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Abstract. In an industrial setting, predicting the remaining useful life-time of
equipment and systems is crucial for ensuring efficient operation, reducing down-
time, and prolonging the life of costly assets. There are state-of-the-art machine
learning methods supporting this task. However, in this paper, we argue, that both
efficiency and understandability can be improved by the use of explainable AI
methods that analyze the importance of features used by the machine learning
model. In the paper, we analyze the feature importance before a failure occurs
to identify events in which an increase in importance can be observed and based
on that indicate attributes with the most influence on the failure. We demonstrate
how the analyses of Shap values near the occurrence of failures can help identify
the specific features that led to the failure. This in turn can help in identifying
the root cause of the problem and developing strategies to prevent future failures.
Additionally, it can be used to identify areas where maintenance or replacement
is needed to prevent failure and prolong the useful life of a system.

Keywords: explainable AI · machine learning · artificial intelligence · domain
knowledge

1 Introduction
In the era of Industry 4.0, the integration of advanced technologies such as artificial
intelligence (AI) and the Internet of Things (IoT) is revolutionizing the way in which
industries operate. However, as these technologies become more prevalent, it is essen-
tial that they are able to provide clear and interpretable explanations for their decision-
making processes. This is particularly important in the energy industry, where decisions
made by AI systems can have significant consequences for the stability and sustainabil-
ity of the processes.

In this paper, we aimed to demonstrate that in assets where failures are caused by
component degradation the early symptoms of this degradation can be detected by the
classification model which furthermore allows identifying causes of the specific fail-
ures. We used an Explainable Artificial Intelligence method (XAI), specifically the
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SHAP (SHapley Additive exPlanations) algorithm [12] to identify these symptoms,
indicating that the process of system degradation can be observed. To mitigate the
presented challenges, we tested two approaches. First, we used a supervised learning
problem to identify failures and XAI methods to verify the degradation process. Sec-
ond, we used an unsupervised learning problem to identify anomalies in data and based
on identifying this degradation also. To cope with that, we demonstrate our research
with the use of the SHAP algorithm.

The paper is organized as follows: In Section 2 we describe the papers that cover
approaches to anomaly detection and predictive maintenance. In Section 3 we present
our method of detecting early symptoms of asset wear in the context of identifying
areas where this wear occurs. We evaluate the method on two datasets in Section 4.
Then Section 5 presents and discusses our results. Finally, in Section 6, we summarize
our work.

2 Related works and motivation
Anomaly detection is a process of identifying unusual data points that do not conform
to expected patterns. Two common methods for detecting anomalies are data-driven
and model-based approaches [8], [13]. Data-driven methods can be further categorized
into supervised and unsupervised, where supervised methods use labeled data to learn
what is considered an anomaly, while unsupervised methods use techniques such as au-
toencoders or density-based clusterings to identify anomalies. In recent years, advances
have been made in the field, such as using a CNN (convolutional neural network) to imi-
tate human vision and decision-making for anomaly detection, or a multi-step approach
that analyzes time series data in both the time and frequency domains [3], [5].

In a study [9], the authors decided to use a variation autoencoder to calculate re-
construction error, and based on the results, they labeled this error as anomalous or not.
They then built a classifier that learned which points were anomalous and used it to pro-
vide explanations with the help of a SHAP algorithm [12]. However, it is worth noting
that the performance of these techniques can vary depending on the specific application
and the dataset available. The generalization of these methods to other contexts remains
an open problem.

In [11] authors presented a new predictive maintenance policy called Sensory-updated
Degradation-based Maintenance Policy (SUDM) that utilizes real-time component degra-
dation signals and component population data to predict residual life and schedule
maintenance. The policy is evaluated using a simulation model and compared with two
other benchmark policies, resulting in a lower frequency of unexpected failures and
lower overall maintenance costs.

Authors in [15] use autoencoder for anomaly detection instead of traditional health
index to detect bearing faults. Deep neural networks extract healthy bearing represen-
tations and decoded signal residuals for fault detection. Setting an appropriate thresh-
old for early detection is challenging without increasing false positives. Training with
healthy signals is difficult to distinguish from early degradation stages.

The study [10] predicts the degradation stages of rolling-element bearings in phar-
maceuticals using high-frequency vibration data. They propose a framework that uses k-
means and an autoencoder to generate a labeled dataset for training a supervised model.
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The results are reliable and scalable, based on experiments on the FEMTO Bearing
dataset.

Considering the papers presented above, many approaches for anomaly detection do
not take into account the domain of the anomalies. This means that in most cases, algo-
rithms detect many anomalies that do not actually reflect real problems with the asset.
What is more, taking into account the number of detected anomalies by the machine
learning algorithm we believe that the anomalies which could have an impact on the
system’s working conditions should characterize by the early symptoms (some degra-
dation process). It motivated us to develop an original method that allows for explaining
which anomalies are in fact crucial for the asset.

3 Feature Understanding Method

The study consists of the following steps, which are divided into two machine-learning
problems. In our research, the first case involved a supervised ML problem where failure
periods were available, but in the second case we focused on finding anomalies and
relying on this build classifier because such periods were not available. Finally, for both
cases, we used the SHAP algorithm to analyze feature importance in time.

The Shapley value is determined by evaluating the value of the feature in all possible
combinations with other features and weighting and summing the results. It is defined
through the value function of the features in the model as presented in Equation:Φj =∑s

S⊆1,...,p/j}
|S|!(p−|S|−1)!

p! (valx(S ∪ j)− valx(S))

It is defined by evaluating the prediction of a subset of features (S) in the model
while marginalizing the features that are not included in the subset. This is done by
using a value function that takes in the vector of feature values of the instance to be
explained, and the number of features (p) in the model Equation where valx(S) =∫
f(x1, ..., xp)dPx/∈S − EX(f(X))[14] The detailed explanation of equations is pre-

sented in [14].
Our method was evaluated on two datasets C-MAPSS [17] and real data from the

steel plant which represents measurements from precess. In the first example, we used
the dataset which has been already labeled [17]. So, the analyzed case was treated as
a supervised problem approach. As a classifier algorithm, we used XGBoost classi-
fier [6]. One advantage of this algorithm is its efficiency in computational time and ob-
tained scores. The algorithm is based on decision trees, which in combination with the
SHAP algorithm, is much more efficient than other classifiers that are not tree-based.
In the second example, we used an unlabelled dataset where the neural network was
applied to calculate the reconstruction error and obtain labels for the prediction. Then
the procedure of classifier application was repeated for the labeled dataset.

3.1 Supervised task

Both approaches use a classification algorithm to train a model which later is used by
the explainer algorithm. Classification is a supervised learning task, where the goal is
to predict the class or category of a given data point based on a set of input features
or attributes. Mathematically, it can be represented as a mapping function f(x) which
maps a given input x (a feature vector) to a class label y. The function f(x) is learned
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from a labeled training dataset D = (x1, y1), (x2, y2), ..., (xn, yn), where xi is the i-th
input feature vector and yi is the corresponding class label [18].

In this task, two cases can be considered. Multi-class classification is a classification
task with more than two possible outcomes that should be expected as an output. In the
case of anomaly detection, a binary classification type of classifier is used. In this case
two possible outcomes should be expected, such as predicting whether a data point is
anomalous or not. In our research, we used the XGBoost classification algorithm which
is based on the tree ensemble model design to be highly scalable. XGBoost builds an
additive expansion (adds new models to the existing ones) of the objective function by
minimizing a loss function [4], [6].

3.2 Unsupervised task

In the unsupervised task firstly we concentrate on anomaly detection. To deal with that
we used an autoencoder-based model. Autoencoders are a special type of neural net-
work that was first introduced in [16]. They are trained to recreate their input, and their
main goal is to learn an informative representation of the data in an unsupervised man-
ner. This representation can then be used for various purposes such as clustering. The is-
sue, as defined in [1], is to learn functions. A and B presented in the following equations
A : Rn → Rp and B : Bn → Bp to solve the equation argminA,BE[∆(x,B ·A(x))]

The expectation of the distribution of x, represented by E, is used in conjunction
with the reconstruction loss function, represented by ∆. This function measures the
difference between the output produced by the decoder and the original input, typically
using the L2 norm [2].

Autoencoders [7] can be used as anomaly detection methods that use dimensionality
reduction to try to identify a specific subspace where the normal and abnormal data
differ significantly. This is done by taking a set of normal training data, represented as
d dimensional vectors x1, x2, ..., xn, (xi ∈ Rd) and using a model to project them into
a lower-dimensional subspace. The output of this process is a set of reproduced data
x

′

1, x
′

2, ..., x
′

n. The goal is to minimize the reconstruction error, which is the difference
between the original and reproduced data, in order to find the optimal subspace for
anomaly detection and is defined by equation ε(xi, x

′

i) =
∑d

i=1(xi − x
′

i)
2 When the

data in the test dataset is similar to the typical patterns established during training, the
error in reconstructing it will be lower. However, data that deviate from these patterns
will have a higher reconstruction error. By setting a threshold for the reconstruction
error defined by Equation, it becomes simple to identify and classify abnormal data
c(xi) = {normal

abnormal
εi<θ
εi>θ In the next section, we present an experimental evaluation of

our method on two data sets.

4 Evaluation

First, we evaluated the method using a commonly used benchmark data set with syn-
thetic data. Then, we used a real data set obtained from our industrial partners. As it is
demonstrated in the remainder of this section, both experiments resulted in promising
results.
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4.1 Experiment on the C-MAPSS dataset

The C-MAPSS dataset [17] is commonly utilized for research on predicting future per-
formance and maintenance of systems. It includes the outcomes of a simulation of a
turbofan engine utilizing the C-MAPSS software, which is provided by NASA.

C-MAPSS dataset description The dataset has information on hundreds of turbo-
fan units with 3 operational parameters and 21 measurements taken during each unit’s
operation. The units deteriorated gradually over time, leading to the failure of the high-
pressure compressor. The data is organized into cycles and split into four scenarios,
reflecting the varying rates of deterioration and influencing factors.

To evaluate our research, we used the C-MAPSS dataset, which consists of 15631
rows and 29 columns. For our case, we decided to remove the columns like unit and
cycle from the original dataset because data in this column were not directly connected
with the sensor measurements. To train the classification model, we set an additional
parameter in the model responsible for the weights of the classes. As a result, we ob-
tained the F1-score 0.97 for class 0 and 0.83 for class 1 where class 0 means normal
working condition and class 1 means failure.

In the Figure 1, there is presented the distribution of the SHAP values takes into
account the whole features available in the dataset. For this presentation, the box plots
were used where the x-axis is the cycle time. The red and green lines, there are marked
respectively the maximum and minimum values of the SHAP values, which were cal-
culated based on the aggregated data. According to previous obtain results, we can see
that considering the whole features in the dataset, the SHAP values increase over time.
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Fig. 1. SHAP values distribution during whole cycle

4.2 Experiment on hot-rolling process dataset

Our research focuses on the hot rolling process of steel at the highly automated Hot
Rolling Mill (HRM) or Hot Strip Mill (HSM) at the ArcelorMittal Poland company in
Krakow. The process involves heating a cold slab to around 1200◦C in a walking beam
furnace, passing it through the roughing mill (RM) to reduce thickness and width, and
then through the finishing mill (FM) where the steel’s thickness is further reduced. The
steel is then cooled in a laminar cooler using water [9].
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Hot rolling process dataset summary The dataset consists of 14,443 instances of
hot rolling process data. The measurements consist of physical values of temperatures,
stresses, thickness, etc. We used 35 variables to build the model, which were gener-
ated from raw values by mapping these features to a new set of values to make the
data representation more relevant and easier to process for later analysis (features trans-
formation). We used Dense Variational Autoencoder to detect anomalies. The training
dataset which where provided as input to the autoencoder. The main parameters used
during the training process are follwing: Latent space shape: 4, Activation function:
elu, Batch size: 32, Epochs: 300, Dropout: 0.4 After learning the model, we compared
the received signal from the decoder with the signal that was treated as the input to the
encoder. To use the supervised classification algorithm, we had to evaluate which data
points were normal and which were abnormal (anomalies). We specify a threshold that
is 0.99 percentile of the reconstruction. Based on that we labeled the dataset and per-
form a classification algorithm with the following scores: 1.0 F1-score for class 0 and
0.72 F1-score for class 1.

Hot rolling process evaluation As a result of using the SHAP algorithm to classify
the anomalies, we obtained the results, shown in Figure 2. Similarity to the examples
presented in the Section 4.1 we aggregate the most important features into a single Fig-
ure, where each Figure corresponds to a different anomaly. Anomalies are marked with
red rectangles or lines if an anomaly has been detected and lasted only one timestamp.
In each case, we are able to observe an increase in the importance of the features be-
fore the anomaly occurred. In addition, we are able to see which features an increase in
importance more and how quickly.

In the analyzed case, in three of the four graphs presented at the beginning of these
anomalies, we observe an increase in the importance of temperature sensors, in two
anomalies also an increase in the stress feature, and in one case an increase in torque. In
order to fully evaluate these results, we asked an expert from Accerol Mittal, who was
responsible for providing the data, to check the results obtained. Based on his process
knowledge and experience, all temperature-related features should be reflected in the
indicated anomalies because these attributes are the most important for this hot-rolling
process. We choose one of the anomalies and presented it on the box plot chart in Figure
2. The maximum values and minimum values of feature importance are marked by the
red and green lines respectively. However, taking into account what happens between
these two lines thanks to the analysis range of box plots we can say that the range of all
features’ importance increases before and are respectively high during the anomaly.
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Fig. 2. SHAP values distribution before and during anomaly
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5 Discussion

The work presented in this paper is based on the authors’ assumption that Explainable
Artificial Intelligence methods, in addition to global explanation of classification al-
gorithms, allow to provide more information about the process and detected events in
individual key events for the operation of the system.

The assumption was tested on two datasets where the events were caused by some
wear processes. In both cases, we were able to identify features where the increase in the
importance of features was increasing over time even before the actual event occurred.
Moreover, based on this, we were able to identify which features increase the most,
which allows us to better understand the behavior of the model.

The correctness of the obtained results was confirmed by an Accelor Mittal expert,
who pointed out that in all the analyzed units of the hot rolling set, the temperature may
be a key parameter responsible for faster wear of the rolling stage components. Given
this opinion, it is reasonable to undertake further research on this topic and ultimately
build an anomaly detection algorithm that takes into account the sensors which are
not directly correlated with asset wear. In order to fully take into account the obtained
results and expert opinions, it remains to conduct further research in order to force the
model to focus on the features relevant to the wear of the element and at the same time
prevent them from lowering the scores.

In addition, based on the expert’s opinion and using the methods of XAI, we demon-
strated that a well-prepared model built on the basis of well-prepared data is able to
reproduce the actual degradation processes taking place in the plant.

6 Conclusion
In our work, we focused to analyse the causes of the detected events to validate if the
anomaly characterizes early synthons. We treated these symptoms as a degradation pro-
cess which led to event detection. In this work, we analyzed two examples of different
cases where such behaviors can be observed. In the presented first example the events
were obviously indicated by the labels. However, in the second example, these events
were detected by the anomalies detection algorithm. In this example, we used an au-
toencoder to reproduce the original signal and find anomalies.

In both analyzed cases, we demonstrate that artificial intelligence methods are able
to make predictions based on signals that are relevant to the process and can be inter-
preted. What’s more, we were able to identify the features that are responsible for the
predictions of the models, and the physical significance of these features was confirmed
by an expert.
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