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Abstract. The multiple markers unstructured conservative level-set method for
two-phase flow with variable surface tension is applied in the Direct Numerical
Simulation of thermocapillary-migration of a bi-dispersed suspension of droplets.
Surface tension is a function of temperature on the interface. Consequently, the
called Marangoni stresses induced by temperature gradients on the interface lead
to a coupling of the momentum transport equation with the thermal energy trans-
port equation. The finite-volume method on three-dimensional collocated un-
structured meshes discretizes the transport equations. Interface capturing is car-
ried out by the unstructured conservative level-set method. The multiple marker
approach avoids fluid particles’ numerical and potentially unphysical coalescence.
The classical fractional-step projection method solves the pressure-velocity cou-
pling. Unstructured flux limiters schemes solve the convective term of transport
equations. Adaptive mesh refinement is incorporated to optimize computational
resources. Verifications, validations and numerical findings are reported.

Keywords: Unstructured Conservative Level-Set Method · Unstructured Flux-
Limiters · Finite-Volume Method · Unstructured Meshes · Adaptive Mesh Re-
finement · Variable Surface Tension · Thermocapillarity.

1 Introduction

Interfacial phenomena induced by variable surface tension, e.g., thermocapillary or sur-
factants, are frequent in nature and industry. Diverse engineering systems, from nuclear
reactors to unit operations and chemical reactors, from combustion engines to wastew-
ater treatment plants, entail bubbles or droplets inside another fluid phase with complex
interfacial physics. This work focuses on the Marangoni migration (Thermocapillarity)
of droplets, an interfacial phenomenon induced by a nonuniform temperature distribu-
tion on the fluid interface. Because the surface tension is a function of the temperature,
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surface tension gradients arise. Consequently, shear stresses on the interface induce the
migration of droplets in the direction of the temperature gradient. Beyond its scientific
importance, thermocapillary migration is essential in microgravity environments [41]
and micro-devices [22].

Experimental research on bubble swarms or suspension of droplets with complex
interfacial physics, e.g., thermocapillary, is constrained by optical access. In contrast,
analytical methods can be applied only for particular cases with a substantial simpli-
fication of physics. Consequently, the development of computational methods [35,48]
for complex multiphase flows is well justified. In this framework, many methods have
been designed for Direct Numerical Simulation (DNS) of gas-liquid multiphase flow
[35,48]. For instance, level-set (LS) [34,44,25], Volume of Fluid (VoF) [26,38,49,36],
coupled VoF-LS [43,42,10], conservative level-set (CLS) [33,9,16], and front-tracking
(FT) [50,47]. Although a similar idea is shared in designing these methods, their nu-
merical implementations on structured or unstructured meshes present significative dif-
ferences [16,10,6,9].

Further efforts to extend the aforementioned interface capturing/tracking methods
for two-phase flows with variable surface tension have been reported, e.g., thermocap-
illary effects. For instance, Balcazar et al.[14] reported a level-set model for thermo-
capillary migration of individual and multiple droplets. [32,31] researched the ther-
mocapillary migration of multiple deformable droplets by using front-tracking simu-
lations. [29,39] reported DNS of thermal Marangoni effects at deformable interfaces
based on the volume-of-fluid method. [53,52] reported front-tracking simulations of an
isolated spherical drop in thermocapillary migration for low and high Marangoni num-
bers. Two- and three-dimensional level-set simulations of thermocapillary migration
of droplets were reported by [54,20]. A front-tracking method for insoluble and solu-
ble surfactants was introduced by [30]. The previous works have reported remarkable
numerical and physical findings. Nevertheless, many other configurations and flow con-
ditions have to be explored yet. Consequently, this research is a systematic effort toward
designing computational methods for two-phase flow with complex interface physics,
i.e., thermocapillary-driven two-phase flow, using the unstructured conservative level-
set (UCLS) method proposed by Balcazar et al.[16,18,7,4,8,14,6,9]. Contributions of
this work include the incorporation of novel adaptive mesh refinement and unstructured
conservative level-set method for thermocapillary migration of droplets. In addition, the
DNS of the thermocapillary-driven motion of a bi-dispersed suspension of droplets is
presented on three-dimensional fixed meshes.

The organization of this paper is described as follows: The mathematical formula-
tion and numerical methods are introduced in Section 2. Section 3 reports numerical
experiments. Conclusions are outlined in Section 4.

2 Mathematical Formulation and Numerical Methods

2.1 One fluid formulation for incompressible two-phase flow

The one-fluid formulation [49,36] solves the Navier-Stokes equations for the dispersed
phase (Ωd) and continuous phase (Ωc), using the multi-marker UCLS approach [16,18]:
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∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · µ (∇v) +∇ · µ(∇v)T + (ρ− ρ0)g + fσ, (1)

∇ · v = 0, (2)

where p is the pressure, v is the fluid velocity, g denotes the gravitational acceleration, ρ
is the fluid density, µ is the dynamic viscosity, fσ refers to the surface tension force per
unit volume concentrated on the interface (Γ ), subscripts d and c refer to the dispersed
and continuous phases. Density and viscosity are constant. Nevertheless, a jump discon-
tinuity arises on the interface: µ = µcHc + µdHd, ρ = ρcHc + ρdHd. The Heaviside
step function (Hc) is one inΩc and zero inΩd. On the other hand,Hd = 1−Hc. In case
periodic boundary conditions are set in the y-axis (parallel to g), a force −ρ0g should
be included in Eq.(1) [16,5,6]. In that case, ρ0 = V −1Ω

∫
Ω

(ρcHc + ρdHd) dV .

2.2 The multi-marker UCLS method

The Unstructured Conservative Level-Set (UCLS) approach proposed by Balcazar et
al. [16,9] is used for interface capturing in the framework of the finite volume method.
Furthermore, the multiple markers UCLS method [16,4,5,14,6,18] is adopted to circum-
vent the numerical coalescence of fluid particles. In this context, a modified level-set
function [16,14,9] represents each marker, φi = 1

2

(
tanh

(
di
2ε

)
+ 1
)
, where ε sets the

thickness of the interface profile, and di is a signed distance function [34,45]. The ith
UCLS advection equation is computed in the conservative form:

∂φi
∂t

+∇ · φiv = 0, i = {1, 2, ..., Nm − 1, Nm}, (3)

Nm is the number of UCLS markers, which equals the number of bubbles or droplets.
To maintain a constant and sharp UCLS profile, a re-initialization equation [9] is solved:

∂φi
∂τ

+∇ · φi(1− φi)n0
i = ∇ · ε∇φi, i = {1, 2, ..., Nm − 1, Nm}. (4)

Here, n0
i denotes the interface normal unit vector evaluated at τ = 0. At the control

volume ΩP , εP = 0.5(hP )α with α = 0.9, hP refers to the local grid size [16,14,9].
Eq.(4) is computed for the pseudo-time τ up to the steady state. Interface curvatures κi
and normal vectors ni are computed as follows [16,6,9]: κi = −∇ · ni, ni = ∇φi

||∇φi|| .

2.3 Marangoni force

The Continuous Surface Force (CSF) model [19] is adopted for computing the surface
tension force (fσ , Eq.(1)). This model has been extended to the multiple marker UCLS
approach by Balcazar et al. [6,14,5,16,18]:

fσ =

Nm∑
i=1

(f(n)σ,i + f(t)σ,i). (5)
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Here, the interface tangential component f(t)σ,i, is the so-called Marangoni force [23],
defined as follows:

f(t)σ,i = ∇Γi
σ(T )δsΓ,i = (∇σ(T )− ni(ni · ∇σ(T )))δsΓ,i

= (∇σ(T )− ni(ni · ∇σ(T )))||∇φi||. (6)

The regularized Dirac delta function δsΓ,i =||∇φi|| [16,9,5,18] is concentrated on the
interface. Note that the tangential component of the gradient operator is ∇Γi

= ∇ −
ni(ni · ∇). Furthermore, σ = σ(T ) denotes the equation of state for the surface tension
coefficient. On the other hand, the normal component of the surface tension force, f(n)σ,i ,
is calculated as follows:

f(n)σ,i = σκiniδsΓ,i,= σκini||∇φi||,= σκi∇φi. (7)

This force is perpendicular to the interface (Γi), whereas ki is the curvature.

2.4 Equation of state σ = σ(T ) and energy equation

The properties of the vapour and liquid phases for a specific fluid become similar as its
critical temperature is reached. Indeed, an increment of temperature reduces the surface
tension, i.e., ∂σ(T )/∂T = σT with σT < 0. For most fluids, a linear equation of state
for surface tension is expected: σ = σ(T ) = σ0 + σT (T − T0), with σ0 = σ(T0). As a
consequence, the Marangoni force (Eq.(6)) for linear σ(T ) is written as:

f(t)σ,i = f(t)σ,i(T ) = (σT∇T − σTni(ni · ∇T ))||∇φi||. (8)

The following energy transport equation [14] address the evolution of the temperature:

ρcp

(
∂T

∂t
+∇ · (vT )

)
= ∇ · (λ∇T ). (9)

Here, λ = λdHd + λcHc is the thermal conductivity, and cp = cp,dHd + cp,cHc is the
specific heat capacity. Subindex d and c denotes the dispersed and continuous phases.

2.5 Regularization of physical properties

This research employs a regularization of physical properties {µ, λ, ρcp} proposed by
[14] for thermocapillary migration of droplets: ρ = ρdH

s
d + ρcH

s
c , µ−1 = µ−1d Hs

d +
µ−1c Hs

c , (ρcp) = (ρcp)dH
s
d + (ρcp)cH

s
c , λ−1 = λ−1d Hs

d + λ−1c Hs
c . Further details can

be found in our previous research [16,14,6].

2.6 Numerical methods

Transport equations are discretized by the finite-volume method on 3D collocated un-
structured meshes [16]. The convective term of level-set advection equation (Eq.(3)),
momentum transport equation (Eq.(1)) and energy transport equation (Eq.(9)) is ex-
plicitly calculated at the cell-faces by the unstructured flux-limiter schemes proposed
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by Balcazar et al.[16,9]. Consequently, the convective term in the cell ΩP is written
as follows (∇ · βψv)P = V −1P

∑
f βfψf (vf · Af ). Here, Af = ||Af ||ef is the area

vector, subindex f refers to the cell-faces, ef is a unit-vector pointing outside the local
cell ΩP , and VP denotes the volume of ΩP . Furthermore,

ψf = ψCp +
1

2
L(θf )(ψDp − ψCp), (10)

where θf = (ψCp
− ψUp

)/(ψDp
− ψCp

) is the monitor variable and L(θf ) is the
flux limiter function. Furthermore, subindex Cp denotes the upwind point, subindex Up
refers to the far-upwind point, and subindexDp denotes the downwind point, according
to the stencil proposed for the UCLS method [16]. Multiple flux limiters have been
implemented on the UCLS solver [16], some of them are remarked [46,24,28]:

L(θf ) ≡



max{0,min{2θf , 1},min{2, θf}} SUPERBEE,
max{0,min{4θf , 0.75 + 0.25θf , 2}} SMART,
(θf+|θf |)/(1+|θf |) VANLEER,
0 UPWIND,
1 CD,

(11)

SUPERBEE limiter is used unless otherwise stated. The finite-volume discretization of
the compressive term in the re-initialization equation (Eq. (4)) is performed at the cell
ΩP as proposed by [16]: (∇ · φi(1 − φi)n0

i )P = 1
VP

∑
f (φi(1 − φi))fn0

i,f · Af . In
addition, (φi(1− φi))f and n0

i,f are approximated by linear interpolation.
Discretization of the diffusive term in transport equations is performed by the cen-

tral difference scheme [16]. On the other hand, linear interpolation (with a weight-
ing factor of 0.5) [16] is used to approximate the cell-face values unless otherwise
stated. The weighted least-squares method [16,18,7,9] computes the gradients at the
cell centroids. The pressure-velocity coupling is solved with the fractional-step projec-
tion method [21,36,49]. Indeed, a predictor velocity (v∗P ) is calculated in the first step:

ρP v∗P − ρ0P v0P
∆t

= C0
v,P + D0

v,P + (ρP − ρ0)g + fσ,P , (12)

Here, subindex P denotes the local control volume (ΩP ), superindex 0 refers to the pre-
vious time-step, Cv = −∇·(ρvv), and Dv = ∇·µ∇v+∇·µ(∇v)T . After imposing the
incompressibility constraint ((∇ · v)P = 0) in the corrector step (Eq. (14)), a Poisson
equation for the pressure field is obtained:(

∇ ·
(
∆t

ρ
∇p
))

P

= (∇ · v∗)P , e∂Ω · ∇p|∂Ω = 0. (13)

A linear system results from the finite volume approximation of Eq.(13), which is com-
puted by a preconditioned (Jacobi pre-conditioner) conjugate gradient method [27,51].
Here ∂Ω refers to the boundary ofΩ, excluding regions with periodic conditions where
information of the corresponding periodic nodes is used [16,6]. In the next step, an
updated velocity (vP ) is calculated as follows:

ρP vP − ρP v∗P
∆t

= −(∇p)P . (14)
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Fig. 1. Thermocapillary migration of a single droplet, g = 0. (a) Adaptive mesh refinement
(AMR) around the interface. The maximum grid size is hmax = Lx/60, and the minimum grid
size is hmin = hmax/2

4. (b) Temperature isocontours.

Furthermore, to avoid pressure-velocity decoupling on collocated meshes [37] and to
fulfil the incompressibility constraint, a cell-face velocity vf is interpolated [14,16].
Consistently with vf , the volume flux (vf ·Af ), normal velocity (vf · ef ) or a compati-
ble variable is used to calculate the convective term of transport equations (see appendix
A of [14] for example). The reader is referred to [16,7,18] for an example of a global
algorithm for complex interfacial physics and further details on the finite-volume dis-
cretization.

3 Numerical Experiments

Validations, verifications and extensions of the UCLS method [16,7,9,11,5] have been
systematically reported, including: the gravity-driven motion of single bubbles [9,6,5,3,2],
Thermocapillary migration of single and multiple droplets on fixed unstructured meshes
[14,15], falling droplets [8], gravity-driven bubbly flows [12,5,16,17,18], the bouncing
collision of a droplet against a fluid-fluid interface [12], binary droplet collision [12],
deformation of droplets under shear stresses [10], primary atomization of a liquid [40],
mass transfer in bubble swarms [18,4,16,17], and saturated liquid-vapour phase change
[7]. A comparison of the UCLS method [9,6,14] and unstructured coupled VoF-LS
method [10] is performed in [8]. Consequently, this research is a further systematic step
in thermocapillary-driven two-phase flows.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_25

https://dx.doi.org/10.1007/978-3-031-36030-5_25
https://dx.doi.org/10.1007/978-3-031-36030-5_25


DNS of thermocapillary migration of a bi-dispersed suspension of droplets 7

Fig. 2. Effect of flux-limiter schemes (UPWIND, SMART, VANLEER) on thermocapillary mi-
gration of a single droplet, g = 0. Comparison of present simulations (AMR-UCLS) against
front tracking simulations of Nas and Tryggvason (2003) [32], and conservative level-set sim-
ulations of Balcazar et al.(2016) [13] on fixed meshes. Here t∗ = t/tr . (a) Migration velocity
V ∗ = (ey · v)U−1

r . (b) Dimensionless droplet surface A∗ = A(t)/A(0), A(t) =
∫
Ω
||∇φ||dV .

(c) Position of the droplet centre on the y-axis Y ∗ = y/Lx. (d) Mass conservation M∗ =
(M(t)−M(0))/M(0), M(t) =

∫
Ω
Hs
ddV .

The following dimensionless numbers characterize the thermocapillary migration
of droplets:

Ma =
|σT |||∇T∞||d2ρccp,c

4µcλc
, Re =

|σT |||∇T∞||d2ρc
4µ2

c

,

Ca =
|σT |||∇T∞||d

2σ0
, ηβ =

βc
βd
. (15)

where Ca is the capillary number, Ma is the Marangoni number, Re is the Reynolds
number, ηβ denotes the physical property ratio, β = {ρ, µ, λ, cp}, ∇T∞ = ((Th −
Tc)/Ly)ey , Th denotes the temperature at the top boundary (hot), and Tc denotes the
temperature at the bottom boundary (cold), as depicted in Figure 1b. On the other hand,
Tr = ||∇T∞||(0.5d) defines the reference temperature, Ur = |σT |||∇T∞||(0.5d)/µc
is the reference velocity, and tr = 0.5d/Ur is the reference time.

3.1 Thermocapillary migration of a single droplet

This test case was reported by [32] in the framework of the front-tracking method.
Furthermore, it has been successfully computed through the UCLS method on fixed un-
structured meshes by Balcazar et al.[14]. In what follows the UCLS method [16,14,9,18]
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Fig. 3. Thermocapillary interaction of two droplets g = 0. Re = 60, Ma = 60, Ca = 0.04166̄,
ηρ = ηµ = ηcp = ηλ = 2. Uniform hexahedral mesh with grid size h = d/48. (a) Vorticity
contours ((∇× v) · ez). (b) Temperature contours.

for two-phase flow with variable surface tension is coupled to a hexahedral Adaptive
Mesh Refinement strategy (AMR) [3]. The hexahedral AMR technique was introduced
by [1] for single-phase turbulent flows. In a further step, [3] extended and optimized
this technique for rising bubbles at high Reynolds numbers (wobbling-regime) in the
framework of the UCLS two-phase flow solver proposed by Balcazar et al.[16,8,9].

The computational setup consists of a rectangle domain (Ω) extending Lx = 4d
in the x direction and Ly = 8d in the y direction, whereas d is the droplet diame-
ter. As an initial condition, the droplet centroid is located above the bottom wall at a
distance d. The top and bottom walls are no-slip boundaries with temperature Th and
Tc < Th, respectively. On the other hand, the periodic boundary condition is applied
to lateral boundaries (x-axis). The material property ratios ηρ, ηµ, ηcp and ηλ are set
to 0.5, whereas the dimensionless parameters are chosen as Re = 5, Ma = 20, and
Ca = 0.0166̄. Figure 1 shows an instantaneous result for the temperature field induced
by thermocapillary migration and details on the AMR applied to the droplet interface.
Figure 2 illustrates that numerical results computed by the AMR-UCLS method are
in close agreement with those reported by [32] and [14] on fixed meshes. Moreover,
Figure 2d shows excellent mass conservation of fluid phases.
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Fig. 4. Thermocapillary interaction of two droplets, with g = 0, Ma = 60, Re = 60, Ca =
0.04166̄, ηρ = 2, ηµ = 2, ηcp = 2, ηλ = 2. Lines denote the present numerical results
with grid size h = {d/16, d/24, d/32, d/48}. Red symbols depict the front-tracking simulation
reported by [32]. (a) Vertical versus horizontal separation distance. (b) Migration velocity. (c)
Position of the droplet centre on the y-axis Y ∗ = y/Ly . (d) Order of convergence: The red line
denotes present simulations. Black lines for first-order and second-order convergence.E1(V ∗) =
N−1 ∑N

i=1 ||V
∗
i − V ∗

i,ref ||, V ∗
i,ref refers to numerical results for the finest mesh h = d/48.

3.2 Thermocapillary interaction of two droplets

This test case was reported by [32] in the framework of the front-tracking method.
Here, this case is computed by the UCLS method on fixed meshes. The computational
setup consists of a rectangle domain (Ω), which extends Lx = 4 d on the x-axis,
Ly = 8 d on the y-axis, and Lz = h, where h is the grid size. Ω is discretized by
{8192, 18432, 32768, 73728} uniform hexahedral cells. Accordingly, the grid sizes are
h = {d/16, d/24, d/32, d/48}. The material properties ratios are ηρ = 2, ηµ = 2,
ηλ = 2, ηcp = 2. Further dimensionless parameters are set to Ma = 60, Ca =
0.0416̄, and Re = 60. The initial droplet centroids are (x/d, y/d) = (0.95, 2.0), and
(x/d, y/d) = (2.05, 2.9). The droplets are circular cylinders of diameter d at t = 0.
Concerning the boundary conditions, periodic conditions are set in the x direction. On
the other hand, the top and bottom walls are no-slip boundaries. Temperatures at the top
and bottom boundaries (y-axis) are Tt and Tb, respectively, with Tt > Tb.

Fig. 3 depicts the isotherms and vorticity contours (ez · ∇ × v) for thermocapil-
lary interaction of the two droplets. Additionally, Fig. 4a depicts the vertical separation
distance of droplets against its horizontal separation distance. As the grid is refined, nu-
merical results using the UCLS method converge toward the front-tracking simulation
reported by [32]. Fig. 4b illustrates the migration velocity V ∗, whereas grid convergence
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Fig. 5. Thermocapillary interaction of a bi-dispersed suspension of 27 droplets (g = 0), dis-
tributed as 13 droplets with diameter d, and 14 droplets with diameter d∗. Re = 80, Ma = 10,
Ca = 0.04166̄, ηρ = ηµ = ηcp = ηλ = 2, d/d∗ = 1.5. Uniform hexahedral mesh with grid
size h = d/48, equivalent to 27648000 control volumes. Simulation performed on 1536 CPU
cores. (a) Vorticity contours ((∇ × v) · ez) at t∗ = t/tr = {16.4, 32.8, 65.7}. (b) Temperature
contours.

(second order) is demonstrated in Fig. 4d. An acceleration and deceleration period is
experienced by both droplets, which is evidenced by the overshoot in their migration
velocities. After that, one of the droplets reaches a quasi-steady state (t∗ ≥ 60), whereas
the other presents a new acceleration stage (t∗ ≥ 40).

3.3 Thermocapillary migration of a bi-dispersed suspension of droplets

The multi-marker UCLS method performs the DNS of thermocapillary migration of a
bi-dispersed suspension of droplets. Ω is a rectangular channel of size Ly = 10.66 d
in the y axis, and (Lx, Lz) = (5.33 d, 5.33 d) on the plane x − z. Ω is discretized by
27648000 uniform hexahedral control volumes (240×240×480 grid points), with grid
size h = d/45. At t = 0, 27 droplets are set near the bottom boundary, following a
random pattern (Fig. 5a). The suspension of droplets consists of 13 droplets of diameter
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Fig. 6. Thermocapillary interaction of a bi-dispersed suspension of 27 droplets g = 0, dis-
tributed as 13 droplets with diameter d, and 14 droplets with diameter d∗. Re = 80, Ma = 10,
Ca = 0.04166̄, ηρ = ηµ = ηcp = ηλ = 2, d/d∗ = 1.5. Uniform hexahedral mesh with grid
size h = d/48, equivalent to 27648000 control volumes. Simulation performed on 1536 CPU
cores. (a) Dimensionless migration velocity V ∗ = ey · vc,i/Ur , vc,i is the droplet velocity. (b)
Dimensionless vertical position, y∗ = ey · xc,i/Ly , xc,i is the droplet centroid.

d and 14 droplets of diameter d∗. The diameter ratio is d/d∗ = 1.5. Dimensionless
numbers are defined concerning the droplet diameter d, as outlined in Fig. 5 and Fig. 6.
The fluids are initially quiescent, and the temperature increases linearly from the bot-
tom wall to the top wall. The adiabatic boundary condition is applied to lateral walls.
On the other hand, the temperature at the top and bottom boundaries are Th and Tc, re-
spectively, with Th > Tc. The no-slip boundary condition applies to all the boundaries.
Fig. 5 show instantaneous vorticity and temperature contours as the droplets migrate
to the hot wall. Fig. 6 depicts the migration velocity of each droplet and the vertical
position of droplet centroids.

4 Conclusions

The multi-marker UCLS method for two-phase flow with variable surface tension has
been applied to the thermocapillary migration of droplets. Validations and verifications
include the Marangoni migration of a single droplet using AMR and the interaction
of two droplets on fixed meshes. The unstructured flux-limiters schemes proposed by
Balcazar et al.[16,9], to discretize the convective term of transport equations in the
framework of the UCLS method, minimize the so-called numerical diffusion and avoid
numerical oscillations at the interface. Altogether, numerical schemes lead to a robust
and accurate numerical method for complex thermocapillary-driven two-phase flow on
3D collocated unstructured meshes.
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