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Abstract. Flash calculations of the hydrocarbon mixture are essential
for determining how the mixture phase behaves, which will ultimately
affect subsurface flow and transport. In this paper, a novel numerical
scheme is proposed for calculating the two-phase equilibrium of Peng-
Robinson (PR) fluid at constant volume, temperature, and moles, namely
the volume-temperature (VT) flash framework based on the dynamic
model. Since the dynamic model is based on the energy dissipation law
and the Onsager’s reciprocal principle, we proposed a linear energy-stable
scheme with the help of the convex-concave splitting technique, the en-
ergy factorization approach, and the component-wise iteration frame-
work. The scheme eventually results in a fully explicit algorithm, and
it avoids the challenges of solving non-linear systems and other difficul-
ties in the traditional flash calculation methods. This scheme inherits
the original energy stability and significantly reduces the implementa-
tion burden. It also achieves convergence unconditionally, even with a
huge time step. Numerical experiments are carried out to illustrate its
accuracy.

Keywords: Energy-stable scheme · Component-wise framework · Peng-
Robinson fluid · Dynamic modeling · Volume-temperature (VT) flash.

1 Introduction

A number of interrelated physical processes, including the multi-phases, the
multi-components, and the phase equilibrium, widely exist in the subsurface
reservoir, making it a complicated system [2,10,1]. Under different natural con-
ditions and working circumstances, the characteristics of the fluid mixtures have
a significant effect on the flow and compositions transfer. The flash calculation
based on the equation of state (EoS) is the foundation for measuring the prop-
erties of the mixture. The Peng-Robinson (PR) EoS is widely acknowledged as
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the most trustworthy and precise one to describe the characteristics of hydro-
carbons.

More people and organizations have recently turned their attention to uncon-
ventional energy sources like shale gas or methane hydrate due to the exhaustion
of traditional energy sources and the advancement of petroleum industry tech-
niques [8,9,10]. In the tight formations, the capillary effect is more important
for flash calculations and modeling than it is in a traditional reservoir. Also,
modeling unconventional reservoirs does not want the main variables, such as
pressure, to be as sensitive as they are in the PT flash framework. When it
comes to the phase equilibrium problems for associating fluids, like H2O, the
VT flash process, which is based on Helmholtz free energy, is more preferred be-
cause the association contribution resulting from hydrogen bonding interactions
was initially defined in terms of this kind of energy.

Even though the VT flash calculation and the PT flash calculation have dif-
ferent structures, they both follow the principle of energy minimization. The
Helmholtz free energy is minimized in the VT flash calculation, while the Gibbs
free energy is minimized in the PT flash calculation [6]. Both types of flash cal-
culations generate a set of nonlinear equations and constraints based on mass
conservation and phase equilibrium relations. Previous research on the PT or VT
flash calculation typically involved introducing intermediate variables, such as
the fugacity coefficient or the volume function coefficient. However, the dynamic
model circumvents these intermediate variables by transforming the nonlinear
system into a dynamic system, where the energy is minimized through an evo-
lutionary process over time. Nevertheless, the dynamic model is still unable to
avoid the high degree of nonlinearity.

Our study is based on the described dynamic model. The progress we make is
to develop an unconditionally energy-stable method that employs a component-
wise framework and results in a fully explicit algorithm. This method not only
guarantees numerical convergence and efficiency but also makes implementation
more convenient. To design an energy-stable linear scheme, we have utilized
several techniques, including the convex-concave splitting approach [2], modified
energy, and energy factorization method [5]. As a result, the molar fraction of
each component and the phase volume can be easily calculated using simple
arithmetic formulas, one by one.

The subsequent sections of this paper are organized in the following manner:
Section 2 details the physical problem and defines the Helmholtz free energy. It
also presents a physical and mathematical description of phase equilibrium and
the dynamic model. Section 3 introduces a component-wise and unconditionally
energy-stable method, along with some essential elements of its proof for energy
stability. In Section 4, the stability and accuracy of this method are illustrated
through a numerical example.
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2 Mathematical model

2.1 Physical problem

Consider a mixture comprising q components, with a fixed temperature T and
overall volume V tol, the moles of each component are represented by Ntol and
their density by n. The Helmholtz free energy is denoted by F and f(n) is the en-
ergy density. The gas and liquid phases are denoted by G and L, with volumes V G

and V L and moles NG =
[
NG

1 , NG
2 , . . . , NG

q

]T and NL =
[
NL

1 , N
L
2 , . . . , N

L
q

]T .
The pressure is p and the chemical potential of a component is µi. The volume
and mole constraints are

NG +NL = Ntol; V G + V L = V tol. (1)

The general mathematical definition of Helmholtz free energy is

F = −pV +

q∑
i=1

µiNi. (2)

Thus, for a two-phase system, if use NG and V G as primary variables, we obtain:

F = f
(
nG
)
V G + f

(
nL
)
V L = f(

NG

V G
)V G + f(

Ntol −NG

V tol − V G
)(V tol − V G), (3)

where nG = NG

V G ,nL = NL

V L . The Helmholtz free energy density of real fluid f(n)
is composed by three parts

f(n) = f id(n) + f rep(n) + fatt(n). (4)

The mathematical formulas of the three components comprising the Helmholtz
free energy density of a uniform PR fluid are listed:

f id(n) = RT

q∑
i=1

ni (lnni − 1) ; (5)

f rep(n) = −nRT ln(1− bn); (6)

fatt(n) =
a(T )n

2
√
2b

ln

(
1 + (1−

√
2)bn

1 + (1 +
√
2)bn

)
, (7)

where ni is the molar density of each component in n. n is the sum of ni for
each phase. a and b are EoS parameters for repulsion and attraction terms [5].

2.2 Dynamic model

The system reaches equilibrium when Helmholtz free energy is minimized. This
yields chemical potential and pressure balance equations. Time derivative of free
energy can be expanded using the chain rule:

dF

dt
=

∂F

∂V G

∂V G

∂t
+

q∑
i=1

∂F

∂NG
i

∂NG
i

∂t
. (8)
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Onsager’s reciprocal principle governs how components and phase volumes change.
The second law of thermodynamics dictates the dissipation of Helmholtz free en-
ergy in a closed system over time. There is a symmetric full matrix Φ = (ϕi,j)

q+1
i,j=1

that is negative-definite, and satisfies:

∂NG
i

∂t
=

q∑
j=1

ϕi,j

(
∂F

∂NG
j

)
+ ϕi,q+1

(
∂F

∂V G

)
; (9)

∂V G

∂t
=

q∑
j=1

ϕq+1,j

(
∂F

∂NG
j

)
+ ϕq+1,q+1

(
∂F

∂V G

)
. (10)

To simplify, only the negative definite matrix Φ’s diagonal is used as coefficients
in the non-linear system, decoupling the system. This simplification improves
computation efficiency and convergence, resulting in the dynamic model:

∂NG
i

∂t
= −Kµi

∂F

∂NG
i

, i = 1, 2, · · · , q; (11)

∂V G

∂t
= −Kp

∂F

∂V G
. (12)

Choose Kµi
and Kp based on reference paper [4]. The dynamic model aims to

quickly reach equilibrium, without focusing on non-equilibrium to equilibrium
details. Using the definition of total Helmholtz free energy for the two-phase case
and relations µi =

∂F
∂Ni

and −p = ∂F
∂V , the dynamic model is expressed by

∂NG
i

∂t
= −Kµi

(
µG
i

(
nG
)
− µL

i

(
nL
))

, i = 1, 2, · · · , q; (13)

∂V G

∂t
= −Kp

(
(−pG)− (−pL)

)
. (14)

When the system reaches a state of equilibrium, the resulting equations can be
expressed as:

µG
i

(
nG
)
− µL

i

(
nL
)
= 0, i = 1, 2, · · · , q; pG − pL = 0. (15)

Therefore, the energy dissipation law holds at a continuous level as follows:

dF

dt
= −

q∑
i=1

Kµi |
∂F

∂NG
i

|2 −Kp|
∂F

∂V G
|2 ≤ 0. (16)

2.3 Prerequisites and modified energy

To use the convex-concave splitting method for a mixture of multiple compo-
nents, the paper [3] introduces an energy parameter η > 0, allowing the free
energy density to be rewritten as

f convex (n) = (1 + η)f id(n) + f rep(n); (17)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_30

https://dx.doi.org/10.1007/978-3-031-36030-5_30
https://dx.doi.org/10.1007/978-3-031-36030-5_30


Component-wise and unconditionally energy-stable VT flash calculation 5

f concave (n) = fatt(n)− ηf id(n); (18)

f(n) = f convex (n) + f concave (n). (19)

Subsequently, the modified combination of the Helmholtz free energy can be
subjected to the convex-concave approach to sustain the unconditionally energy-
stable feature without affecting the overall energy quantity or the convergent
outcomes. In the case of a component-wise framework, we have discovered that

∂2f id

∂n2
i

= RT
1

ni
> 0;

∂2f rep

∂n2
i

= RT

(
2bi

1− bn
+

b2in

(1− bn)2

)
> 0. (20)

The attraction term may not be concave (namely ∂2fatt/∂n2
i < 0) even in the

component-wise framework. See [1] for details. Component-wise expressions are
introduced before numerical scheme design.{

f
(
nk+1
i

)
= f

(
nk+1
1 , nk+1

2 , · · · , nk+1
i−1 , n

k+1
i , nk

i+1, · · ·nk
q

)
f
(
nk
i

)
= f

(
nk+1
1 , nk+1

2 , · · · , nk+1
i−1 , n

k
i , n

k
i+1, · · ·nk

q

) i = 1, 2, · · · , q. (21)

f(nk+1
i ) is determined by using nk

j (j > i) and nk+1
j (j ≤ i). The value of f(nk

i )

is decided by nk
j (j ≥ i) and nk+1

j (j < i). To keep mathematical expressions
brief and concise, this notation is consistently utilized. Based on the modified
energy, the discrete linear energy-stable scheme is designed by employing the
convex-concave splitting approach and energy factorization method:

NG,k+1
i −NG,k

i

∆t
= −Kµi

(
µ̃i

G − µ̃i
L
)

i = 1, 2, · · · , q; (22)

V G,k+1 − V G,k

∆t
= −Kp (−p̃) . (23)

This equation uses µ̃i
G and µ̃i

L as linear approximations of the gas-phase chemi-
cal potential with respect to NG,k+1

i and the liquid-phase chemical potential with
respect to NL,k+1

i , respectively. p̃ is also linear approximations of the pressure
difference with respect to V G,k+1.

3 Numerical scheme and proof

3.1 Ideal term

In this part, we demonstrate an energy inequality involving the ideal term of
free energy.

f id = RT

q∑
i=1

ni (lnni − 1) = RT

q∑
i=1

ni lnni −RT

q∑
i=1

ni. (24)

A linear scheme denoted by µ̃id
i is proposed for the ideal term. The next steps

describe the procedure for designing and validating of this linear scheme.
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Lemma 1. Suppose that the chemical potential associated with the ideal term
within the semi-implicit linear scheme is defined as

µ̃id
i = RT

(
lnnk

i +
nk+1
i

nk
i

− 1

)
. (25)

Then, we have the inequality:

f id (nk+1
i

)
− f id (nk

i

)
≤ µ̃id

i

(
nk+1
i − nk

i

)
. (26)

Proof. Because of lnni is concave with respect to ni, we obtain

lnnk+1
i − lnnk

i ≤ 1

nk
i

(
nk+1
i − nk

i

)
. (27)

As nk
i > 0 and nk+1

i > 0, using (27), we have

nk+1
i lnnk+1

i − nk
i lnn

k
i = lnnk

i

(
nk+1
i − nk

i

)
+ nk+1

i

(
lnnk+1

i − lnnk
i

)
≤

(
lnnk

i +
nk+1
i

nk
i

)(
nk+1
i − nk

i

)
. (28)

Through equations (21), (24) and (28), the change in energy density contributed
by ideal term is obtained

f id (nk+1
i

)
− f id (nk

i

)
= RT

(
nk+1
i lnnk+1

i − nk
i lnn

k
i

)
−RT

(
nk+1
i − nk

i

)
≤ RT

(
ln
(
nk
i

)
+

nk+1
i

nk
i

− 1

)(
nk+1
i − nk

i

)
. (29)

If we define µ̃id
i using (25), then it’s obvious that the inequality (26) is satisfied

3.2 Repulsion term

In this part, we will establish and demonstrate a comparable inequality to (26)
that pertains to the repulsion component of the Helmholtz free energy density,
denoted as f rep and defined in (6). The formula can be rephrased as follows:

f rep = −nRT ln(1− bn) = −
q∑

i=1

niRT ln (1−
q∑

i=1

bini). (30)

Before stating the lemma and its proof, these auxiliary variables W , w and ϵ are
defined for the purpose of mathematical simplification.

w =

q∑
j ̸=i

nj ; W = 1−
q∑

j ̸=i

bjnj ; ϵ = 1−bn = 1−
q∑

j ̸=i

bjnj−bini = W−bini.

(31)
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Regarding ϵ, w, and W , It is evident that they are all positive real numbers. We
can rephrase the repulsion term of the energy density at the continuous level as:

f rep = −
(
w +

W − ϵ

bi

)
RT ln ϵ. (32)

Moreover, we can define ϵki = 1 −
∑q

j<i bjn
k+1
j − bin

k
i −

∑q
j>i bjn

k
j and ϵk+1

i =

1 −
∑q

j<i bjn
k+1
j − bin

k+1
i −

∑q
j>i bjn

k
j . Also, wk

i =
∑q

j<i n
k+1
j +

∑q
j>i n

k
j and

W k
i = 1−

∑q
j<i bjn

k+1
j −

∑q
j>i bjn

k
j can be defined based on the component-wise

framework’s Helmholtz free energy density in (21). Here we notice again that ϵki ,
ϵk+1
i , wk

i and W k
i are all positive real numbers.

Lemma 2. The linear scheme of the chemical potential contributed by the re-
pulsion term can be denoted as µ̃rep

i , and its definition is provided below:
For any ϵk+1

i /ϵki > 0, select a coefficient hi = min
{
α, ϵk+1

i /ϵki
}
, so that there

exists a corresponding coefficient βi =
1
hi

−1

(1−α)2 . Then the linear scheme is

µ̃rep
i = RT

(
bi

W k
i − bink

i

nk+1
i − W k

i

W k
i − bink

i

− ln
(
W k

i − bin
k
i

))
+RT

(
W k

i + wk
i bi
)( βibi

(W k
i − bink

i )
2
nk+1
i +

W k
i − (1 + βi)bin

k
i

(W k
i − bink

i )
2

)
.

(33)

In particular, when the ratio of ϵk+1
i to ϵki is greater than or equal to a certain

value, denoted by α (which is approximately equal to 0.31617), we can simplify
the linear scheme form by setting βi to 1. Then, the discrete energy dissipation
law holds unconditionally.

f rep (nk+1
i

)
− f rep (nk

i

)
≤ µ̃rep

i

(
nk+1
i − nk

i

)
. (34)

Proof. By splitting the repulsion term into two parts:

f rep
1 =

RT

bi
ϵ ln ϵ; f rep

2 = −RT

bi
(W + wbi) ln ϵ. (W + wbi > 0) (35)

Since the first part has the similar form with ideal part, it will yield that

f rep
1

(
nk+1
i

)
− f rep

1

(
nk
i

)
= f rep

1

(
ϵk+1
i

)
− f rep

1

(
ϵki
)

≤ RT

bi

(
ln ϵki +

ϵk+1
i

ϵki

)(
ϵk+1
i − ϵki

)
= RT

(
bi

W k
i − bink

i

nk+1
i − W k

i

W k
i − bink

i

− ln
(
W k

i − bin
k
i

)) (
nk+1
i − nk

i

)
.

So, by defining the chemical potential µ̃rep
1,i as the right-hand side, we have the

desired inequality for f rep
1 as

f rep
1

(
nk+1
i

)
− f rep

1

(
nk
i

)
≤ µ̃rep

1,i

(
nk+1
i − nk

i

)
. (36)
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(a) f(x) = lnx+ (1− x)2 + (1− x) (b) g(x) = − lnx+ 1− 1
x

Fig. 1. The curves of auxiliary functions

Moving on to the second part, denoted as f rep
2 = −RT

bi
(W + wbi) ln ϵ, where

W+wbi > 0, assume that x = ϵk+1
i /ϵki , where ϵk+1

i > 0 and ϵki > 0. We can make
use of the properties of the following functions: (1) g(x) = − lnx + 1 − 1

x ≤ 0;
and (2) f(x) = lnx + (x − 1)2 + (1 − x), which has two zeros at x = 1 and
x = α ≈ 0.31617. We can conclude that − lnx ⩽ 1

x − 1 for any x > 0. Also, for
any x ≥ α, we have:

− lnx ⩽ (1− x) + (1− x)2. (37)

For any hi = x < α, we have the following inequality holds as

− lnx ≤ 1

x
−1 =

1

hi
−1 <

(
1
hi

− 1
)
(1− x)2

(1− α)2
= βi(1−x)2 ≤ (1−x)+βi(1−x)2.

(38)
Then for ϵk+1

i /ϵki ≥ α, the above inequality still holds because βi = 1 obviously.

− lnx ≤ (1− x) + (x− 1)2 ≤ (1− x) + βi(1− x)2. (39)

The conclusion also means that for any ϵk+1
i /ϵki > 0, if choosing hi = min

{
α,

ϵk+1
i

ϵki

}
,

there is always a coefficient βi =
1
hi

−1

(1−α)2 to ensure

(
− ln ϵk+1

i

)
−
(
− ln ϵki

)
≤

(
− 1

ϵki
+

βi

(
ϵk+1
i − ϵki

)(
ϵki
)2

)(
ϵk+1
i − ϵki

)
. (40)

By defining µ̃rep
2,i as

µ̃rep
2,i = RT

(
W k

i + wk
i bi
)( βibi(

W k
i − bink

i

)2nk+1
i +

W k
i − (1 + βi) bin

k
i(

W k
i − bink

i

)2
)
, (41)
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we have

f rep
2

(
nk+1
i

)
− f rep

2

(
nk
i

)
= f rep

2

(
ϵk+1
i

)
− f rep

2

(
ϵki
)

=
RT

bi

(
W k

i + wk
i bi
) (

− ln
(
ϵk+1
i

)
−
(
ln
(
ϵki
)))

≤ RT

bi

(
W k

i + wk
i bi
)(

− 1

ϵki
+

βi

(
ϵk+1
i − ϵki

)(
ϵki
)2

)(
ϵk+1
i − ϵki

)
= RT

(
W k

i + wk
i bi
)( βibi(

W k
i − bink

i

)2nk+1
i +

W k
i − (1 + βi) bin

k
i(

W k
i − bink

i

)2
)(

nk+1
i − nk

i

)
.

When ϵk+1
i /ϵki ≥ α, we can use βi = 1 directly.

There are a few key points that need to be emphasized. Upon the comple-
tion of updating the mole numbers, it is necessary to verify the linear scheme
expression using a reverting process because it is unclear whether ϵk+1

i /ϵki < α
or ϵk+1

i /ϵki ≥ α. Numerical results indicate that most computations satisfy the
condition ϵk+1

i /ϵki ≥ α, and in such cases, βi is set to 1 for faster convergence.
However, if ϵk+1

i /ϵki < α, A method for adaptively selecting the value of βi is
given. This involves starting with hi =

1
2α and gradually decreasing hi until the

condition is satisfied. In our simulations, this process only happens in the states
near the phase boundary, a good initial guess can ensure the reverting process
is under 10 times.

3.3 attraction term

Despite the fact that the attraction term of free energy density is not a concave
function even under the component-wise framework, by introducing the modified
energy like the one shown in equations (19), (17) and (18), if η is sufficiently
large, the strict convex-concave splitting for the Helmholtz free energy density of
a multicomponent mixture can be attained. We view the function f concave (n) =
fatt(n)−ηf id(n) as a single entity in order to ensure energy stability. By taking
a derivative with respect to ni, we can directly derive the formulation of the
chemical potential µatt

i from the attraction term.

µ̃concave
i =

2
∑q

j=1 aijn
k
j bn

k − bia(n
k)2

2
√
2(bnk)2

ln

(
1 + (1−

√
2)bnk

1 + (1 +
√
2)bnk

)

+
ank

2
√
2b

(
(1−

√
2)bi

1 + (1−
√
2)bnk

− (1 +
√
2)bi

1 + (1 +
√
2)bnk

)
− ηRT lnnk

i .

(42)

By integrating the schemes for all three types of terms, this linear scheme ensures
the stability of the discrete free energy.

f
(
nk+1
i

)
− f

(
nk
i

)
≤ µ̃i

(
nk+1
i − nk

i

)
. (43)
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3.4 Linear scheme for updating volume

After updating the moles of each composition in the dynamic model, A vital step
of flash calculation is to utilize the provided formula to calculate the volume of
each phase,

V G,k+1 − V G,k

∆t
= −Kp

(
−p̃G −

(
−p̃L

))
.

The formula for phase volume is complicated because it involves a complex
non-linearity (the volume is the denominator of molar density). This makes it
challenging to design a linear method. To address this issue, inspired by Kou’s
idea [4] on the convex-concave properties of energy with respect to volume and
the relation of (2), We can conclude that the pressure terms arising from the
convex part of the energy need to be handled in an implicit manner, while
the concave part requires an explicit treatment to ensure energy stability. The
pressure formula can be derived by taking the derivative of free energy and using
the energy density of PR fluid.

∂F

∂V
= −p = − RT

v − b
+

a(T )

v2 + 2bv − b2
. (44)

where v = V/N . Then, the semi-implicit scheme is

V G,k+1 − V G,k

∆t
= −Kp

{[
− NGRT

V G,k+1 −NGbG
+

a(T )(NG)2

(V G,k)2 + 2bGNGV G,k − (bG)2(NG)2

]
−
[
− NLRT

V L,k+1 −NLbL
+

a(T )(NL)2

(V L,k)2 + 2bLNLV L,k − (bL)2(NL)2

]}
.

(45)

This makes the energy stability property to hold discretely. The following lemma
is here to claim the existence of the linear scheme for p̃(V G,k+1) only.

Lemma 3. One can express the pressure term using a linear semi-implicit scheme
as shown by

−p̃ = ĀV G,k+1 + B̄, (46)

where the coefficient Ā
(
NG,k+1, V G,k

)
and B̄

(
NG,k+1, V G,k

)
only involve ex-

plicit variables. It is possible to maintain the energy-stability property of the
discrete system with respect to phase volume V G by using the linear scheme for
the pressure term −p̃, namely

f
(
V G,k+1

)
− f

(
V G,k

)
≤ −p̃

(
V G,k+1 − V G,k

)
. (47)

Proof. When combined with the volume constraints given by equation (1), the
equation used to update the volume of the gas phase can be converted to

V G,k+1 − V G,k

∆t
= −Kp

{[
− NGRT

V G,k+1 −NGbG
+

a(T )
(
NG

)2
(V G,k)2 + 2bGNGV G,k − (bG)2 (NG)2

]

−

[
− NLRT

V tol − V G,k+1 −NLbL
+

a(T )
(
NL

)2
(V L,k)2 + 2bLNLV L,k − (bL)2 (NL)2

]}
.

(48)
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After updating the moles of all components as NG =
∑

NG,k+1
i and NL =∑

NL,k+1
i , the concave terms that are explicitly represented by notations CAG,k

and CAL,k are used to simplify the mathematical expressions. Thus, the equation
can be expressed as:

V G,k+1 − V G,k

∆t
= −Kp[(−

NGRT

V G,k+1 −NGbG
+ CAG,k)−

(− NLRT

V tol − V G,k+1 −NLbL
+ CAL,k)].

(49)

With some further relaxations on the time step to keep this energy dissipation
property and the mathematical properties on the coefficients of linear terms. The
relaxed time step will not influence the convergence of scheme. It finally reaches
the following inequality:

f
(
V G,k+1

)
− f

(
V G,k

)
≤ [−NGRT −

(
CAL,k − CAG,k

) (
V G,k −NGbG

)
−

NLRT
(
V G,k −NGbG

)
V G,k+1 +NLbL − V tol

]
(
V G,k+1 − V G,k

)
.

(50)

It also implies that if the scheme of −p̃ is defined as

−p̃ = ĀV G,k+1 + B̄, (51)

then the discrete energy law with respect to V G still holds as

f
(
V G,k+1

)
− f

(
V G,k

)
≤ −p̃

(
V G,k+1 − V G,k

)
.

Thus, the coefficients Ā = NGRT +
(
CAL,k − CAG,k

) (
V G,k −NGbG

)
and

B̄ =
[
NGRT +

(
CAL,k − CAG,k

) (
V G,k −NGbG

)] (
NLbL − V tol

)
+ ...

...NLRT
(
V G,k −NGbG

)
, respectively. The final relaxed time step ∆̄t is

∆̄t =
∆t

(V G,k+1 −NGbG) (V tol − V G,k+1 −NLbL)
. (52)

In conclusion, the linear scheme −p̃ = ĀV G,k+1 + B̄ is able to maintain the
energy-stability property at a discrete level, as shown in Lemma (47). It is im-
portant to note that the relaxed time step will not affect the convergence or
energy-stability property.

4 Numerical experiments

This section presents several numerical experiments conducted on a mixture to
show the efficiency, arrcuracy and stability of this fully explicit and uncondi-
tionally energy-stable method for solving the Peng-Robinson VT flash problem.
The obtained results are then compared to the data reported in Jiri’s papers [7],
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which are commonly used as a reference for comparison. The constant total vol-
ume of V total = 1m3 is established. To obtain a physically meaningful outcome,
an initial guess is acquired using the Wilson correlation and the Rachford-Rice
equation. For the dynamic model, the modified energy parameter is set to η = 10,
and the time step is dt = 108. The values of dynamic model coefficients Kµi

and
Kp can typically be determined using the methods described in Kou’s paper [4].
Set diffusion coefficient Di = 1 for each component

Kµi
=

DiNi

RT
; Kp =

CG
V CL

V V
tol

CL
V p

k
G + CG

V pkL
.

where the coefficients CG
V = CL

V = 1. The phase pressure pkG and pkL is the
phase pressure in the last time step. The convergence criterion for the time loops
is based on the relative errors in the moles of each component in the gas phase
Ni

G and the gas phase volume V G between two adjacent time steps. These
relative errors are considered as the criteria, and convergence is achieved when
they are both less than 10−6.

∥∥∆NG
i

∥∥
rel

=

∥∥∥NG,k
i −NG,k+1

i

∥∥∥∥∥∥NG,k
i

∥∥∥ ;
∥∥∆V G

∥∥
rel

=

∥∥V G,k − V G,k+1
∥∥

∥V G,k∥
.

4.1 Binary mixture of methane (C1) and n-penthane (nC5)

Initially, a binary mixture of methane (C1) and n-pentane (nC5) is used as a case
study for a two-phase flash calculation. The mixture has a total molar density of
n = 6135.3 mol/m3 with mole fractions of zC1

= 0.489575 and znC5
= 0.510425

at a temperature of T = 310.95 K. Additional parameters regarding the mixture
are shown in Table 1.

Table 1. Properties of the constituents in the binary C1 − nC5 mixture

Component ωi[−] Tcrit [K] Pcrit [MPa] Mw[g/mol]

C1 0.011 190.56 4.599 16
nC5 0.251 469.70 3.37 72.2

The C1 − nC5 binary interaction coefficient δC1−nC5
= 0.041.

Table 2 shows the equilibrium results, with the resulting equilibrium pres-
sure being p = 10.4651 MPa. These results show excellent agreement with the
reference data from Jiri and Abbas’ study [7]. The energy dissipation property
can also be observed from Figure 2, where there is an apparent decay of energy
at the initial stage. To provide a better visualization of the energy trend, a zoom
window of the 150th − 200th time steps is included in the plot. Convergence is
reached after 224 time steps, and the resulting properties are considered to be
the equilibrium properties of the mixture.
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Table 2. The resulting constitution and overall physical parameters of C1 − nC5 cal-
culated by this novel scheme.

Property Unit Overall mixture Phase Liquid Phase Gas
molar density mol/m3 6135.30 10106.03 3177.74
C1 mole fraction 0.489575 0.293459 0.954132
nC5 mole fraction 0.510425 0.706541 0.045868
phase volume fraction 0.426881 0.573119
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Fig. 2. Profile of total Helmholtz free energy of mixture with time step ∆t = 108 for
the binary mixture (C1 − nC5) case
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Fig. 3. Profile of relative error on moles of each component in the gas phase and gas
volume with time steps for the binary mixture (C1 − nC5) case

Figure 3 illustrates the variability in the accuracy of the calculation process.
The general trend is a decrease in the relative error. However, there is a sag in
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Fig. 4. Stem plot of the relative error change on moles of each component and phase
volume with time steps for the binary mixture (C1 − nC5) case

the relative error for C1 and gas volume at the initial stage, which could be at-
tributed to the imprecise initial estimate and the non-synchronous nature of the
component-wise iteration process. As the relative error only indicates a relative
difference between two consecutive time steps, possibly, a numerical adjustment
process occurred to overcome the asynchrony. Fortunately, the variability in rel-
ative error for moles and phase volume in the subsequent process exhibits a
similar and unanimous trend of decreasing slope.

A stem plot is depicted in Figure 4, illustrating the energy fluctuations during
the initial 10 time steps. The energy decreases as each component and then the
volume are updated, which is which is in line with the proof and derivation. The
energy continues to decrease within each time step, and it is observed that the
energy before updating (the black stem) is higher than the energy after updating
the volume of the previous time step (the magenta stem) when transitioning to
a new time step. This phenomenon is caused by modifications to the PR EoS
parameters a and b of the mixture at each finished time step. However, it is
evident that the energy before updating (the black stem) consistently decreases
throughout the entire dynamic process as expected.

5 Conclusion

This work proposes a numerical method for calculating two-phase equilibrium
under constant volume, temperature, and moles, using the dynamic model for
VT flash that upholds Onsager’s reciprocal principle and the energy dissipation
law. With a designed linear semi-implicit scheme, the moles of each component
and phase volume can be updated while preserving the energy dissipation fea-
ture. The convex-concave splitting technique, energy factorization approach and
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component-wise iteration framework are then employed for the mixture, result-
ing in a fully explicit algorithm. This method avoids solving complicated linear or
nonlinear systems, making it easier to implement and apply in engineering con-
texts. Moreover, one component-wise and unconditionally energy-stable method
is proposed for the first time for the multi-component flash calculation problem.
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