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Abstract. Quantum decision making is an emerging field that explores how 

quantum computing can be used to make decisions more efficiently and effec-

tively than classical computing. The main advantage of quantum decision mak-

ing is the ability to explore multiple possible solutions to a problem simultane-

ously, using the principles of superposition and entanglement. A quantum-

inspired genetic algorithm can improve a quality of a multi-criteria supervised 

learning of deep classification models. Designed classifiers can be trained by 

a quantum simulator with Hadamard, CNOT and rotation gates. To demonstrate 

advantages of the new algorithm, we analyze the Pareto-optimal classifiers for 

an efficient diagnosis of SARS-CoV-2 infection based on remote analysis of X-

rays images with the quantum computing platform QI. 
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1 Introduction 

The power of quantum computing comes from its ability to perform many computa-

tions in parallel. Quantum genetic algorithms leverage this capability by representing 

the search space in a quantum superposition of states, which allows for exploration of 

multiple potential solutions at once. These properties make quantum genetic algo-

rithms a promising area of research for solving complex optimization problems, such 

as those encountered in machine learning. For the above reasons, we propose 

a quantum-inspired genetic algorithm to train deep neural networks for diagnosis of 

Covid-19 cases using chest radiography X-rays images. Obtained results of numerical 

experiments with the quantum simulator QuTech confirmed the great potential of 

quantum algorithms [24]. 

To order many important issues in this paper, related work is described in Section 

II. Then, the issues related to using deep learning in SARS-CoV-2 are characterized in 

Section III. Next, Section IV presents some studies under quantum encoding and an 

evolution device for evolutionary algorithms. Finally, some experimental results are 

presented in Section V.  
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2 Related Work 

Richard Feynman introduced hypothesis that a classical computer is not able to simu-

late physical phenomena such as the quantum computer [11]. Moreover, Benioff con-

firmed that a quantum computer could meet the principles of a Turing machine [7]. It 

was also shown that a universal quantum computer could perform tasks impossible to 

solve by a universal Turing machine [10]. Quantum calculations are based on quan-

tum gates, where qubits in the quantum register are initialized in the |0⟩ state due to 

the z-basis. There are several quantum algorithms such as Shor's algorithm for factor-

ing large integers [21]. Quantum Monte Carlo, quantum phase estimation, and HHL 

algorithm have potential applications in machine learning [1]. Grover's algorithm 

searches an unsorted database in time complexity 𝑂(√𝑛), while the best-known clas-

sical algorithm needs O(n) operations [12].  

However, constructing a quantum processor is a challenge because of requirements 

that are in conflict: state preparation, long coherence times, universal gate operations 

and qubit readout. Processors based on a few qubits have been demonstrated using 

several technologies such as nuclear magnetic resonance, cold ion trap and optical 

systems [18]. A calculation operation is required to be completed much more quickly 

than the decoherence time [4]. 

The undoubted development of quantum computers goes hand in hand with the in-

tensive development of artificial intelligence. One of the most interesting ideas con-

cerns the implementation of quantum-inspired genetic algorithms [13]. In a quantum-

inspired evolutionary algorithm (QEA), a quantum register is defined by a string of 

qubits [14]. We believe the quantum register ensures a higher population diversity 

than other known representations. Besides, the evolution quantum operator imple-

mented by the quantum gate replaces the selection and mutation operators [20]. Solu-

tions are represented probabilistically because the quantum register represents the 

linear superposition of all possible states. The QEA has been developed for the com-

binatorial optimization problems such as face verification, the knapsack problem and 

the Travelling Salesman Problem [6, 26]. Besides, the QMEA found solutions close to 

the Pareto-optimal front for multi-objective 0/1 knapsack problems [16].  

Recently, a framework of genetic algorithm-based CNN has been proposed on 

multi-access edge computing for automated detection of COVID-19 [15]. In this con-

text, we constructed an adaptive multi-objective quantum-based genetic algorithm 

(MQGA) for supervised training of deep learning models based on Convolutional 

Neural Networks. The MQGA works with a quantum register that provides a popula-

tion of chromosomes that represents hyperparameters of CNNs. In this approach, 

some strategies for adaptive parameters of the algorithm can be developed, too. The 

MQGA improves proximity to the Pareto-optimal front and preserving diversity by 

employing advantages of quantum-inspired gates.  

Quantum computing can be simulated in computing clouds, too. IBM offers Quan-

tum Computing as a Service, QCaaS [7]. Alibaba and CAS provide public quantum 

computing services, too [2]. D-Wave launched Leap, the real-time quantum applica-

tion environment. Rigetti Computing delivers public Quantum Cloud Services, QCS, 

where quantum processors are integrated with classical computing infrastructure and 
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made available to user over the cloud [21]. Moreover, Amazon Quantum Solutions 

Lab allows developers to work with experts in quantum computing, machine learning, 

and high-performance computing [3]. Azure Quantum enables an access for diverse 

quantum software, hardware, and solutions from Microsoft and our partners [19]. 

3 Dataset with X-ray image collection 

The COVID-19 pandemic is still having a devastating impact not only on health and 

the economy, but also on people's sense of security, well-being and satisfaction. The 

dataset called COVID-19 Image Data Collection is a publicly available dataset for 

diagnosis using deep learning algorithms. It consists of chest X-ray and CT scan im-

ages (https://github.com/ ieee8023/covid-chestxray-dataset). The dataset COVIDx is 

available at (https://github.com/lindawangg/COVID-Net). The set RSNA COVID-19 

Detection Challenge is provided by the Radiological Society of North America 

(https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data). Besides, the 

SIRM COVID-19 CT Dataset consists of CT scan images  collected by the Italian 

Society of Medical and Interventional Radiology available at https://www.sirm.org/ 

en/category/articles/covid-19/. Also, the dataset COVID-CT can be used to classify  

COVID-19 patients and patients with other lung diseases by deep learning models. It 

was created by researchers from the University of San Diego and is available at 

https://github.com/UCSD-AI4H/COVID-CT. 

The COVIDx dataset is was created by researchers from Qatar University, the 

University of Dhaka, and the University of Malaysia. The dataset contains over 

13,000 chest X-ray images, including 5,445 COVID-19 positive images, as well as 

images of patients with other types of respiratory diseases and healthy individuals. It 

is available on various online platforms, including Kaggle, GitHub, and the COVID-

19 Image Data Collection website [28].  

We designed an experimental Covid-19 CXR diagnostic cloud (Covid CXR) to be 

made available for some clinicians to support the diagnosis of coronavirus 2. In the 

next stage, the Covid-19 detection application will be available for patients via the 

Internet. The advantage of this solution is the reduction of costs and a short waiting 

time for the test result (few seconds), which in turn is of key importance for improv-

ing not only the health situation, but also the economic and social situations. 

When infected patients are effectively screened, they can receive immediate treat-

ment and care, and be isolated to reduce the spread of the virus. It is worth mention-

ing that reverse transcriptase-polymerase chain reaction (RT-PCR) testing is currently 

being used to detect COVID-19 cases. However, RT-PCR tests are very time-

consuming, complicated, and also require the involvement of diagnosticians, who are 

few in relation to the needs. The sensitivity of RT-PCR tests varies depending on the 

manufacturer and the batch, and the studies show relatively low precision. Some stud-

ies even suggest that radiographic data analysis could be used as a primary screening 

tool for COVID-19. In particular, most positive cases show bilateral abnormalities in 

the CXR images, including lack of transparency and interstitial abnormalities. An 

initial diagnosis can also be made using the mobile application [28].  
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4 Multi-objective quantum deep learning 

A multi-objective quantum-inspired genetic algorithm MQGA operates on the quan-

tum register that represents hyperparameters of CNNs. It is made up of several layers 

that perform different operations on the input chest X-ray images. The basic structure 

consists of three types of layers. A convolutional layer applies a set of learnable filters 

to extract relevant features from the input image. The filters are small, square-shaped 

matrices that slide over the image in a specific pattern, performing a convolution op-

eration at each position. The convolutional layer provides a set of feature maps that 

highlight the most important features of the input image. The pooling layer reduces 

the spatial dimensions of the entered feature maps. The most common type of pooling 

is max pooling, which takes the maximum value of each non-overlapping subregion 

of the feature map.  

The fully connected layer classifies the chest X-ray image based on the pooling 

layer. It takes the flattened output of the previous layers and applies a set of weights 

to produce a final output vector. A sequence of these three layers are repeated L times. 

The final output layer is softmax layer that produces a set of probabilities of the chest 

X-ray image belonging to two of the possible classes. The class with the highest pre-

dicted probability is then assigned as the final output. 

Training adjusts the filter weights so that the CNN can learn to recognize important 

features. This is done using a form of gradient descent optimization algorithm, such as 

stochastic gradient descent (SGD) or ADAM with the learning rate to control the 

updates of weights during training. We need to know the number L of weave layers 

with parameters related to the number of neurons in three dimensions. The size of the 

input image determines the size of the feature maps and there are both L filters and 

feature maps generated in the convolutional layers. Besides, the given size of the fil-

ters determines the size of the receptive field and the features that are extracted. We 

tune the stride level S (in %) that determines the amount of shift of the filter. 

The padding value PV (in %) determines extra rows and columns of pixels to the 

input image to preserve the spatial dimensions of the output feature maps. We consid-

er the most widely used activation function ReLU Besides, a sigmoid activation func-

tion and a tanh activation function (Hyperbolic Tangent) are used. Their limitations 

for gradient based algorithms, such as vanishing gradients, can be easily omitted by 

MQGA. Moreover, softmax is used to produce a probability distribution over two 

classes, with the sum of all probabilities equal to 1. Another hyperparameter of the 

CNN is the number of hidden layers in the network that affects the complexity of the 

learned features. The batch size BS determines the number of samples used in each 

iteration.  

A qubit can exist in more than one state (a superposition) at the same moment in 

time and can be represented by the Bloch sphere. The qubit can be modeled as a two-

layer quantum bit from the Hilbert space H2 with the base  𝐵 = {|0⟩, |1⟩}. The qubit 

may be in the “1” binary state, in the “0” state, or in any superposition of them [17]. 

The state xm of the mth qubit in the Q-chromosome can be written, as follows [5]: 

𝑄𝑚 = 𝛼𝑚|0⟩ ⊕ 𝛽𝑚|1⟩,                                               (1)  
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where  
αm and βm – the complex numbers that specify the amplitudes of the states 0 and 1, 
respectively; 
⊕ – a superposition operation; 
m – the index of the gene in the chromosome, 𝑚 = 1, 𝑀̅̅ ̅̅ ̅̅ . 

The value  |𝛼𝑚|2 is the probability that we observe the state “0”. Similarly, |𝛽𝑚|2 

is the probability that state “1” is measured. The qubit is characterized by the pair (αm, 

βm) with the constraint, as below [21]: 

|𝛼𝑚|2 + |𝛽𝑚|2 = 1.                                                  (2) 

Dirac notation is often used to select a basis. The basis for a qubit (two dimen-

sions) is |0⟩ = (1,0) and |1⟩= (0,1). The most commonly used representation of 

a chromosome in a genetic algorithm is the matrix, as follows [22]: 

𝑄 = [
|𝛼1| … |𝛼𝑚| … |𝛼𝑀|

|𝛽1| … |𝛽𝑚| … |𝛽𝑀|
]                                   (3) 

However, the state 𝑄𝑚 = 𝛼𝑚|0⟩ ⊕ 𝛽𝑚|1⟩  of the mth qubit can be represented as 

the point on the 3D Bloch sphere (Fig. 1), as follows [23]: 

|𝑄𝑚⟩ =  cos
𝜃𝑚

2
 |0⟩ + 𝑒𝑖𝜙𝑚 sin

𝜃𝑚

2
  |1⟩,    𝑚 = 1, 𝑀̅̅ ̅̅ ̅̅                    (4) 

where  0 ≤  𝜃𝑚 ≤ π  and  0 ≤  𝜙𝑚 ≤ 2π. 

Two angles 𝜃𝑚 and 𝜙𝑚 determines the localization of mth qubit on the Bloch 

sphere. In addition to the representation of (3), we can therefore distinguish the fol-

lowing other models of the chromosome [27]: 

𝑄𝑠𝑖𝑔𝑛 = [
|𝛼1| … |𝛼𝑚| … |𝛼𝑀|

𝑠𝑖𝑔𝑛(𝑟1) … 𝑠𝑖𝑔𝑛(𝑟𝑚) … 𝑠𝑖𝑔𝑛(𝑟𝑀)
]                    (5) 

where 𝑟𝑚 – the random number from the interval [-1; 1], and also it is, as below [29]: 

𝑄𝑣𝑒𝑐𝑡𝑜𝑟 = [|𝛼1|, … ,  |𝛼𝑚|, … , |𝛼𝑀|]                                    (6) 

𝑄𝑎𝑛𝑔𝑙𝑒 = [
𝜃1 … 𝜃𝑚 … 𝜃𝑀

𝜙1 … 𝜙𝑚 … 𝜙𝑀
]                                   (7) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The set of Bloch spheres for the quantum register Q. 
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There are two important criteria for deep learning. The first one is an accuracy and 

the second criterion is F1-score. We determine non-dominated solutions from the 

current population and copy them to the archive after verification. Figure 2 shows the 

initialization Q(t) by Hadamard gates and rotation gates. Then, digital population P(t) 

is created by observation the states of Q(t).  
 
 
 
 
 
 
 
 
 
 
  
 
 

Fig. 2. A diagram of the quantum evolution circuit at Quantum Inspire platform. 

Figure 3 shows a histogram after updating the register Q(t) using the rotation gates 

Rx, Ry, Rz refer to best group. Digital algorithms for calculation this probability dis-

tribution is exponentially more difficult as the number of qubits (width) and number 

of gate cycles (depth) raise [24]. 

 

Fig. 3. Histogram after updating the population Q(t). 

5. Numerical experiments 

We consider an instance of the multi-objective seep learning instance for the dataset 

COVIDx with 13,975 CXR images across 13,870 patient cases. Table 1 shows char-

acteristics for three CNNs. By comparison three models, we can recommend QCNN 

regarding its dominance regarding accuracy and F1-score.  

Table 1. Comparison of Convolutional Neural Networks. 

 QCNN RESNET SENET 

Value # Value # Value # 

Accuracy 0.982 1 0.952 3 0.951 2 

F1-score 0.984 1 0.949 2 0.948 3 
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Concluding remarks 

We presented QCNN trained by a quantum-inspired multi-objective evolutionary 

algorithm in an attempt to gain deeper insights into critical factors associated with 

COVID-19 cases, which can aid clinicians in improved screening. Development of 

Pareto-optimal deep learning solutions for detecting COVID-19 cases from CXR 

images can predict hospitalization duration which would be useful for triaging, patient 

population management, and individualized care planning. 

We also introduces a new machine learning paradigm based on quantum comput-

ers. Our futures work will be focused on developing this approach to the other Covid 

datasets. Besides, the other artificial neural networks will be tested.   
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