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Abstract. This work presents a Constraint Energy Minimizing Gener-
alized Multiscale Finite Element Method (CEM-GMsFEM) for solving
a single-phase compressible flow in highly heterogeneous media. To dis-
cretize this problem, we first construct a fine-grid approximation using
the Finite Element Method with a backward Euler time approximation.
After time discretization, we use Newton’s method to handle the non-
linearity in the resulting equations. To solve the linear system efficiently,
we shall use the framework of CEM-GMsFEM by constructing multiscale
basis functions on a suitable coarse-grid approximation. These basis func-
tions are given by solving a class of local energy minimization problems
over the eigenspaces that contain local information on heterogeneity. In
addition, oversampling techniques provide exponential decay outside the
corresponding local oversampling regions. Finally, we will provide two
numerical experiments on a 3D case to show the performance of the
proposed approach.

Keywords: Constraint energy minimization · multiscale finite element
methods · compressible flow · highly heterogeneous.

1 Introduction

The phenomenon of fluid flow through heterogeneous porous materials has been
studied in fields as diverse as reservoir simulation, water storage, and groundwa-
ter contamination. These problems can be prohibitively expensive to solve when
applying traditional fine-scale direct techniques, primarily due to the strong
heterogeneity of the geological data. Historically, the scientific community has
been motivated to develop model reduction techniques. The first is the upscal-
ing method [1], where the upscaled geological properties, such as permeability
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fields, are obtained by applying specific rules and then solving the problem with
a mostly reduced model. The second is the multiscale method [8, 5, 10]; in this
case, the solution of the problem is approximated by local basis functions, which
are solutions of a class of local problems on the coarse mesh.

Among these multiscale methods, MsFEM and, in particular, its extension
GMsFEM have achieved enormous success and are used in a wide range of prac-
tical applications [9, 7]. In GMsFEM, the main idea is to use appropriately de-
signed local spectral problems to construct the multiscale basis in GMsFEM,
where multiple basis functions are allowed. Therefore, the accuracy of the mul-
tiscale solution can be tuned and controlled. In a previous work [6], significant
results were obtained in the context of GMsFEM. The use of other types of
multiscale methods for compressible flow, for instance, [9].

In this paper, we adopt the basic idea given in [3], which is a variation of
GMsFEM based on a constraint energy minimization (CEM), for single-phase
nonlinear compressible flow. This method provides a better convergence rate
proportional to the size of the coarse grid. Furthermore, the CEM-GMsFEM
uses the concepts of oversampling and localization [10] to compute multiscale
basis functions in oversampled subregions. These basis functions are given by
solving a class of local energy minimization problems over the eigenspaces that
contain local information on heterogeneity.

The outline of the article is organized as follows: in Section 2, we briefly in-
troduce the formulation of the model used in this work. Section 3 is devoted to
constructing the offline multiscale space and framework of CEM-GMsFEM. Nu-
merical experiments are presented in Section 4. Conclusions and final comments
are given in Section 5.

2 Formulation of the problem

We consider the following single-phase nonlinear compressible flow through a
porous medium:

∂t(ϕρ)−∇ ·
(

κ
µρ∇p

)
= q, in ΩT := Ω × (0, T ],

κ
µρ∇p · n = 0, on ΓN × (0, T ],

p = pD, on ΓD × (0, T ],

p = p0, on Ω × {t = 0}.

(1)

Here, ϕ is the porosity of the medium, which is assumed to be a constant in our
presentation, p is the fluid pressure we aim to seek, and µ is the constant fluid
viscosity. κ denotes the permeability field that may be highly heterogeneous. Ω
is the computational domain with boundary defined by ∂ΩT = ΓD ∪ ΓN , and n
is the outward unit-normal vector on ∂ΩT . The fluid density ρ is a function of
the fluid pressure p as

ρ(p) = ρrefe
c(p−pref ), (2)

where ρref is the given reference density and pref is the reference pressure.
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Throughout this paper, we adopt the notation L2(D) and H1(D) to indicate
the usual Sobolev spaces on subdomain D ⊂ Ω equipped with the norm ∥ · ∥0,D
and ∥ · ∥1,D respectively. If D = Ω, we omit the subscript D. In addition, we
denote V := H1(D), V0 := H1

0(D).
In the CEM-GMsFEM considered in this work, multiscale basis functions will

be constructed for the pressure p. First, we introduce the notion of the two-scale
grid. Then, we divide the computational domain Ω into some regular coarse
blocks and denote the resulting triangulation as T H . We use H to represent the
diameter of the coarse block K ∈ T H . Each coarse block will be further divided
into a connected union of conforming fine-grid blocks across coarse-grid edges.
We denote this fine-grid partition as T h, a refinement of T H by definition.
Let N c be the number of coarse nodes, {xi}N

c

i=1 the set of nodes in T H and
ωi =

⋃
{Kj ∈ T H : xi ∈ Kj} the neighborhood of the node xi. In addition, given

a coarse block Ki, we represent the oversampling region Ki,m ⊂ Ω obtained by
enlarging Ki with m coarse grid layers, see Fig. 1. Let Vh be the space of the

Fig. 1. Illustration of the coarse element Ki and oversampling domain Ki,1, the fine
grid element and neighborhood ωi of the node xi.

first-order Lagrange basis function concerning the fine-grid T h. Then, the finite
element approximation to (1) on the fine grid is to seek

(ϕ∂tρ(ph), v) +
(

κ
µρ(ph)∇ph,∇v

)
= (q, v), for each v ∈ Vh. (3)

To derive the fully discrete scheme for (3), we introduce a partition of the time
interval [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ Nt (Nt is an integer) and we
denote the time-step size by ∆n

t = tn − tn−1. Then, using the backward Euler
scheme in time, we can obtain the fully discrete scheme as follows: find pnh such
that

(ϕρ(pnh), v)− (ϕρ(pn−1
h ), v) +∆n

t

(
κ
µρ(p

n
h)∇pnh,∇v

)
= ∆n

t (q, v), (4)

for each v ∈ Vh. Newton’s method can solve the nonlinear equation (4). Specif-
ically, let {ηi}N

f

i=1 be the finite element basis functions for Vh, where Nf is the
number of fine grid nodes. We now can write pn,kh =

∑
i p

n,k
i ηi and pn−1

h =∑
i p

n−1
i ηi, k denotes the k-th Newton iteration. Then, we can recast the non-
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linear equation (4) as a residual equation system:

Fn,k
j =

(
ϕρ

(∑Nf

i=1 pn,k
i ηi

)
,ηj

)
−
(
ϕρ

(∑Nf

i=1 pn−1
i ηi

)
,ηj

)
+∆n

t

(
κ
µρ

(∑Nf

i=1 pn,k
i ηi

)∑Nf

i=1 pn,k
i ∇ηi,∇ηj

)
−∆n

t (q,ηj)=0,
(5)

for j = 1, 2, · · · , Nf . To linearize the global problem, we should compute the
partial derivatives of the residual equation concerning the unknown pn,ki , thus

Jn,k
ji :=

ϕ∂Fn,k
j

∂pn,ki

=(ϕρ(pn,k
h )ηi,ηj)+∆n

t ( κ
µρ(pn,k

h )∇ηi,∇ηj)

+∆n
t (c κ

µηiρ(p
n,k
h )

∑
i p

n,k
i ∇ηi,∇ηj),

(6)

which results in a linear system that needs to solve Jn,kδpn,k = −Fn,k, where
Jn,k := [Jn,k

ji ]N
f

i,j=1 represents the Jacobi matrix, Fn,k := [Fn,k
j ]N

f

j=1 is the residual
and pn,k+1 = pn,k + δpn,k .

3 Construction of multiscale basis function

This section is devoted to the framework of CEM-GMsFEM and introduces the
construction of multiscale spaces. We emphasize that the multiscale basis func-
tions and corresponding spaces are defined concerning the coarse grid T H . The
multiscale method consists of two stages. In the first stage, we construct the
auxiliary multiscale basis function using the framework of the generalized mul-
tiscale finite element method (GMsFEM) [5]. In the second stage, we construct
the multiscale basis function by solving some energy-minimizing problem in the
coarse oversampling region Ki,m with m ≥ 1, see [3].

We construct auxiliary multiscale basis functions by solving the spectral prob-
lem for each coarse element Ki. We make use of the space V restricted to the
coarse element Ki, i.e., V(Ki) := V

∣∣
Ki

. Then, we solve the following local eigen-

value problems: find (λ
(i)
j , φ

(i)
j ) ∈ R×V(Ki) such that

ai(φ
(i)
j , w) = λ

(i)
j si(φ

(i)
j , w), for each w ∈ V(Ki), (7)

where ai(v, w) :=
∫
Ki
κρ(p0)∇v · ∇wdx, and si(v, w) :=

∫
Ki
κ̃vwdx, in which

κ̃ = ρ(p0)κ
∑Nc

i=1 |∇χi|2, N c is the total number of neighborhoods, p0 is the
initial pressure p and {χi} are the partitions of unity function of ωi [2].

We assume that the eigenfunctions satisfy the normalized condition si(φ
(i)
j , φ

(i)
j ) =

1. The eigenvalues are ordered ascendingly, i.e., λ(i)1 ≤ λ
(i)
2 ≤ · · · . Then, we

can use the first Li eigenfunctions to construct the local auxiliary multiscale
Vaux(Ki) := span{φ(i)

j : 1 ≤ j ≤ Li}. Then, the global auxiliary space Vaux is
defined by using these local auxiliary spaces Vaux =

⊕Nc

i=1 Vaux(Ki).
The inner product and s-norm of the global auxiliary multiscale spaces are

defined respectively by s(v, w) =
∑Nc

i=1 si(v, w), ∥v∥s :=
√
s(v, v).
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To construct the CEM-GMsFEM basis functions, we use the following defi-
nition from [3].

Definition 1 (φ(i)
j -orthogonality). Given a function φ(i)

j ∈ Vaux, if a function
ψ ∈ V satisfies

s(ψ,φ
(i)
j ) = 1, s(ψ,φ

(i′)
j′ ) = 0, if j′ ̸= j or i′ ̸= i,

then, we say that is φ(i)
j -orthogonal where s(v, w) =

∑N
i=1 si(v, w).

We define the operator π : V → Vaux by π(v) =
∑N

i=1

∑Li

j=1 si(v, φ
(i)
j )φ

(i)
j , for

each v ∈ V, and the null space of the operator π is defined by Ṽ = {v ∈ V :
π(v) = 0}.

We will now construct the multiscale basis functions. For each coarse block
Ki, we define the oversampled subdomain Ki,m ⊂ Ω by enlarging Ki with an
arbitrary number of coarse grid layers m ≥ 1. Let V0(Ki,m) := H1

0(Ki,m); we
solve the following minimization problems: find multiscale basis function ψ(i)

j,ms ∈
V0(Ki,m)

ψ
(i)
j,ms = argmin{a(ψ,ψ) : ψ ∈ V0(Ki,m), ψ is φ(i)

j -orthogonal}. (8)

Then, the CEM-GMsFEM space is defined by

Vms = span{ψ(i)
j,ms : 1 ≤ j ≤ Li, 1 ≤ i ≤ N}.

The minimization problem (8) is implicit; we can redefine it into an explicit
form by using a Lagrange multiplier. Then, the problem (8) can be written as
the following problem: find ψ(i)

j,ms ∈ V0(Ki,m), λ ∈ V
(i)
aux(Ki) such that{

a(ψ
(i)
j,ms, η) + s(η, λ) = 0, for all η ∈ V(Ki,m),

s(ψ
(i)
j,ms − φ

(i)
j , ν) = 0, for all ν ∈ V

(i)
aux(Ki,m),

where V
(i)
aux(Ki,m) is the union of all local auxiliary spaces for Ki ⊂ Ki,m. Note

that one can solve the above continuous problem numerically on a fine-scale
grid. Thus, given the above space and by using the backward Euler scheme, the
full-discrete formulation reads as follows: find pms ∈ Vms such that

(ϕρ(pnms), v)− (ϕρ(pn−1
ms ), v) +∆n

t

(
κ
µρ(p

n
ms)∇pnms,∇v

)
= ∆n

t (q, v), (9)

for all v ∈ Vms. The local multiscale basis construction is motivated by the global
basis construction defined below.

4 Numerical results

In this section, we present two representative examples to confirm the perfor-
mance of the CEM-GMsFEM. We use the backward Euler scheme for the time
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discretization and Newton’s method for the nonlinear equation. All computa-
tions are performed by using the software MatLab. Firstly, we consider two high-
contrast permeability fields for each experiment. Long channels and inclusions
form these fields, the blank regions have values of 105 millidarcys, while other
regions have values of 109 millidarcys (see, for instance, Fig. 2). In all numer-
ical tests, we let viscosity µ = 5cP, porosity ϕ = 500, fluid compressibility
c = 1.0×10−81/Pa, the reference pressure pref = 2.00×107Pa, and the reference
density ρref = 850kg/m3.

We consider the first experiment a full zero Neumann boundary condition,
with an initial pressure field p0 with value 2.16× 107Pa. Four vertical injectors
are placed in the corners, and one sink is in the middle of the domain to drive
the flow. We set the fine grid resolution of 643, with fine grid size of h = 20m,
the coarse grid resolution of 83, with H = 8h. The parameter ∆n

t is 7 days, and
T = 20∆n

t (= 140 days) is the total simulation time. For the CEM-GMsFEM,
we use 4 basis function and 4 oversampling layers. It is clear that the number of
bases efficiently improves the accuracy of the CEM-GMsFEM [3]; in this case,
the relative L2 error is 1.7396E-03 and H1 error is 3.8180E-01. The dimension
of the coarse system is 4916 (= 729 × number of basis functions); note that the
dimension of the fine-scale system is 274625. We compare the pressure profiles
with singular source and zero Neumann boundary conditions in Fig. 2.

Fig. 2. Experiment with full-zero Neumann boundary condition. High-contrast perme-
ability field (left), fine-scale reference solution (middle), and CEM-GMsFEM solution
(right) with 4 basis function and 4 oversampling layers at T = 20∆n

t .

In the second experiment, we consider a zero Neumann boundary condition
and nonzero Dirichlet boundary condition [11]. We impose zero Neumann con-
dition on boundaries of planes xy and xz and let p = 2.16 × 107Pa in the first
yz plane and p = 2.00 × 107Pa in the last yz plane for all time instants, no
additional source is imposed. The pressure difference will drive the flow, and the
initial field p0 linearly decreases along the x axis and is fixed in the yz plane.
Table 1 shows that numerical results use 4 basis functions on each coarse block
with different coarse grid sizes (H = 4h, 8h and 16h). In Table 1, ε0 and ε1
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denote the relative L2 and energy error estimate between the reference solution
and CEM-GMsFEM solution.

In Fig. 3, we depict the numerical solution profiles with a fine grid resolution
of 323 and coarse grid resolution of 83 at T = 140 day, which have a good
agreement. For this case, by using 4 basis functions and the coarse grid size
H = 8h, the CEM-GMsFEM uses 4 oversampling layers, and the relative error
ε0 = 2.8514E-04, while ε1 = 3.8213E-01.

Table 1. Numerical result with different numbers of oversampling layers (m) for the
second experiment with full zero Neumann and nonzero Dirichlet boundary condition.

Number basis H Number oversampling layers m ε0 ε1
4 4h 3 2.3493E-03 5.6700E-01
4 8h 4 2.8514E-04 3.8213E-01
4 16h 5 1.3302E-04 1.6102E-01

Fig. 3. Experiment with combined boundary condition. High-contrast permeability
field (left), fine-scale reference solution (middle), and CEM-GMsFEM solution (right)
with 4 basis function and 4 number of oversampling layers at T = 20∆n

t .

5 Conclusions and future directions

We have presented CEM-GMsFEM for solving the highly heterogeneous nonlin-
ear single-phase compressible flow in this work. For CEM-GMsFEM, the first
step is constructing the additional space by solving spectral problems. The sec-
ond step is based on constraint energy minimization and oversampling. So, we
construct multiscale basis functions for pressure. Two representative 3D exam-
ples have been presented to verify the efficiency and accuracy of the proposed
method. The convergence depends on the coarse mesh size and the decay of
eigenvalues of local spectral problems. In addition, the CEM-GMsFEM is shown
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to have a second-order convergence rate in the L2-norm and a first-order con-
vergence rate in the energy norm concerning the coarse grid size.

In some applications, a future challenge remains to boost the performance of
the coarse-grid simulation, especially when the source term is singular; one may
need to further improve the accuracy of the approximation without additional
mesh refinement. In these cases, one needs to enrich the multiscale space by
adding more basis functions in the online stage [4]. These new basis functions
are based on the oversampling technique and the information on local residuals.
Moreover, an adaptive enrichment algorithm will be presented to reduce error
in some regions with large residuals.
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