40] utilize the
secondary classifier to make the final decision only considering the binary results
of base learners. However, this approach fails to capture the full classification in-
formation provided by the base learners, resulting in significant information loss.
This loss has a harmful impact on the optimization of the secondary classifier
and the final performance of the system.
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Thirdly, current approaches [7, 25, 29] often utilize all impacted KPI data
to identify the root cause, resulting in high computational overhead and low
efficiency. Moreover, including KPI data that are irrelevant with anomaly as
input can lead to a misidentification of the root cause.

To address the above challenges, we propose a fully Automatic Troubleshoot-
ing System (ATS) in this paper. The main contributions are summarized as
follows:

– Framework of Fully Automatic Troubleshooting System. We propose
a fully automatic troubleshooting system, namely ATS, which contains three
primary components: AutoDetect, Gunlock, and AutoRoot. When AutoDetect
identifies a system anomaly, Gunlock calculates the most relevant KPI data
to trigger AutoRoot for efficient root cause localization(Section 4.1).

– A Robust and Information Lossless Ensemble Anomaly Detection.
To improve the accuracy of anomaly detection, we propose a robust and in-
formation lossless ensemble scheme for anomaly detection (AutoDetect). Au-
toDetect dynamically updates base learner parameters using Bayesian Op-
timization to adapt to various KPI data distributions. It then combines the
original probabilities of each base learner as soft labels, which are fed into the
secondary classifier for information-lossless anomaly detection(Section 4.2).

– Heuristic Trigger. We propose a novel heuristic trigger called Gunlock
to accelerate RCL (AutoRoot). Gunlock utilizes a metric known as bilayer
relative difference (BRD) to identify the most proper KPI and transfer it to
AutoRoot for root cause localization (Section 4.3).

– Evaluation on real data traces. We use a dataset from a large-scale
content delivery network (CDN) to evaluate the performance of ATS. Ex-
tensive experiments demonstrate that ATS outperforms the state-of-the-art
approaches. For instance, AutoDetect gains a high system anomaly detection
performance with average 10 percent higher than state-of-art algorithms in
F1-score. In addition, we note that ATS shortens troubleshooting time by
half on average (Section 5).

2 Related Work
As the two critical components of online service system troubleshooting, anomaly
detection and RCL have become popular research topics in recent years [22, 23].

Ensemble learning is a machine learning technique that combines multiple
base learners to achieve higher accuracy than a single model. It plays an im-
portant role in the research field of anomaly detection [1, 7, 37] and is widely
deployed in industry [17, 27, 36]. To create a stronger model, Paulauskas and
Auskalnis [13] propose an ensemble model consisting of four different base clas-
sifiers, which depends on the idea of combining multiple weaker learners. Vane-
rio et al. [37] investigate different ensemble-learning approaches and find the
optimal scheme to enhance anomaly detection in network measurements. Ra-
jagopal et al. [32] provide an ensemble paradigm based on meta-classification
and stacked generalization with the goal of improving prediction accuracy. In
industry, EGADS [17] in Yahoo trains multiple models for different types of KPI
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and assembles the appropriate models as plugins. Metis [36] and Surus [27] are
proposed to achieve robust anomaly detection by aggregating different anomaly
detection algorithms. These studies have demonstrated that the application of
ensemble methods enhances the performance of the models, such as prediction
accuracy.

However, the above solutions combine the binary results of base learners. The
ensemble with binary results of base learners produces information loss which
leads to inaccurate results. Moreover, they optimize the model by adjusting the
parameters of the secondary classifier but do not optimize the base learners. This
leads to the inefficient performance of the ensemble model.

There have been some papers proposing the advanced root cause location
algorithm. HotSpot [35] develops a score metric to identify the root cause nodes.
Li et al. [18] and Jing et al. [15] propose improved solutions based on clustering
to address the problem of long tail distribution of KPI metrics. They locate root
causes using each KPI data affected by anomalies. But some changes in KPI data
are not associated with anomalies. Locating the root cause with the improper
input KPI data results in wrong results and wasting of computing source.

3 Preliminaries
In this section, we illustrate some important definitions used in this paper.

To enable real-time troubleshooting, a variety of KPIs such as visit count,
in flow rate, and cache hit ratio are collected from raw logs. KPIs that are
collected with multiple dimensions are referred to as multi-dimensional KPIs
(MDKPIs). For instance, consider the CDN data of visit count in Table 1,
where the first row represents an MDKPI with three dimensions: Province, ISP
(Internet Service Provider), and Website. The corresponding dimension values
are Beijing, ChinaMobile, Weibo.com, respectively.

The KPI can be calculated for each dimension combination, e.g., in the
first row of Table 1, the KPI value for dimension combination {Beijing, ChinaMobile,

Weibo.com} is 59 (line 1). Specifically, the character ∗ represents all the possi-
ble values of the corresponding dimension. For instance, the dimension com-
bination {∗, ChinaMobile, Weibo.com} represents all the users that come from
ISP China Mobile and visit the website Weibo.com. The visit count value of
{∗,ChinaMobile,Weibo.com} is 59+31028+370=31457 (line 1-3).

Table 1: Example of multi-dimensional KPI.
Index Province ISP Website Value

1 Beijing China Mobile Weibo.com 59
2 Shanghai China Mobile Weibo.com 31028
3 Guangdong China Mobile Weibo.com 370
4 Beijing China Mobile QQ.com 221
5 Shanghai China Mobile QQ.com 10
6 Guangdong China Mobile QQ.com 33
7 Beijing China Unicom Weibo.com 731
8 Shanghai China Unicom Weibo.com 10
9 Guangdong China Unicom Weibo.com 6
10 Beijing China Unicom QQ.com 441
11 Shanghai China Unicom QQ.com 16
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Fig. 2: Root Cause Search Tree.

Especially, when there is only
one dimension value and other di-
mensions take the value of *, the
KPI is called Single-dimension KPI
(SDKPI). For example, the KPI
visit count with dimension Web-
site is one SDKPI, which corre-
sponds to the dimension combinations
{∗,∗,Weibo.com} and {∗,∗,QQ.com}. The
visit count values of Website dimen-
sion are (Weibo.com,32204) and (QQ.com,721), which is calculated by 59+31028+370+

731+10+6=32204 (line 1-3, 7-9), 221+10+33+441+16=721 (line 4-6, 10-11), respectively.
As shown in Figure 2, we assume that the search space of multi-dimensional

root causes is a tree-like structure. Each node in the tree indicates a dimensional
combination. A specific dimension value represents the corresponding potential
fault location of it. Especially, a leaf node is a dimension combination without
any wildcard ∗, e.g., {Beijing,ChinaUnicom,Weibo.com}. A cabin denotes the set of
dimension combinations with the same non-wildcard dimensions. The layer is
the number of non-wildcard dimensions of a cabin. Let the terms p, i, w denote
the dimensions Province, ISP, Website, respectively. {Beijing,ChinaUnicom,∗} and
{Shanghai,ChinaMobile,∗} belong to the cabin Cp,i, and they are in the layer 2. All
leaf nodes are in the cabin Cp,i,w of Layer 3.

4 System Design
4.1 Overview of Framework

We propose a fully automatic troubleshooting system (ATS) shown in Figure 3.
The ATS mainly consists of four parts: KPI extraction, AutoDetect for anomaly
detection, Gunlock for trigger AutoRoot, and AutoRoot for RCL.

To extract KPI data, we preprocess the raw data, which includes data filling,
data smoothing, and KPI extraction. Firstly, we fill incomplete data with the
mean of the surrounding context and smooth KPI data using exponential mean
average [16] to eliminate noise to some extent. Then we normalize the values
to remove the influence of the order-of-magnitude differences between KPIs.
We filter out KPIs with a variance close to 0 and extract SDKPI with website
dimension for anomaly detection and MDKPI for RCL.

To enhance the performance of anomaly detection, AutoDetect is pro-
posed which is a robust and information lossless ensemble anomaly detector
(Section 4.2). AutoDetect’s extensible first layer comprises multiple base learn-
ers elaborately selected. To accommodate diverse data distributions, we employ
Bayesian optimization to automatically select the best parameters for base learn-
ers. Subsequently, the soft labels from the base learners are integrated and fed
to the secondary classifier to avoid information loss and improve the efficiency
of anomaly detection.

After detecting an anomaly, Gunlock (Section 4.3) computes the heuristic
metric BRD to identify the most suitable KPI, referred to as Trigger_KPI. Then
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Fig. 3: The framework of ATS. The blue square denotes the KPI dimension and
the green square denotes the KPI category. SDKPI consists of different types of
KPI and one dimension. MDKPI includes multiple dimensions and one KPI.

it extracts the MDKPI of Trigger_KPI and employs it to trigger AutoRoot to
locate the root cause.

The multi-dimensional root cause locator AutoRoot [15] is applied to RCL.
Firstly, it calculates the deviation score of each node to filter normal nodes.
Secondly, Kernel Density Estimation (KDE) with Gaussian kernel is employed
to group leaf nodes into clusters. Next, the candidate of each cluster is identi-
fied by calculating the root score (RS). Finally, the candidates are merged and
unnecessary ones are removed to obtain a precise set of root causes (Section 4.4).

4.2 AutoDetect: A Novel Ensemble Anomaly Detection

According to the data analysis, we observe that an anomaly will be reflected in
the value of multiple KPIs. To better capture the various correlations between
KPI data and anomalies, we have developed four base learners and integrated
them to create a more effective anomaly detection system.

Base Learners The base learners can be machine learning-based classifiers
(MLCs) [20] and deep learning-based classifiers (DLCs) [28, 33]. While both are
effective at analyzing static data, our experiments have shown that DLCs require
more time to train than MLCs (see the comparison in Section 5.3). Since KPI
data distributions in online systems are constantly varying, it is essential that
our anomaly detection model be retrained and updated frequently. To minimize
the time required for these processes, we choose four MLCs as our base learners
due to their low training overhead. It is worth noting that this stage is scalable,
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Table 2: Comparison of the ensemble with soft labels and binary results.

Soft Labels Binary Results LabelPCA HBOS IForest COPOD Result PCA HBOS IForest COPOD Result

0.0061 0.0187 0.0314 0.1404 1 0 0 0 0 0 1
0.0079 0.0226 0.0332 0.1406 1 0 0 0 0 0 1
0.0091 0.0205 0.0147 0.1704 1 0 0 0 0 0 1
0.0080 0.0229 0.030 0.1612 1 0 0 0 0 0 1

so the base learners are not confined to the selected learners and other learners
can be added.

To examine the KPI data from multiple angles, we choose several effective
techniques as base learners. These include the proximity-based approach known
as Histogram-based Outlier Score (HBOS) [8], the refactoring-based method
called Principal Components Analysis (PCA) [11], the efficient classifier known
as Isolation Forest (IForest) [21], and a newly developed technique called Copula-
based Outlier Detection (COPOD) [19]. All of these models excel at analyzing
data with high dimensions [6].

Automatic Parameter Selection To achieve optimal performance of base
learners in varying data distributions, we apply the Bayesian Optimization (BO) [9]
method to optimize the base learners during training. By utilizing BO to select
the most appropriate parameters, the performance of the base learners is signif-
icantly improved. It can be expressed as:

lim
p∈P

F (Clf(p);P ) (1)

where P is the set of the possible values of p. Clf(·) denotes the classifiers. F (·)
is the objective function that is usually a user-defined function using different
classifier metrics. In this paper, the objective function is the negative number of
the F1-score of the classifier. Therefore, the objective function is represented as
follows:

min
p∈P

M∑
m=1

−F1Score(Cm(p);P ) (2)

where Cm represents the base learners, and M represents the number of base
learners which is 4 in this paper. Equation 2 represents that each base learner
Cm chooses the appropriate parameters p to optimize the performance of the
classifier.

Information Lossless Ensemble Existing ensemble strategies [4, 26, 37] com-
bine the binary results of base learners for comprehensive making decisions to
gain better performance. The results shown in Table 2 indicate that all of the
base learners generate binary results of 0 (columns 6-9). As a result, the final
result of the ensemble classifier is also 0 (column 10), despite the fact that the
true labels indicate a value of 1 (column 11).

It is obvious that information loss occurs during the generation of binary
results by the base learners, leading to incorrect outcomes when these results
are fed into the secondary classifier, ultimately compromising its accuracy.
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Instead of generating binary results, the base learners of AutoDetect output
the probability of data being anomalous. This probability retains all the learning
information and is instrumental in identifying anomalies. We refer to this prob-
ability as the soft label. The soft labels then are fed into the secondary classifier
to make the final decision. As shown in Table 2, the final decisions based on
the soft labels of the base learners (column 5) are identical to the true labels,
demonstrating the effectiveness of our approach.

Additionally, the choice of the secondary learning algorithm has a significant
impact on the generalization performance of stacking integration. Therefore,
after comparing with typical algorithms, we have selected Isolation Forest [21] as
our secondary classifier(Section 5). To further improve the model’s performance,
Bayesian optimization (BO) is applied to the training of the secondary classifier.

Training of AutoDetect As Algorithm 1 shows, the process of AutoDetect
training is summarized as follows:

– The first step is to train individual base learners (Step 1-4). The extracted
SDKPI is input into the base learners. And BO is applied to choose appro-
priate parameters to enhance the performance of each learner.

– The second step is to use the base learners to predict the test data and
aggregation of soft labels is used as the secondary training set, which is the
training set of the secondary classifier (Step 5-11).

– The final step is to train the secondary classifier (Step 12-13). To thoroughly
analyze the soft labels, we adopt the stacking combination strategy and
select Isolation Forest as our secondary classifier. Additionally, we utilize
BO during the training process of the secondary classifier.

Algorithm 1 AutoDetect training
Input: The SDKPIs training dataset D = (X1, y1), (X2, y2), ..., (Xn, yn), base learners

L1,L2, ...Lm, secondary learner L
Output: Predicting result H(X) = h′(h(X1, X2, ..., Xn))
1: for i = 1, 2, ...,m do
2: p = BayesianOptimization(Li).
3: hi = Li(D, p)
4: end for
5: D′ = ∅
6: for i = 1, 2, ..., n do
7: for j = 1, 2, ...,m do
8: zij = hj(Xi)
9: end for

10: D′ = D′ ∪ ((zi1, zi2, ..., zim), yi)
11: end for
12: p′ = BayesianOptimization(L).
13: h′ = L(D′, p′)
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4.3 Gunlock: Trigger

In real-world systems, a single anomaly can impact multiple KPIs. However,
analyzing each affected KPI is computationally costly, and not all changes in
KPI values indicate the anomaly. This wastes computing resources. To optimize
efficiency and accelerate localization, it is crucial to select the most appropriate
KPI called Trigger_KPI as the sole input for RCL.

Existing solutions for identifying system anomalies focus on KPIs with the
largest fluctuation, but this may not always be relevant or indicate anomalies.
Some KPIs have a wide normal range of fluctuation without significant impact
on the average value over time, leading to relative differences that appear large
but are not anomalous.

To find the most proper KPI data for RCL, we propose a novel heuristic
metric named bilayer relative difference (BRD) to evaluate the degree of change
in KPIs. It considers the historical change in KPI data as follows:

BRDi
τ =

kiτ − kimean

kimean

kimean = avg(med1,med2)

(3)

where kiτ represents the i-th KPI at time τ and i = 1, 2, ..., n. kimean denotes the
median mean of the i-th KPI in the last week. We calculate the median m1 of
the de-duplicated values of the i-th KPI data for a week. Then, the weekly data
is split into two groups based on whether the values are greater than or less than
m1. med1 and med2 represent medians of these groups respectively. kimean is the
average of med1 and med2.

When an anomaly is detected, Gunlock analyzes the impact on each KPI
by calculating its BRD. This helps determine which KPIs are most affected
by the anomaly. Gunlock then identifies the KPI with the highest BRD as the
Trigger_KPI. Finally, Gunlock extracts the MDKPI for the Trigger_KPI and
sends the data to AutoRoot, which locates the root cause of the anomaly.

4.4 AutoRoot: Root Cause Localization
We implement the AutoRoot proposed in [15] to localize the root cause due to
the parameter-free clustering. It is beneficial for constructing a fully automatic
system.

Fliter normal nodes The forecast value of the Trigger_KPI is calculated from
historical data according to the ARMA (Auto-regressive moving average model)
algorithm [24]. By comparing the real and forecast values, the deviation score
for each leaf node is computed to enable differentiation between anomalous and
normal nodes. The deviation score is defined as:

d(e) =
f(e)− v(e)

f(e) + v(e)
(4)

where f(·) and v(·) are forecast value and real value functions of dimension
combinations. The deviation scores of normal leaf nodes are far less than that of
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abnormal ones according to the GRE principle [18, 35]. We use a proper range
of deviation scores [-0.1,0.1] to filter out normal leaf nodes according to the
observation of the real dataset [18].

Kernel Density Estimation based clustering We use the KDE with the
Gaussian kernel to obtain the distribution density function from the deviation
score array and the relative maxima and minima of this function. The relative
maxima are the centers of each cluster, while the nearby relative minima are the
boundaries of the clusters. Consequently, we obtain distinct clustering intervals,
and by categorizing the deviation score arrays into these intervals, we can allocate
the anomalous leaf nodes inherited from the same root cause into the same
clusters.

Search candidates The root score (RS) of each dimension combination is
calculated following Equation 5 to find the candidates for the root causes.

RS = avg(NPS + LF + CF ) (5)

NPS = 1−
avg( |v(erc)−a(erc)|

v(erc)
) + avg( v(el)−f(el))

v(el)

avg( |v(erc)−f(erc)|
v(erc)

) + avg(v(el)−f(el))
v(el)

)
(6)

a(e) = f(e)− f(e)
f(S)− v(S)

f(S)
= f(e)

v(S)

f(S)
(7)

where the new potential score (NPS) is used to evaluate the probability of a node
rc being the root cause. CF is denoted as the rate of descending leaf nodes in the
cluster and LF is the descending rate of all its leaf nodes. The notation avg(·) is
an average function. As shown in Equation 6, NPS follows that if a dimension
combination is a root cause, the difference between its real value and forecast
value should be assigned proportionally to its leaf nodes. v(erc) and a(erc) are
the real value and expected value of the leaf nodes which are inherited from
the assumed root cause node rc respectively. v(el) and f(el) represent the real
value and forecast value of all the remaining leaf nodes, respectively. Equation 7
defines the expected value a(e) where S denotes a non-leaf node and leaf node
e is inherited from S.

The dimension combination with the largest NPS is denoted as a candidate.
The dimension combinations with the same value are also called sets in each
cabin. The candidate is the most potential root cause in each set. Then we sort
all the candidates by root cause score RS and extracted the candidate with the
largest RS as the potential root cause in the cluster.

Identify root cause We use Occam’s Razor to merge all the most potential root
causes to lite recommendation results. If a root cause belongs to another root
cause, then the one with the wider scope is retained. For example, if {Beijing, *,
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*} and {Beijing, *, Weibo.com} are two recommended root causes from different
clusters, We will eliminate {Beijing, *, Weibo.com} to make the result more
concise.

5 Evaluation

In this section, we first describe the experimental dataset and performance met-
rics. Then, we conduct experiments on the dataset to assess the performance of
ATS.

5.1 Dataset

The dataset used in this paper is collected from a real-world large-scale CDN
system by ourselves. It is a synthetic dataset based on real data ranges from
January 2019 to September 2020, which is collected from the CDN system. It
includes five dimensions, which are Province, Website, Operator System, Network
Type, and Caching Server. It has 30768 leaf dimension combinations. For Web-
site, there are multiple system-level KPIs, such as in_flow, out_flow, CDN_ttfb,
etc. Besides, we utilize KPIs of three websites to test the performance of Au-
toDetect. These websites are the top three video websites with massive visits and
extensive traffic. The first Website (Website 1) is a live video website that lives
at regular intervals.

5.2 Baseline and Evaluation Metrics

We compare the performance of anomaly detection (AutoDetect) with four en-
semble anomaly detection (EAD) schemes as baseline. Recent research [37] men-
tions three ensemble schemes named MVuniform, MVscore and MVexp. MVu-
niform gives the same weight (1/n) to each learner, where n is the number
of base learners and it implements simple majority voting. MVscore assigns
weights wi =

fi∑n
i=1 fi

to the prediction of learner i, being fi the F1-score of the
learner. MVexp computes weights with an exponential classification F1-score,
wi = eλfi∑n

i=1 eλfi
, where λ is selected to reduce the influence of low F1-score

predictors. We take λ = 10 for such an effect. We also implement a baseline
algorithm Squeeze [18] as the comparative solutions of ATS.

We apply Precision, Recall and F1-score to evaluate the performance of ATS.
Additionally, we add Time_cost based on the metrics above to evaluate the
performance of different MDRCL schemes. The key performance metrics Preci-
sion is the rate of correctly troubleshooting anomalies to the total number of
anomalies troubleshooting and Recall is the ratio of correctly troubleshooting
anomalies to all anomalies. F1-score is a harmonic average of Precision and Re-
call, which is usually used to measure the efficiency of an algorithm, denoted
as F1_score = 2∗Precision∗Recall

Precision+Recall . We evaluate the average consumption time of
each algorithm on the same Linux server.
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Table 3: Performance comparison of AutoDetect with different classifiers based
on Precision, Recall and F1-score.

Methods Website1 Website2 Website3
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

PCA 0.924 0.956 0.940 0.668 0.226 0.337 0.863 0.524 0.652
HBOS 0.930 0.941 0.935 0.736 0.300 0.426 0.853 0.544 0.664

IsolationForest 0.936 0.922 0.929 0.751 0.229 0.351 0.883 0.530 0.663
COPOD 0.915 0.444 0.598 0.763 0.783 0.773 0.849 0.361 0.506

KNN 0.866 0.968 0.914 0.345 0.472 0.399 0.883 0.546 0.675
LOF 0.833 0.791 0.811 0.567 0.557 0.562 0.620 0.320 0.422

CBLOF 0.860 0.908 0.883 0.372 0.371 0.372 0.700 0.398 0.507
OCSVM 0.735 0.907 0.812 0.911 0.712 0.799 0.454 0.701 0.551

AutoDetect 0.929 0.976 0.952 0.795 0.786 0.790 0.883 0.546 0.675

5.3 Performance of Anomaly Detection

In this section, we describe the performance of AutoDetect in dataset with KPIs
of three websites and compare with the performance of baseline schemes.

Table 3 reports the Precision, Recall and F1-score of the AutoDetect and
the typical machine learning classifiers (MLCs) on our dataset, where the best
F1-scores for all methods are highlighted in boldface. All of the MLCs are im-
plemented by Pyod [39] and their parameters are optimized as same as base
learners in AutoDetect. It is obvious that AutoDetect is the most stable and
efficient. The four base learners (PCA, HBOS, IForest, COPOD) are relatively
efficient among the others. HBOS, KNN [5] and LOF [14] belong to proximity-
based methods, but HBOS performs much stabler and less time-consuming than
others in anomaly detection. Although OCSVM [38] and CBLOF [12] have rel-
atively good performance, we do not choose them due to time consumption.

As shown in Figure 4a, we compare the F1-score of five anomaly detection
ensemble schemes in three datasets. It is observed that AutoDetect performs
best. We observe that AutoDetect outperforms Isolation Forest with the result
of base learners (IFwithRe). It means that information loss impacts the per-
formance of ensemble. Using the soft labels of base learners avoids the loss of
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Fig. 4: (a) Performance comparison of ensemble schemes, (b) Training time com-
parison of learners.
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information. Compared with different ensemble schemes (MVuniform, MVscore,
MVexp, StackingwithKNN), AutoDetect achieves higher F1-score and more sta-
bility.

In addition, we compare the cost of time between classical MLCs and deep
learning classifiers (DLCs). Figure 4b reports the result. We notice that the
costs of PCA, HBOS and COPOD are the lowest, which are always lower than
5 seconds. The four base learners that we select are the four with the least
training time. By contrast, the time cost of Autoencoder and VAE is around 3
or 4 hours, respectively. Apart from OCSVM, the training time of MLCs is in
seconds or minutes, while that of DLM is in hours. The cost of DLM is hundreds
to thousands of times than MLCs brings about failure to adapt to the time
variation of the online system.

5.4 Performance of ATS

In this section, we introduce the performance of the fully automatic troubleshoot-
ing system (ATS) in terms of time consumed.

We compare the cost time of ATS, Squeeze [18], and ATS without Gun-
lock. As shown in Figure 5, the average time cost by Squeeze and ATS is 46.27
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Fig. 5: Comparison of cost time.

and 9.75 seconds, respectively. It
reveals ATS achieves almost 5x
improvement in time cost com-
pared to Squeeze. Since the effec-
tive parameters optimization of ATS
and the reduction of search space,
ATS eliminates unnecessary compu-
tations and thus achieves fast trou-
bleshooting. Moreover, the average
time cost of ATS without Gunlock
(AD+AR) is more than twice as
much as that of ATS. This is due to
the Gunlock finding the unique Trig-
ger_KPI and decreasing the com-
putational cost.

6 Conclusion

In this paper, we propose the ATS which is a fully automatic troubleshooting
system. It accomplishes troubleshooting by employing efficient ensemble soft-
labels-based anomaly detection AutoDetect, a heuristic trigger (Gunlock), and
fast multi-dimensional root cause localization AutoRoot. Furthermore, we dis-
cussed the components of the framework in detail and evaluated it in terms of
anomaly detection and runtime performance. Extensive experiments on one real
data trace demonstrate that ATS is more accurate and faster than traditional
manual diagnostics and state-of-the-art solutions.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_38

https://dx.doi.org/10.1007/978-3-031-36030-5_38
https://dx.doi.org/10.1007/978-3-031-36030-5_38


14 L. Yuan et al.

Acknowledgements This work is supported by the National Key Research
and Development Program of China (No. 2021YFB2910108).

References

1. Aburomman, A.A., Reaz, M.B.I.: A survey of intrusion detection systems based
on ensemble and hybrid classifiers. Computers & security 65, 135–152 (2017)

2. Ahmed, F., Erman, J., et al.: Detecting and localizing end-to-end performance
degradation for cellular data services based on tcp loss ratio and round trip time.
IEEE/ACM Transactions on Networking 25(6), 3709–3722 (2017)

3. Amazon: Amazon found every 100ms of latency cost them 1% in sales.
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-costthem-1-in-
sales/, Aug. (2008)

4. Araya, D.B., Grolinger, K., ElYamany, H.F., Capretz, M.A., Bitsuamlak, G.: An
ensemble learning framework for anomaly detection in building energy consump-
tion. Energy and Buildings 144, 191–206 (2017)

5. Chaovalitwongse, W.A., et al.: On the time series k-nearest neighbor classification
of abnormal brain activity. T-SMCA 37(6), 1005–1016 (2007)

6. Chen, Z., et al.: Combining mic feature selection and feature-based mspca for
network traffic anomaly detection. In: DIPDMWC. pp. 176–181. IEEE (2016)

7. Folino, G., Sabatino, P.: Ensemble based collaborative and distributed intrusion
detection systems: A survey. Journal of Network and Computer Applications 66,
1–16 (2016)

8. Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): A fast unsuper-
vised anomaly detection algorithm. KI-2012: poster and demo track 9 (2012)

9. Golovin, D., Solnik, B., et al.: Google vizier: A service for black-box optimization.
In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. pp. 1487–1495 (2017)

10. Google: http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html.
(2006)

11. Groth, D., Hartmann, S., Klie, S., Selbig, J.: Principal components analysis. In:
Computational Toxicology, pp. 527–547 (2013)

12. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern recogni-
tion letters 24(9-10), 1641–1650 (2003)

13. Jabbar, M.A., Aluvalu, R., Reddy, S.S.S.: Cluster based ensemble classification for
intrusion detection system. In: ICMLC. pp. 253–257 (2017)

14. Jin, W., Tung, A.K., Han, J., Wang, W.: Ranking outliers using symmetric neigh-
borhood relationship. In: Pacific-Asia conference on knowledge discovery and data
mining. pp. 577–593. Springer (2006)

15. Jing, P., Han, Y., Sun, J., Lin, T., Hu, Y.: Autoroot: A novel fault localization
schema of multi-dimensional root causes. In: WCNC. pp. 1–7. IEEE (2021)

16. Klinker, F.: Exponential moving average versus moving exponential average. Math-
ematische Semesterberichte 58(1), 97–107 (2011)

17. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated
time-series anomaly detection. In: SIGKDD. pp. 1939–1947 (2015)

18. Li, Z., Luo, C., et al.: Generic and robust localization of multi-dimensional root
causes. In: ISSRE. pp. 47–57. IEEE (2019)

19. Li, Z., Zhao, Y., et al.: Copod: copula-based outlier detection. In: ICDM. pp. 1118–
1123. IEEE (2020)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_38

https://dx.doi.org/10.1007/978-3-031-36030-5_38
https://dx.doi.org/10.1007/978-3-031-36030-5_38


ATS: A Fully Automatic Troubleshooting System 15

20. Liu, D., Zhao, Y., et al.: Opprentice: Towards practical and automatic anomaly
detection through machine learning. In: IMC. pp. 211–224 (2015)

21. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 eighth ieee international
conference on data mining. pp. 413–422. IEEE (2008)

22. Luglio, M., Romano, S.P., Roseti, C., Zampognaro, F.: Service delivery models
for converged satellite-terrestrial 5g network deployment: A satellite-assisted cdn
use-case. IEEE Network 33(1), 142–150 (2019)

23. Ma, M., Yin, Z., Zhang, S., Wang, S., Zheng, C., Jiang, X., Hu, H., Luo, C., Li,
Y., Qiu, N., et al.: Diagnosing root causes of intermittent slow queries in cloud
databases. Proceedings of the VLDB Endowment 13(8), 1176–1189 (2020)

24. McLeod, A.I., Li, W.K.: Diagnostic checking arma time series models using
squared-residual autocorrelations. Journal of time series analysis 4(4), 269–273
(1983)

25. Meng, Y., Zhang, S., et al.: Localizing failure root causes in a microservice through
causality inference. In: IWQoS. pp. 1–10. IEEE (2020)

26. Mirza, A.H.: Computer network intrusion detection using various classifiers and
ensemble learning. In: SIU. pp. 1–4. IEEE (2018)

27. Netflix: https://github.com/netflix/surus (2019)
28. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection:

A review. ACM Computing Surveys (CSUR) 54(2), 1–38 (2021)
29. Persson, M., Rudenius, L.: Anomaly detection and fault localization an automated

process for advertising systems. Master’s thesis (2018)
30. Pham, N.T., Foo, E., et al.: Improving performance of intrusion detection system

using ensemble methods and feature selection. In: ACSW. pp. 1–6 (2018)
31. Rahman, M.A., Shoaib, S., et al.: A bayesian optimization framework for the pre-

diction of diabetes mellitus. In: ICAEE. pp. 357–362. IEEE (2019)
32. Rajagopal, S., Kundapur, P.P., Hareesha, K.S.: A stacking ensemble for network in-

trusion detection using heterogeneous datasets. Security and Communication Net-
works 2020, 1–9 (2020)

33. Su, Y., Zhao, Y., et al.: Robust anomaly detection for multivariate time series
through stochastic recurrent neural network. In: SIGKDD. pp. 2828–2837 (2019)

34. Sun, S., Jin, F., et al.: A new hybrid optimization ensemble learning approach for
carbon price forecasting. Applied Mathematical Modelling 97, 182–205 (2021)

35. Sun, Y., Zhao, Y., et al.: Hotspot: Anomaly localization for additive kpis with
multi-dimensional attributes. IEEE Access 6, 10909–10923 (2018)

36. Tencent: https://github.com/tencent/metis (2019)
37. Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and

anomaly detection. In: Big-DAMA@SIGCOMM. pp. 1–6 (2017)
38. Wang, Z., Fu, Y., Song, C., Zeng, P., Qiao, L.: Power system anomaly detection

based on ocsvm optimized by improved particle swarm optimization. IEEE Access
7, 181580–181588 (2019)

39. Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: A python toolbox for scalable out-
lier detection. Journal of Machine Learning Research 20(96), 1–7 (2019),
http://jmlr.org/papers/v20/19-011.html

40. Zhong, Y., Chen, W., et al.: Helad: A novel network anomaly detection model based
on heterogeneous ensemble learning. Computer Networks 169, 107049 (2020)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_38

https://dx.doi.org/10.1007/978-3-031-36030-5_38
https://dx.doi.org/10.1007/978-3-031-36030-5_38

