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Abstract. With the popularity of web applications, web attacks have
become one of the major threats to cyberspace security. Many stud-
ies have focused on applying machine learning techniques for web attack
traffic detection. However, past approaches suffer from two shortcomings:
firstly, handcrafted feature extraction-based approaches are prone to in-
troduce biases in existing perceptions, and secondly, current end-to-end
deep learning approaches treat traffic payloads as non-structured string
sequences ignoring their inherent structural characteristics. Therefore,
we propose a graph-based web attack traffic detection model to identify
the payloads in the traffic requests. Each pre-processed payload is trans-
formed as an independent graph in which the node representations are
shared through a global feature matrix. Finally, graph-level classification
models are trained with graph attention networks combining global in-
formation. Experimental results on four publicly available datasets show
that our approach successfully exploits local structural characteristics
and global information to achieve state-of-the-art performance.

Keywords: web attack, traffic classification, graph representation learn-
ing, graph attention networks

1 Introduction

With the rapid iteration of Internet technology and the continuous improvement
of computing power, the more efficient B/S architecture is becoming increasingly
popular on the Internet. More and more content providers deploy their services
on web pages to replace their original applications. In addition to traditional
websites, various application programming interfaces (APIs) and applets have
become new sources of traffic. More traffic entries and invocation methods have
increased the efficiency of web application development while also bringing more
complex security issues. Some malicious attackers have proposed various at-
tack methods by studying Web technologies, such as cross-site scripting (XSS)
attacks, Structured Query Language (SQL) injection, command execution, di-
rectory traversal, etc. With these attack methods and the vulnerabilities in web
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services, web attackers can maliciously attack and infiltrate web applications
to steal user data or disrupt the normal operation of the system. According to
the [8], only for financial institutions, more than 736 million web attacks were
recorded in 2020. It can be seen that web attacks have become one of the most
mainstream cyber attacks, with a wide range of attacks and most of them posing
serious privacy risks or financial losses.

In order to circumvent the above malicious attacks, researchers in related
fields have conducted a lot of research. Many scholars have proposed techniques
from the perspective of strengthening the security of web application , such as
reverse proxy and SSL verification. However, such defenses rely heavily on web
security team building, which is costly and not flexible enough to cope with
changing attack methods. Therefore, more researchers focus on detecting web
attacks from the application layer traffic payload. Traditional web application
firewalls (WAFs) apply regular expressions to match sensitive fields from traffic
requests for misuse detection. Considering that the expressive power of a single
regular expression is insufficient to match the increasingly complex forms of web
attack payloads, researchers have started to detect known attacks by building
databases of attack signatures [3]. Such approaches require constant updating of
the attack signature databases to adapt to new attack techniques and vulnera-
bility types. The lag caused by such periodic updates poses a potential problem
for system security.

With the popularity of artificial intelligence techniques, applying related tech-
niques in web attack traffic detection has become a hot research topic. These
methods can be broadly classified into two categories: handcrafted-features-based
and end-to-end methods. Handcrafted-features-based methods extract features
from suspicious traffic requests guided by expert experience and feed them nu-
merically into traditional machine learning models to obtain determination re-
sults. Typical methods include extracting statistical features from the request
header fields, extracting n-gram statistical features from the request payload,
etc. These methods transform traffic into numerical features based on a priori
knowledge of web security. So they face problems such as the inability to obtain
comprehensive and in-depth information in the traffic, poor robustness against
traffic pattern variations, and time-consuming pre-processing stages. In addi-
tion, the detection performance of such methods is limited by the classification
capability of traditional machine learning algorithms. Recently, as deep learning
has been widely used in web attack detection research, end-to-end methods have
shown more robust detection capability and generalization performance with no
need to design new features for novel attack methods. Researchers have started
treating key fields such as uniform resource identifiers (URIs) in requests as string
text and introducing natural language processing (NLP) techniques to mine the
semantic information within them. Models such as TextCNN [19], BiLSTM [16],
and Attention [9] have been used successively for such problems. However, such
approaches treat the URI or other fields in the request as unstructured text for
feature extraction and ignore the non-sequential key-value pairs dependencies
inherent in web attack traffic requests.
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Graph neural networks are designed to work with data embedding in non-
Euclidean spaces, aggregating relevant node content information through the
topology of the graph, which can achieve effective feature updates and avoid the
interference of disjoint fields. In this paper, we propose Payload-Level-GAT to
transform structured traffic payloads into heterogeneous graphs and update node
semantic features using graph attention network (GAT) [14]. And then, node
representations are aggregated by introducing global information to compute
graph-level embedding and implement classification tasks.

The main contributions of this paper are as follows:

– We propose a payload-level graph representation for feature learning that
abstracts traffic requests into graph structures carrying structural relation-
ships.

– To achieve the graph-level classification task, we designed Payload-Level-
GAT, combining global information and local structured contextual infor-
mation to enhance the classification effect.

– We have conducted sufficient experiments on four publicly available datasets.
The experimental results show that our proposed method is more efficient
and generalized than baselines.

2 Related Work

2.1 Malicious Traffic Analysis based on Machine Learning

Application layer protocol payloads play a crucial role in web attacks. Hence
numerous works have focused on them. As one of the earliest studies in payload
analysis, wang et al. [17] proposed PAYL to extract 1-gram frequency distribu-
tion from all bytes of the payload as features. This work achieves high detec-
tion rates and low false alarm rates but is vulnerable to mimicry attacks. After
that, there are many works focused on payload analysis. Ariu et al. [1] proposed
HMMPAYL, which was developed based on PAYL and used Hidden Markov
Models to detect attack traffic. Oza et al. [6] extracted n-grams of HTTP traffic
with various n-values. Bortolameotti et al. [2] generated features from HTTP
request URIs and HTTP headers. Then, the attack traffic is detected based on
the fingerprints generated by these features. In addition, end-to-end deep learn-
ing paradigms are becoming increasingly popular. Qin et al. [9] proposed an
attention-based deep learning model, ATPAD, which was the first work to apply
attention mechanisms in payload anomaly detection. Wang et al. [16] proposed
a model to detect malicious traffic by combining CNN and LSTM.

2.2 Graph Neural Network

In recent years, there has been a growing interest in extending deep learning
methods to structured data such as a graph. Researchers have proposed graph
neural networks (GNN) to process graph data with neural networks.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_32

https://dx.doi.org/10.1007/978-3-031-36030-5_32
https://dx.doi.org/10.1007/978-3-031-36030-5_32


4 H. Bao et al.

Data 

Processing

GAT-Based Classification

n n

n n

a a

Data

Data Decode

Data 

Generalization

Initial Node Representation 

Calculation with Glove

D
en

se

n n

n n

a a

Graph Building

Node 

Discovery

Edge 

Link

GAT

TF IDF

Feature Matrix

Adjacency 

Matrix

TFIDF Vector

S
o
ft

m
a
x

Global Information Extraction

examples

servlets

servlet

phprint.php

𝐵0

module

vtiger_lang_crm_lfi.nasl

action

0

lang_crm

.

.

/

etc

passwd

𝒉i 𝒉i
′

𝒉𝑗1𝒉𝑗2

𝒉𝑗3

𝒉𝑗 𝑁 −1

𝒉𝑗 𝑁

…

𝛼𝑖𝑗1
𝛼𝑖𝑗2

𝛼𝑖𝑗3
𝛼𝑖𝑗 𝑁 −1

𝛼𝑖𝑗 𝑁

n a

Fig. 1: Architectural view of Payload-Level-GAT.

GNN has been used in cyber security for the past few years. In [20], GNN is
described to disassemble x86 instructions quickly and accurately. The key idea is
to capture and propagate instruction relationships with GNN models. Another
application of GNN is processing control flow graphs (CFGs) for binary code
similarity detection [15]. Zhuang et al. [21] extracted control flow and data flow
semantics from source code and detected vulnerabilities in smart contracts based
on GNN. Recently, GNNs have also been applied to web attack detection. Liu
et al. [4] proposed GraphXSS to construct graphs for the global corpus with
payloads and the preprocessed items as nodes. TextGCN [18] is used to classify
the payload nodes. However, this approach has two major problems: first, it
uses co-occurrence relations of items in the global corpus for graph construction,
ignoring local structural relations, and second, it has a large memory footprint
and cannot be applied to inductive learning to determine the maliciousness of
emerging traffic payloads. In contrast, our approach focuses on local structural
relationships of the payloads and uses global information for their graph-level
independent representation. So the method could be used for inductive learning.
In addition, the memory footprint can be significantly reduced by combining
mini-batch training.

3 Approach

3.1 Overall Architecture

The general architecture of our proposed method is shown in Fig. 1. First, all
the data are decoded and generalized in the data preprocessing module. This
is to avoid excessive dimensionality of the embedding space caused by encod-
ing or random nonsense values and to improve the classification efficiency of
the graph neural network. In the graph construction module, regular expres-
sions are constructed to segment the payloads and discover the graph nodes
from the segmented subsegments. Next, heterogeneous edges are linked, relying
on contextual and structural relationships of graph nodes, forming a graph for
each request. The parameters of the graph structure are learned and optimized
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using the GAT algorithm in the GAT-Based Classification module. The node
embedding is updated starting from the initial Global Vectors for Word Rep-
resentation (GloVe) [7] vector. The Tf-Idf [10] algorithm is applied to calculate
the node weights with which the node embedding is aggregated to obtain the
embedding of the whole graph. Finally, the classification probability distribution
of the graph is calculated by SoftMax.

3.2 Data processing

To construct a graph representation of the traffic payload, it is first necessary
to extract the payload portion of the application layer traffic and perform de-
coding and generalization operations. Some special characters that may appear
in the traffic payload could have an impact on the normal parsing process of
the server, such as ‘?’, ‘&’ in the URI, or ‘〈’ in the request body of HTML
format. Therefore, the server will first decode the request message after receiv-
ing it. This allows attackers to bypass defenses such as firewalls by encoding
malicious fields. We attempt to decode each traffic payload to avoid the se-
mantics of the maliciously encoded fields being segmented during subsequent
graph construction. This consists of constant URI decoding, HTML entity decod-
ing and optionally Base64 decoding, Unicode decoding, and decoding with the
String.fromCharCode() method for variable or function statements in JavaScript
(JS) code.

Next, we further generalize the decoded payload to prevent the graph neu-
ral network from learning particular fields and even overfitting and improve the
feature learning efficiency. The above decoding step substantially reduces the vo-
cabulary size in the whole corpus of data by restoring potentially readable fields.
However, there are still some fields whose values are meaningless for determin-
ing maliciousness, although they are not encoded. We use regular expressions to
identify the IP, domain, and port in the payload and generalize the fields with
abstract patterns. After replacing these values, we also match the remaining
numeric values in the payload and replace them with 0.

3.3 Graph Building

After data preprocessing, we propose a framework to construct a graph for each
traffic payload as the input to the following graph neural network. In this sub-
section, we first segment the payloads into independent tokens as nodes of the
graph and then link the edges of the graph from the contextual and structurally
logical relationships of the tokens.

The abnormal areas of web attacks are usually found in the request path
and request body of the payload (the request parameters of GET requests are
treated as request bodies in this paper). For example, directory traversal attacks
usually contain excessive directory hierarchies in the URI, cross-site scripting
attacks, and SQL injection usually contain suspicious content in the request
body, such as incomplete HTML entities and JS-sensitive functions and meth-
ods. Since these suspicious contents are mainly shown as continuous readable
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strings separated by some special characters after decoding, we construct a set
of regular expressions to split the request URI and the request bodies into sev-
eral tokens, respectively. We denote payload data containing m + n + l tokens
as D = {U1, ..., Ui, ..., Um,K1, ...,Kj , ...,Kn, V1, ..., Vk, ..., Vl}, Ui denotes a token
of one of the URIs, and Kj and Vk denote the token separated from the keys
and values in the request body, respectively. To construct a graph of the traffic
payload, we treat each token appearing in it as a node of the graph.

Three classes of heterogeneous edges form the edge set of the graph. The
first type of edge takes its nodes from the key-value pairs in the request body
and is constructed from the logical structural relationships in the request body,
i.e., such an edge starts at a key in the request body and ends at a token corre-
sponding to the value for that key. The second type of edge is constructed with
contextual adjacency relations. Each edge of this type starts at a token of the
URI or request value and ends at its neighboring token. In addition, to guarantee
graph connectivity, we set a ‘public’ node B0 to abstractly represent the request
body content. The last type of edge connects this node to the last token of the
URI and to each key of the request body.

Formally, a graph of a load is defined as G = (N,E), where N denotes its
node set and E denotes its edge set. Concretely, the node set and the edge set
can be represented as

N = {Ui, i ∈ [1,m]}+ {Kj , j ∈ [1, n]}
+ {Vk, k ∈ [1, l]}+B0,

(1)

E = {ejk, j ∈ [1, n], k ∈ [1, l]}

+ {eii′ , i ∈ [1,m], i
′
∈ [i− p, i+ p]}

+ {ekk′ , k ∈ [1, l], k
′
∈ [k − p, k + p]}

+ {em0}+ {e0j , j ∈ [1, n]},

(2)

where p denotes the number of neighboring tokens considered in the second class
of the edge construction process. During graph building, not only the proximity
dependencies of contextual relations are considered, but also the potential long-
distance dependencies between keys could be iterated in short steps through the
abstract node B0.

3.4 GAT-Based Classification

In this subsection, we describe how to initialize the node representations and
update them with graph attention networks to obtain a representation of the
graph for classification.

The GloVe model is used to construct a globally shared initialized node rep-
resentation. GloVe is an unsupervised word representation tool based on global
term frequency statistics. It combines term co-occurrence information on the
global corpus while capturing contextual semantic links. We pre-train the GloVe
model on the global traffic payload database and obtain the initialized global
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shared feature matrix of graph nodes. The initial set of node embedding for
graph G is defined as NEmd = {hn, n ∈ N}.

There are two mainstream approaches to updating node feature vectors in
graph neural networks: the spectral method and the spatial method. The spectral
method maps the graph onto the spectral domain, such as the space obtained
from the Laplacian matrix after feature decomposition, one of the representative
methods is GCN. In this work, we use GAT [14] to update node features, a spatial
method that operates directly on the graph. The model extends the information
of the first-order neighbor nodes into the feature representation of the current
node by masked attention, which is defined as

aij = a([Whi||Whj ]), (3)

αij =
exp(LeakyReLU(aij))∑

k∈Ni
exp(LeakyReLU(aik))

, (4)

h
′

i = σ(
∑
j∈Ni

αijWhj). (5)

In (3), aij denotes the importance of node j to node i, which is computed by first
a linear mapping with shared parameters W to dimensionalize the features of
nodes. The dimensionalized features of nodes i,j are concatenated and mapped
to the real number space by a(·). The softmax is used to normalize the correlation
coefficients to get the attention coefficients in (4). Finally, based on the computed
attention coefficients, the weighted sum of the features of neighboring nodes is
used as the output features of the nodes. In addition, to stabilize the learning
process of self-attention, Veličković et al. found that the extension of attention
with Multi-head Attention is an enhancement to the model. The computational
formula of the K-head attention mechanism is defined as follows

h
′

i(K) =‖Kk=1 σ(
∑
j∈Ni

αk
ijW

khj). (6)

GAT aggregates the features of neighboring nodes to the central node with at-
tention coefficients, which means that the updated node representation contains
semantic correlations between neighboring nodes. Thus, even though tokens with
large semantic gaps may appear in different payloads, their exact semantics in
a particular traffic payload can be obtained by weighting the information of
their neighboring nodes. Moreover, since the attention parameters a and W are
shared globally during the update process, it implies that the final representa-
tion of the nodes also contains global information similar to that of other graph
neural network models.

Finally, the representations of all nodes in the graph are used to predict the
labels of the payloads,

y = softmax(ReLU(W2

∑
n∈N

βnh
′

n(K) + b)), (7)
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where βn serves as the contribution weights of the nodes determined by the
TF-IDF algorithm, W2 ∈ Rd×c is a matrix that maps the node features to the
graph representation space, b ∈ Rc is the bias vector. The training objective is to
minimize the cross-entropy of the ground truth label gi and the predicted label
yi

l = −gilogyi. (8)

4 Experimental Evaluation

4.1 Dataset and Setup Description

To verify the detection effect of the proposed model, experiments were conducted
in CSIC2010 [5], FWAF 3, TBWIDD [12], and BDCI2022 4. CSIC2010 contains
HTTP traffic data generated for e-commerce web applications, including 36000
normal requests and 25065 abnormal requests. The anomalous requests include
popular attacks such as sql injection, buffer overflow, cross-site scripting, etc.
FWAF is a publicly available large-scale malicious request dataset published by
Fsecurify, a company aiming to develop intelligent web firewalls. They combine
expert knowledge with heuristics for labeling malicious traffic. TBWIDD is pub-
lished by Stevanović et al. They develop and deploy web honeypots to capture
in-the-wild web attack traffic by filtering normal behavior through predefined
whitelists. It contains 13048 normal requests and 9249 abnormal requests. The
BDCI2022 dataset comes from the public data of the Web Attack Detection and
Classification Identification track of the CCF Big Data & Computing Intelli-
gence Contest 2022. The traffic data is divided into six labels, including normal
requests, SQL injection, XSS, directory traversal, command execution, and re-
mote code execution, totaling about 35,000 pieces. We divide the above four
datasets into training, validation, and test sets according to the 6:2:2 ratio to
conduct experiments, respectively. It is worth noting that except for the setting
of multiclassification on the BDCI2022 dataset, the objectives of the remaining
three datasets are binary classification.

We set the dimensionality of the node representation to 300 and initialize the
vector with GloVe as described in Section 3.4. Adam is used as the optimizer.
The initial learning rate is set to 0.001, the batch size to 64, the number of
training epochs to 100, and the number of early stop epochs to 10. We compare
the performance of our method by three widely used metrics, including accuracy
(Acc), missed alarm rate (MA), and false alarm rate (FA). These metrics can be
calculated as follows.

Acc =
TP + TN

TP + FN + FP + TN
(9)

MA =
FN

TP + FN
(10)

3 https://github.com/faizann24/Fwaf-Machine-Learning-driven-Web-Application-
Firewall

4 https://www.datafountain.cn/competitions/596
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FA =
FP

FP + TN
(11)

where TP represents the correctly classified positive samples, FN represents
the misclassified negative samples, and FP represents the misclassified negative
samples.

4.2 Classification Results and Discussion

RQ1. How is the detection performance of Payload-Level-GAT?
We compare Payload-Level-GAT with some handcrafted feature-based meth-

ods and end-to-end methods. Handcrafted feature-based baselines include HMM-
PAYL [1], logistic regression (LR) [11], support vector machine (SVM) [11], Ran-
domForest (RF) [13]. The end-to-end methods include TextCNN [19], LSTM [16],
ATPAD [9], and GraphXSS [4] based on TextGCN. For baselines, we use the pa-
rameters described in their original paper to reimplement on the above datasets
(if no relevant experimental results are available). We also take the 300-dim
GloVe model for the models requiring initial embedding. Table 1 shows that our
method performs competitively in detection performance on all four datasets.
Our method shows the optimal performance on most metrics, with only the Fa on
CSIC2010 and the Ma on BDCI2022 being suboptimal and marginally less than
the optimal values. It can be seen that the end-to-end methods generally out-
perform the handcrafted feature-based methods. And the gap is more noticeable
in challenging classification scenarios, such as multi-classification on BDCI2022,
and less in more straightforward scenarios, such as TBWIDD dataset with simi-
lar detection performance across models. Remarkably, our method demonstrates
perfect detection capability on the TBWIDD dataset, the potential reason for
which may be that the structural information in the payload ignored by the
baseline is exploited by Payload-Level-GAT. In addition to our method, another
graph-based method, GraphXSS, shows superior performance in baselines, with
nearly half of the metrics being suboptimal. This indicates that graph neural
network-based methods hold advantages over traditional deep learning-based
approaches.

To verify the detection efficiency of Payload-Level-GAT, we record the total
training time and the detection time for a single test instance compared to
other end-to-end baseline methods. As shown in Table 2, for the total training
time and detection efficiency, the difference between Payload-Level-GAT and
the baseline methods is not significant. The training time on the FWAF dataset
is significantly lower than the other baselines, which can be explained by the
simpler payload structure of the instances in this dataset that makes graph node
updates faster, which coincides with the smaller number of edge nodes of the
graphs in this dataset in Table 4. Overall, Payload-Level-GAT pervasively shows
stronger detection performance on four different datasets while being comparable
in efficiency to the end-to-end baseline approach.

RQ2. What factors affect the detection performance of Payload-
Level-GAT?
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Table 1: Comparison of Payload-Level-GAT Accuracy (Acc), Missed Alarm rate
(Ma), and False Alarm rate (Fa) with baselines. Highlighted values are: (Bold
Font) overall best classifier and (†) second best, for each metric.

Model CSIC2010 FWAF TBWIDD BDCI2022

Acc MA FA Acc MA FA Acc MA FA Acc MA FA

Handcrafted-features-based Methods
HMMPAYL 92.63 8.27 7.97 91.26 7.51 8.32 96.84 3.48 3.76 85.32 23.81 28.93
LR 94.68 7.64 4.02 93.57 4.32 3.98 97.23 2.54 1.83 79.85 31.28 35.24
SVM 95.12 5.53 7.04 96.38 4.82 5.21 98.30 1.43 1.02 93.26 17.58 23.49
RF 95.06 3.63 3.27 95.72 3.03 3.56 98.68 1.62 0.55† 94.76 28.30 32.14

End-to-end Methods
TextCNN 98.48† 0.38† 2.74 96.67 4.66 3.79 97.79 2.05 2.13 94.57 6.80 7.16
LSTM 98.90 1.20 1.10 94.28 2.94 3.57 98.22 1.27 1.38 94.55 6.57 9.35
ATPAD 95.86 5.60 0.30 97.93† 3.23 3.76 97.53 2.51 3.07 93.90 8.37 7.08†
GraphXSS 97.21 3.31 2.93 97.44 2.61† 2.59† 99.01† 1.06† 1.06 97.26† 5.56 9.52
Ours 99.38 0.32 0.61† 98.69 1.17 1.31 100.00 0.00 0.00 97.47 6.01† 2.53

Table 2: Comparison of Payload-Level-GAT training time consumption and de-
tection efficiency with end-to-end methods. The Train column is the total train-
ing time and the Test column is the average time to classify a single instance in
the test set.

Model CSIC2010 FWAF TBWIDD BDCI2022

Train Test Train Test Train Test Train Test

TextCNN 36m47s 0.61ms 38m26s 0.59ms 3s 0.39ms 21m46s 0.54ms
LSTM 1h7m55s 0.78ms 58m19s 0.70ms 4s 0.52ms 31m30s 0.79ms
ATPAD 52m49s 0.81ms 46m25s 0.79ms 4s 0.75ms 27m35s 0.83ms
GraphXSS 38m57s 0.74ms 41m18s 0.73ms 3s 0.62ms 15m26s 0.56ms
Ours 49m5s 0.76ms 15m12s 0.63ms 5s 0.58ms 21m42s 0.45ms

We performed ablation experiments to verify the effect of local structure in-
formation as well as global information on detection performance. In this work,
local structure information is captured in the construction of the graph for the
second and third types of heterogeneous edges. We set the ablation experiments
to eliminate such edges and construct the graph from token contextual relations
exclusively. In addition to the shared parameters of the graph neural network,
global information is introduced in the initial GloVe embedding for graph nodes
and the computation of the graph embedding weights by the Tf-Idf algorithm. In
the ablation experiment, the node representations are initialized in random em-
bedding and the graph embedding is calculated by isometric summation. Table 3
shows the detection performance for the model without global information (GI)
and without local structure information (LSI) on the four datasets and the per-
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Fig. 2: Comparison results of different hyperparameters on CSIC2010.

formance loss compared to the standard method. From the data in the table, it
can be concluded that both local structural information and global information
bring about an improvement in detection performance.

In addition, we conducted comparative experiments on the CSIC2010 dataset
for the key hyperparameters of Payload-Level-GAT to investigate the impact
of hyperparameters on model detection performance. These hyperparameters
include the number of GAT layers, the number of Attention headers in a single-
layer GAT, the context range p considered in the construction of the first type
of heterogeneous edges, and the dimensionality of GloVe encoding. Fig. 2 shows
the effect of different hyperparameters on the detection performance. Overall,
the accuracy of the model performs stably with different parameters taken into
account.

RQ3. How is the memory consumption of Payload-Level-GAT?
GraphXSS, which also uses graph neural networks for payload classification,

builds a graph based on the global corpus with two types of heterogeneous nodes,
payload, and token in payload, achieving payload detection through node clas-
sification. As the corpus grows, the size of the global graph becomes larger, and

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_32

https://dx.doi.org/10.1007/978-3-031-36030-5_32
https://dx.doi.org/10.1007/978-3-031-36030-5_32


12 H. Bao et al.

Table 3: Comparison Results of Ablation Experiments for global information
(GI) and local structural information (LSI).

Datasets w/o GI w/o LSI

CSIC2010
Acc % 98.96 (0.42 ↓) 98.13 (1.25 ↓)
MA % 0.78 (0.16 ↑) 0.93 (0.31 ↑)
FA % 0.89 (0.28 ↑) 1.36 (0.72 ↑)

FWAF
Acc % 97.82 (0.87 ↓) 97.59 (1.10 ↓)
MA % 1.78 (0.61 ↑) 2.10 (0.93 ↑)
FA % 1.99 (0.68 ↑) 2.03 (0.72 ↑)

TBWIDD
Acc % 99.51 (0.49 ↓) 99.22 (0.78 ↓)
MA % 0.92 (0.92 ↑) 0.84 (0.84 ↑)
FA % 0.77 (1.22 ↑) 1.05 (1.05 ↑)

BDCI2022
Acc % 95.37 (2.10 ↓) 96.82 (0.65 ↓)
MA % 8.35 (2.34 ↑) 8.41 (8.40 ↑)
FA % 6.25 (3.72 ↑) 5.42 (2.89 ↑)

the dependencies between nodes become more complex. The computational cost
and memory requirements will become unbearable. The memory footprint and
the number of edges in the graph for GraphXSS and Payload-level-GAT (mean
value in our method) are recorded in Table 4. It can be seen that our proposed
method has a low memory footprint and is easier to deploy in practice combining
with batch training strategies.

Table 4: Comparison of memory consumption and number of edge set for
GraphXSS and Payload-Level-GAT.

Datasets GraphXSS Payload-Level-GAT

CSIC2010 84370MB(2305449) 285MB(92)
FWAF 76905MB(1619610) 119MB(68)
TBWIDD 4660MB(69551) 28MB(55)
BDCI2022 23964MB(2140072) 291MB(213)

5 Conclusion and Feature Work

In this paper, we propose Payload-Level-GAT, a graph attention network-based
approach to detect web attack traffic. The core idea is to regard the pay-
load of web attack traffic as semi-structured text and construct payload-level
graphs through local contextual and structured relationships. Furthermore, a
GAT-based detection framework incorporating global information to classify the
payload-level graphs is proposed. The results show that Payload-Level-GAT has
good detection performance and generalization ability.
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In future work, there are two directions to improve Payload-Level-GAT. First,
although our scheme has the potential to be deployed in decrypted traffic en-
vironments at enterprise gateways with the widespread adoption of encrypted
traffic orchestration, we plan to conduct graph structure modeling of encrypted
attack traffic with side-channel information to more efficiently address the trend
of traffic encryption. Secondly, we plan to explore the interpretability of graph
neural networks from the perspective of result analysis to support its on-the-
ground application in cybersecurity.

References

1. Ariu, D., Tronci, R., Giacinto, G.: Hmmpayl: An intrusion detection system based
on hidden markov models. computers & security 30(4), 221–241 (2011)

2. Bortolameotti, R., van Ede, T., Caselli, M., Everts, M.H., Hartel, P., Hofstede, R.,
Jonker, W., Peter, A.: Decanter: Detection of anomalous outbound http traffic by
passive application fingerprinting. In: Proceedings of the 33rd Annual computer
security applications Conference. pp. 373–386 (2017)

3. Clincy, V., Shahriar, H.: Web application firewall: Network security models and
configuration. In: 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC). vol. 1, pp. 835–836. IEEE (2018)

4. Liu, Z., Fang, Y., Huang, C., Han, J.: Graphxss: an efficient xss payload detec-
tion approach based on graph convolutional network. Computers & Security 114,
102597 (2022)

5. Nguyen, H.T., Torrano-Gimenez, C., Alvarez, G., Petrović, S., Franke, K.: Applica-
tion of the generic feature selection measure in detection of web attacks. In: Com-
putational Intelligence in Security for Information Systems, pp. 25–32. Springer
(2011)

6. Oza, A., Ross, K., Low, R.M., Stamp, M.: Http attack detection using n-gram
analysis. Computers & Security 45, 242–254 (2014)

7. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

8. Pitchkites, M.: Top cyber security statistics, facts & trends in 2022 (2022),
https://www.cloudwards.net/cyber-security-statistics/

9. Qin, Z.Q., Ma, X.K., Wang, Y.J.: Attentional payload anomaly detector for web
applications. In: International Conference on Neural Information Processing. pp.
588–599. Springer (2018)

10. Ramos, J., et al.: Using tf-idf to determine word relevance in document queries.
In: Proceedings of the first instructional conference on machine learning. vol. 242,
pp. 29–48. New Jersey, USA (2003)

11. Smitha, R., Hareesha, K., Kundapur, P.P.: A machine learning approach for web
intrusion detection: Mamls perspective. In: Soft Computing and Signal Processing,
pp. 119–133. Springer (2019)

12. Stevanović, N., Todorović, B., Todorović, V.: Web attack detection based on traps.
Applied Intelligence pp. 1–25 (2022)

13. Tama, B.A., Nkenyereye, L., Islam, S.R., Kwak, K.S.: An enhanced anomaly detec-
tion in web traffic using a stack of classifier ensemble. IEEE Access 8, 24120–24134
(2020)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_32

https://dx.doi.org/10.1007/978-3-031-36030-5_32
https://dx.doi.org/10.1007/978-3-031-36030-5_32


14 H. Bao et al.

14. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations

15. Wang, H., Qu, W., Katz, G., Zhu, W., Gao, Z., Qiu, H., Zhuge, J., Zhang, C.: jtrans:
jump-aware transformer for binary code similarity detection. In: Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
pp. 1–13 (2022)

16. Wang, J., Zhou, Z., Chen, J.: Evaluating cnn and lstm for web attack detection.
In: Proceedings of the 2018 10th International Conference on Machine Learning
and Computing. pp. 283–287 (2018)

17. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In:
International workshop on recent advances in intrusion detection. pp. 203–222.
Springer (2004)

18. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 7370–7377
(2019)

19. Yu, L., Chen, L., Dong, J., Li, M., Liu, L., Zhao, B., Zhang, C.: Detecting malicious
web requests using an enhanced textcnn. In: 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC). pp. 768–777. IEEE (2020)

20. Yu, S., Qu, Y., Hu, X., Yin, H.: Deepdi: Learning a relational graph convolutional
network model on instructions for fast and accurate disassembly. In: Proc. of the
USENIX Security Symposium (2022)

21. Zhuang, Y., Liu, Z., Qian, P., Liu, Q., Wang, X., He, Q.: Smart contract vulnera-
bility detection using graph neural network. In: IJCAI. pp. 3283–3290 (2020)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_32

https://dx.doi.org/10.1007/978-3-031-36030-5_32
https://dx.doi.org/10.1007/978-3-031-36030-5_32

