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Abstract. The performance and driving range of electric vehicles are
largely determined by the capabilities of their battery systems. To ensure
optimal operation and protection of these systems, Battery Management
Systems rely on key information such as State of Charge, State of Health,
and sensor readings. These critical factors directly impact the range of
electric vehicles and are essential for ensuring safe and efficient operation
over the long term. This paper presents the development of a battery
State of Charge estimation model based on a 1-D convolutional neural
network. The data used to train this model are theoretical operating data
as well as driving cycles of lithium-ion batteries. An Explainable Artificial
Intelligence method is then applied to this model to verify the physical
behavior of the black box model. Finally, a testing platform is currently
under development to assess the effectiveness of the State of Charge
estimation model. Our explainable model, called SocHAP, is compared
to other contemporary methods to evaluate its predictive accuracy.

Keywords: Explainable AI · Battery degradation · Deep learning · Elec-
tric vehicle · Lithium-ion battery cell · State of Charge.

1 Introduction

The European Commission has approved the goal to reach a “net-zero” Green-
house Gas (GHG) emissions level by 2050. Currently, more than 20% of the EU’s
GHG emissions are related to transport and almost 50% of those are caused by
passenger vehicles. As opposed to other energy-intensive sectors, such as elec-
tricity generation and industry, emissions from transportation activities have
been growing in the past years. Therefore, effective measures to reduce these
emissions are urgently needed. The market for electric vehicles has been growing
over the last few years and is becoming more and more interesting thanks to
significantly reduced CO2 emissions compared to a thermal vehicle. However, if
the performance of electric vehicles has been greatly improved thanks to the late
research advances, there are still progress to be made concerning the range and
the life span of their batteries.
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The range of an electric vehicle is directly linked to its energy source, which
is mainly a battery composed of cells. Lithium-ion batteries are becoming over-
stretched on the electric vehicle market. Indeed, they have a very high energy
density, a long life span and a wide range of operating temperatures [8]. The
18650 lithium-ion cell has reached a nominal capacity of 2.4 Ah which corre-
sponds to an energy density of 200 Wh/kg [22]. In order to improve the driving
range of electric vehicles, it is necessary to slow down the aging process of bat-
teries. Indeed, as the battery ages, its storage capacity decreases, its internal
resistance increases and therefore, its global performances and driving range
degrade. The Battery Management System (BMS) manages the charging and
discharging of the cells according to the State of Charge (SoC) and the State
of Health (SoH). The advancement of battery health assessment is critical for
building a clean and sustainable society, but limited access to sufficient battery
aging data poses a significant challenge. This work presents an alternative solu-
tion for producing large-volume, high-quality aging datasets, which avoids the
need for carrying out large-scale aging experiments in the laboratory. Although
several public datasets [5] such as MIT [20] or NASA exist [19], every dataset
is intended to investigate the impact of several factors on the ageing process. In
this paper, we introduce a new dataset as one of our contributions. The data
used in this study was obtained from a test bench installed in a research platform
at INSA Strasbourg, where the cells were cycled using the WLTC (Worldwide
harmonized Light vehicles Test Cycles) cycles. The data is in the form of time
series measured by sensors during the cycling of the cells.

In automotive applications, SoC is considered one of the most important
parameters for maintenance. Predicting an accurate value of the SoC avoids
incidents such as overcharging and deep discharge of the battery. It takes values
between 0 and 1 that directly indicates the amount of energy left in a battery to
power an electrical device. While some studies have focused on predicting SoC
with a machine learning approach, few have attempted to explain the results
with an explainable model.

Therefore, our contributions in this paper are as follows: (i) a newly built
dataset that contains time series data of battery cell meant for SoC predic-
tion;(ii) a SHAP-based explainable on a top of a convolutional neural network
approach, called SocHAP, to predict the SoC using multiple features; (iii) the
development of a test bench implementing our estimation model for real-time
battery cell SoC estimates. The paper is organized as follows, we begin by intro-
ducing the study context, then present the results of the SoC estimation training
of the model. Next, we use Explainable Artificial Intelligence (XAI) to recover
the physical reality of the functioning of the SoC of a battery learned by the
model. Finally, we present a test bench for cell SoC estimation.
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2 Battery basics and related works

A lithium-ion battery is composed of several cells connected in series or in paral-
lel. Each cell is composed of three main elements: a positive electrode (the cath-
ode), a negative electrode (the anode) which are separated by an electrolyte [6,8].

In order to control the cells in their operation, the BMS requires several pieces
of information related to the battery. While voltage, current and temperature
are easily accessible via a series of sensors, SoC and SoH are cell state quantities
that cannot be directly measured.

The SoC is a metric used to describe the amount of energy left in the en-
ergy storage system [21]. SoC is not a physical quantity that can be directly
measured; instead, it can only be estimated by measuring strongly correlated
proxy quantities such as voltage, current, and temperature [13]. Typically, SoC
is expressed as a value in the range of 0 to 1, and it is defined in the literature as
the ratio of the available amount of charge to the maximum amount of charge
of the battery. It is computed as follows:

SoC =
Crest

Cnom
(1)

Crest =

∫
i.dt (2)

where Crest is the remaining releasable capacity of the battery at a certain
level of charge and Cnom is the nominal capacity of the battery. Crest is also
equal to the integral of the current i over time t. Accurate measurement of SoC
is crucial for determining the appropriate charging and discharging strategies of
batteries and thus avoiding any permanent damage to their internal structure
[16]. The SoH of a battery is defined by the following relation :

SoH =
Cact

Cnom
(3)

where Cnom represents the nominal capacity of the battery and Cact the
current total capacity of the battery. This quantity gives direct information
about the aging and degradation of a battery [4, 12]. In the context of electric
mobility, a battery is considered no longer usable and must be replaced when its
SoH value reaches 80% [17].

In the literature, a few data-driven approaches and techniques have already
proven to be effective in terms of accurately estimating the SoC of a lithium-ion
battery cell. One of the first approaches is to use a Feed-forward Neural Net-
work (FNN) with regression to estimate the SoC [9]. This model consists of two
hidden layers with 5 neurons each, and takes voltage, current, and temperature
measurements of a battery cell in the form of time series as input. Chemali et
al. introduced a Long Short-Term Memory - Recurrent Neural Network (LSTM-
RNN) to predict the SoC value of a cell from time series of voltage, current
and temperature [3]. The model is composed of 500 stacked LSTM cells. Ma-
chine learning and deep learning models have demonstrated good performance
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in classification and regression tasks across various domains. Typically, accuracy
is used as an index of model quality. However, these models are often considered
”black boxes” [1] because they take input features and produce output values
without providing any information about the reasoning process that underlies
their predictions. It is essential to provide users with explanations, and therefore,
Explainable Artificial Intelligence (XAI) is employed.

Gu et al. [7] proposed an explainable model based on the SHapley Addi-
tive exPlanation (SHAP) method to determine the importance of the input pa-
rameters in a battery cell SoC estimation model. The prediction model, called
SW-SHAP-LSTM, is based on a recurrent network of LSTM cells.

In this paper, we propose an explainable approach based on a Convolutional
Neural Network (CNN) to estimate the SoC of a lithium-ion battery cell.

The interest in applying CNNs to time series data is that they would be
able to learn filters that represent repeated patterns in the series [2, 11]. The
estimation model would get a better understanding of the relationships hidden
in the input time-series.

We also introduce a dataset of lithium-ion cell usage cycles reproducing driv-
ing cycles of electric vehicles in urban environment. Finally, an implementation
of the estimation model has been performed on an embedded system.

3 SHAP Convolutional Neural Network for SOC
prediction (SocHAP)

In this section, we introduce our SocHAP model that is described in Figure 1.
First, we develop a Convolution Neural Network that estimates the SoC in real-
time from a window of size W = 100 time points, consisting of voltage, current
and temperature measurements of the cell. Then, the SHAP method is applied
to compute the importance of each feature for a particular prediction made by
the model.

3.1 Data used in the approach and introduction of a new dataset

The data used for the training of the degradation models and experimentation
phase are two sets of lithium-ion cell degradation data. The first set is part of
our contributions, which consists of battery cell usage data in the form of driving
cycles. We used lithium ferrophosphate (LFP) battery cells APR18650M1A from
A123 Systems to perform our tests. These are the same cells used in the MIT
dataset. The tests were generated using the Worldwide Harmonized Light Vehi-
cle Test Procedure (WLTP). A battery cycler is programmed to wear out cells
through cycles consisting of a charge phase and a discharge phase. The charging
phases are carried out using the classic method of charging cells CC-CV: a con-
stant current charge followed by constant voltage charge. The discharge phase is
constituted by using the driving cycles described previously by linking several of
these cycles. This phase also integrates the phenomenon of regenerative braking
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Fig. 1. Explainable Convolutional Neural Network to estimate the SOC.

which recharges the cell during the driving cycle by converting the energy dissi-
pated during the deceleration and braking of the vehicle. This process is repeated
until the cell reaches a degradation of 80%. The test system used to generate
this data comes from Basytec (Basytec XCTS) and allows twelve simultaneous
battery tests. This data set is a useful resource for training battery degradation
models and also for data processing in the context of electric mobility. A few
samples of our dataset are available in the provided link 1. Time series of cell
voltage, current, and temperature measurements for one cycle of the dataset can
be seen in Figures 2, 3, 4. The SoC time series (Figure 5) was computed using
the integral of the current.
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Fig. 2. INSA Cycle : Voltage
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Fig. 3. INSA Cycle : Current

1 https://github.com/thtzmn/INSA_LFP_DATASET
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Fig. 4. INSA Cycle : Temperature
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Fig. 5. INSA Cycle : SoC

The second dataset used is the one released by the Massachusetts Institute
of Technology (MIT) [20], which contains data on the theoretical use of the
battery with constant current discharges. To date, this is the largest public
dataset containing lithium-ion cell cycling information.

3.2 State of Charge explainable prediction

The model used to estimate the SoC of battery cells is a convolutional neural
network (CNN).

Our SocHAP model takes as input a sliding window of information of size W
= 100 related to the battery usage, see Table 1. These data include cell voltage
V, current I, and temperature T.

Features Labels

Voltage (V) U0, U1, . . . U98, U99

SoC value at t=99Current (A) I0, I1, . . . I98, I99
Temperature (°C) T0, T1, . . . T98, T99

Table 1. Sliding window of 100 time points to perform a SoC estimation

A 1-D convolution layer with f=32 filters of size l=5 and a ReLU (Rectified
Linear Unit) activation followed by a 1-D Average Pooling layer of size l = 3
allows to perform a feature selection and data reduction operation. A flattening
layer is then applied with a layer of Dropout with a coefficient of 0.05 to avoid
hyper-parameter overfitting in the training process. Three fully connected layers
of sizes n = 512, n = 256 and n = 128 respectively with ReLU activation, and a
final layer of size 1 are used to estimate the SoC value.

The values of the hyperparameters have been selected after several compar-
isons of different network configurations, see Table 2.
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Convolution layer layers of neurons MAE RMSE

f = 16 2 fully connected : n1 = 256, n2 = 128 0.045 0.0246

f = 16 3 fully connected : n1 = 512, n2 = 256, n3 = 128 0.0269 0.0156

f = 32 2 fully connected : n1 = 256, n2 = 128 0.0424 0.0213

f = 32 3 fully connected : n1 = 512, n2 = 256, n3 = 128 0.0095 0.0139

Table 2. Comparison of the different configurations of the CNN estimation model

This model was trained using the Mean Absolute Error (MAE) as a loss
function :

MAE =

∑N
i=1 |yi − ŷi|

N
(4)

RMSE =

√∑N
i=1(yi − ŷi)2

N
(5)

MAPE =
100%

N

N∑
i=1

|yi − ŷi
yi

| (6)

withN being the number of samples, ŷi and yi the estimated value of sample i
and the actual value of sample i respectively. We also computed the Root Mean
Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE) to
compare the estimation performances of our model with those of the state-of-
the-art over the test samples of our training set. The AdaMax [10] gradient
descent algorithm was used to train the model. It is more suitable than Adam
for learning time-variant processes since it adapts the learning rate for each
parameter during training.

An Explainability method is applied to determine the influence of the current
as an input parameter on the SoC estimates during driving cycles. The objective
is to recover the physical reality of the battery’s SoC functioning learned by the
model. SHAP was introduced by Lundberg and Lee in 2017 [14]. This explanation
method belongs to the family of additive feature contribution methods. It assigns
to each feature a coefficient or an importance value for a particular prediction
f(x), with f a prediction model and x a particular input of this model.

The final explanation take the form of a linear combination of the individual
contributions of the input features x.

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (7)

where g(z′) represents a local approximation function of the original model f and

ϕi represents the contribution of feature i to the prediction f(x). z′ ∈ {0, 1}M
equals 1 when a feature is observed or 0 otherwise and M is the number of
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simplified input features. The average of ϕi is often used as a bias value for ϕ0.
Shapley values are used to estimate the contribution ϕi of each feature.

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[f(S ∪ i)− f(S)] (8)

where f is the prediction model, F the set of all input features, and S the feature
subsets.

4 Experiments and results

4.1 Evaluation of the SocHAP model

Before applying the XAI method to explain the estimates of the SoC estimation
model, we first compared its performance with that of the state-of-the-art mod-
els. All models were trained with the same samples. Slightly more than 2 500 000
samples were used for the training phase of the models. 75% as training set, 15%
as validation set and 15% as test set to evaluate the performance of the models.
The training was performed with Tensorflow 2 on Python 3. Their estimation
performances were then compared using the MAE, the RMSE and MAPE as
indicators. The training set is composed of 70% samples of our dataset with a
sampling time of 0.5 seconds and 30% of MIT data with a sampling time of 5
seconds. We compare SocHAP to two other architectures. The first is an LSTM
based estimation model and the second is a feed-forward neural network.

The performance of the three SoC estimation model architectures can be
observed in the following Table 3:

Model MAE RMSE MAPE

SocHAP 0.0096 0.0172 17.26%

He et al. FNN [9] 0.0652 0.0963 56.68%

Chemali et al. LSTM-RNN [3] 0.0106 0.0203 9.10%

Table 3. Comparison of performances between the different architectures.

Considering only the MAE and RMSE, our SocHAP approach obtains the
best estimation performances. The LSTM-based model obtains the best score for
the MAPE. This means that the LSTM-based model produces more accurate
estimates when the values to be estimated of SoC are close to 0 if we consider
the fact that our model has a lower MAE.

Estimates of the model over the entire cycles of the MIT and INSA datasets
are observable in Figures 6, 7.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_37

https://dx.doi.org/10.1007/978-3-031-36030-5_37
https://dx.doi.org/10.1007/978-3-031-36030-5_37


SocHAP: a new data driven explainable prediction of battery state of charge 9

0 10 20 30 40 50
Time points

0

20

40

60

80

100
So

C(
%

)
Real SoC
Estimated SoC

Fig. 6. SoC estimation of the CNN over a
MIT cycle
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4.2 Explainability of the model’s estimations

We evaluate the explanation given by SHAP over a driving cycle to understand
why the model makes a certain estimate of SoC from the window of battery cell
voltage, current, and temperature given as input.

By applying the SHAP and signal processing algorithms, we observed a re-
lation between the increase of the current and the decrease of the SoC in the
battery time series of a driving cycle (see Figure 8). Based on our findings, we
can conclude that the model learned the physical behavior of the battery’s SoC
as the SoC can be defined as the integral of the current, the amount of energy
stored compared to the battery’s maximum capacity during its use.
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Fig. 8. Superposition of current contribu-
tions to SoC estimates during part of a
driving cycle.
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Fig. 9. Representation of the studied driv-
ing cycle.
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Now that the model is validated, we can try to find the causes of the battery
degradation in a driving cycle by analyzing the values of the input parameters
contributions to the SoC. Figure 10 represents the evolution of SHAP values of
temperature for the same driving cycle as in Figure 9.

1000 2000 3000 4000 5000
Time points

27

28

29

30

31

32

33
Te

m
pe

ra
tu

re
(°

C)
Shap values

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Fig. 10. Representation of the temperature evolution during the cycle with the asso-
ciated SHAP values

Temperature plays a very important role in the life cycle of a lithium-ion
battery. We consider as a general rule that the acceptable temperature range for
the use of a lithium-ion battery is from -20 °C to 60 °C [15]. However, it has been
shown that it is rather between 15 °C and 35 °C [18]. Any use of the battery
outside this temperature interval can lead to an accelerated degradation of the
battery. In addition, high operating temperatures will cause capacity and power
losses.

The cycler used to perform battery ageing tests using driving cycles does not
allow temperature control of the test chambers. The temperatures of the test
chambers are therefore directly related to the temperature of the room where
the battery cycling device is installed.

Based on the experiment carried out to study the temperature of the cell
during a driving cycle, we initially observed that the temperature strongly in-
creases during the discharge phase. This is due to the high current demands set
by the cycler to simulate the driving cycle.

Moreover, the SHAP values related to the battery cell temperature are max-
imum during this strong temperature increase. By studying the SHAP values of
the temperature inputs, we can isolate critical moments of battery use (e.g. high
current demands, fast charging of batteries etc.). These moments of extreme
battery use could then be identified and recorded. It would then be possible to
compare their influence in a model predicting the SoH of the battery to quantify
the degradation associated with these patterns.
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4.3 Real-time cell SoC test bench under development

One of the perspectives of our work is to implement our SoC estimation model in
a test bench. The objective is to be able to compare the estimates of our model
with the real SoC of a battery cell in real conditions. Currently, we are still in
the testing and adjustment phase.

This embedded estimation bench integrates a Jetson Nano which is a low-
consumption microcomputer powerful enough to deploy our model. Moreover,
the Jetson Nano communicates via I2C with sensors in order to retrieve mea-
surements of voltage, current and temperature during the cycling of the cell to
estimate its SoC. These data are also stored for further experimentation, such as
computing the real SoC value of the battery cell using the integral of the current
method.

The bench displays through an LED screen the SoC value of a lithium-ion
battery cell in real time with the measurements of the voltage, current and
temperature of the battery cell (Figure 11).

The cell can be charged or discharged by connecting its power circuit either
to a stabilized power supply or rheostat type resistor using banana plugs.

The operation of the bench is described by the diagram Figure 12.

5 Conclusion

This paper introduces a publicly available dataset containing measurements of
LFP battery cell usage during driving cycles. The dataset was used to train
our proposed explainable State of Charge (SoC) estimation approach, SocHAP.
Additionally, an experiment was conducted to demonstrate the explainability of
the SoC estimation for a driving cycle using SHAP values. The results of this
experiment suggest that patterns of battery aging acceleration can be identified
by analyzing temperature data using SHAP values.

The future challenges of this work include first completing the development
of the embedded SoC estimator. The second objective is to further enhance
the explainability aspect of the lithium-ion battery degradation models. The
aim is to make the explanations provided by the explainability methods more
interpretable and to provide advice to the electric vehicle users on how to use the
battery efficiently. These recommendations could be applied to both the battery
charging phase and the driving phase with the goal of extending the life cycle of
batteries as well as increasing the autonomy of the vehicle.
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Fig. 11. Image of the test bench during
the end of a charging phase

Fig. 12. Operating diagram of the SoC
estimator
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