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Abstract. Unitary designs are essential tools in several quantum
information protocols. Similarly to other design concepts, unitary designs
are mainly used to facilitate averaging over a relevant space, in this case,
the unitary group U(d). The most appealing case is when the elements of
the design form a group, which in turn is called a unitary group design.
However, the application of group designs as a tool is limited by the fact
that there is no trivial construction method to get even a group 2-design
for arbitrary dimensions. In this paper, we present novel construction
methods, based on the representation theory of the unitary group and
its subgroups, that allow the building of higher-order unitary designs
from group designs.

Keywords: Quantum information theory · Unitary t-designs · Repre-
sentation theory

1 Introduction

Ever since their introduction, unitary t-designs have played a ubiquitous role in
quantum information science. These finite sets of d-degree unitary operators have
the property that averaging an operator over the t-fold tensor products of them
equals the same type of averaging over the entire unitary group U(d) with respect
to the Haar measure. Unitary designs were proved to be useful in particular for
the construction of unitary codes [13], the realization of quantum information
protocols [6], the derandomization of probabilistic constructions [9], the study
of SIC-POVMs [5], the detection of entanglement [2], process tomography [14],
randomized benchmarking [17] and for shadow estimation [1,11].
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The most well-known example of a unitary t-design is that of the multi-partite
Clifford group which forms a unitary 3-design for qubit systems and a unitary
2-design for qudit systems when the local dimension d is an odd prime [19,18,12].
It is a well-established fact, that t-designs for U(d) always exist for any t and
d [15], but the actual construction of these designs is usually a mathematically
challenging task. Evidently, this limits their use in concrete applications.

One of the most elegant ways of constructing them goes through representa-
tion theory. From unitary irreducible representations of finite groups, one can get
a unitary 1-design, and with additional extra properties, the represented group
elements can form a unitary 2-design or even a unitary 3-design. However, it has
been shown that a representation of a finite group cannot be a unitary t-design
for arbitrary t ≥ 4 and d > 2 [10,3]. Moreover, there is no generic construction
to find these so-called group 2- and 3-designs for an arbitrary dimension d.

In this paper, a generalization of the aforementioned group design construc-
tion is presented which provides methods to construct unitary 2- and possibly
higher designs. Concrete examples are also provided in most cases.

The structure of the paper is as follows: Section 2 contains some basic
definitions and statements regarding t-designs; in Section 3 a construction
of t-designs from finite unitary subgroups is provided for t = 2 and 3 and
some examples for the construction is presented; Section 4 presents a different
construction with which a unitary design can be created from an orthogonal or
unitary symplectic design and some examples.

2 Background and Notation

Several different definitions for unitary designs and group designs can be found
in the literature [15,4,7]. The following section introduces the ones used in this
paper. Most importantly, this paper only considers exact designs.

Definition 1 (t-design of a group). Let G ⊆ U(d) be a compact matrix
Lie group. A finite set V ⊆ G with weight function w : V → [0, 1] is called a
weighted t-design of the group G if the following equation holds for any linear
transformation M on (Cd)⊗t:∑

V ∈V
w(V )V ⊗tM

(
V ⊗t)† = ∫

g∈G

g⊗tM
(
g⊗t
)†

dg. (1)

where the integral on the right-hand side is taken over all elements in G with
respect to the Haar measure. The number t is called the order of the design.

Remark 1. In this definition and in the rest of the paper G can be naturally
identified with its defining representation. Therefore, g⊗t = Π(g)⊗t, where Π is
the defining representation of G.

Definition 2 (Unitary t-design). A t-design V (with weight function w) of a
group G is called a weighted unitary t-design if G = U(d). If V forms a group,
then it is called a unitary t-group or group t-design.
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Remark 2. The weight function of a t-design V is the constant function w ≡
1/ |V| unless otherwise stated.

An alternative characterization of unitary designs can be given through the
representation theory of U(d). Considering the t-fold tensor product of the
defining representation of U(d), the underlying vector space (Cd)⊗t splits up
into the different irreducible sectors of U(d) labelled by Young diagrams

(Cd)⊗t ∼=
⊕
γ∈Γ

Kγ ⊗Hγ , (2)

where Γ is the set of Young diagrams containing at most d rows and t number of
boxes, Hγ carries the U(d) irrep labelled by the Young diagram γ and Kγ is the
multiplicity space (where U(d) acts trivially). Let us denote by Pγ = PK

γ ⊗ PH
γ

the projections corresponding to the Vγ = Kγ ⊗Hγ subspaces.

Proposition 1. A finite set V ⊂ U(d) forms a unitary t-design if and only if
the following equation is true for all linear transformations M on (Cd)⊗t:

∑
V ∈V

w (V )V ⊗tM
(
V ⊗t)† = ∑

γ∈Γ

TrHγ (PγMPγ)⊗ PH
γ

Tr(Pγ)
, (3)

where we used the notation as before, and TrHγ is the partial trace over Hγ of
operators supported on the subspace Kγ ⊗Hγ .

This proposition can be proven using Schur’s lemma, since the left hand side
of Eq. (3) commutes with all U⊗t (this follows from Eq. (1)). Schur’s lemma
can be invoked after decomposing the tensor product of representations into
irreps. If an irrep’s multiplicity is one, the resulting intertwining map is simply
a constant multiple of the projection to the support, the constant being given
by the appropriate proportion of the M operator’s trace. If the irrep has higher
multiplicity the resulting multiplicity is as indicated on the right hand side of
Eq. (3):

A particular set of exact t-designs (for low t) can be constructed using finite
groups [8].

Proposition 2. Let G be a compact matrix Lie group and V < G a finite
subgroup. V is a group t-design if and only if the irreducible subspaces of the
defining representation of G at the t-fold tensor product are equivalent to the
irreducible subspaces of the representations’ restrictions to the subgroup V.

3 Constructing Higher Order Designs from Lower Ones

In this section, we want to show a construction method that creates higher-
order designs from lower-order ones. The main idea is based on examining the
behaviours of representations of finite groups on the relevant invariant subspaces
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of the t-fold tensor product of the defining representation of the unitary group
U(d).

The defining representation of U(d) is the most straightforward one, denoted
by Π and given by

Π (U) = U, U ∈ U(d). (4)

One can easily verify that this representation is irreducible. In contrast, the t-fold

tensor product of this representation Π⊗t acting on
(
Cd
)⊗t

is reducible for t ≥ 2.
The irreducible decomposition of the t-fold tensor product can be described
through Young diagrams and the Schur-Weyl duality. For this paper, one only
needs to consider the 2- and 3-fold tensor products of Π , which decompose
using the Schur-Weyl duality as

Π⊗2 ∼= Π ⊕Π , (5)

Π⊗3 ∼= Π ⊕Π⊕2 ⊕Π , (6)

where the irreducible representations are labelled by their Young diagrams.
Evidently Eq. (5) holds for d > 1 and Eq. (6) for d > 2. It is known from
basic representation theory that the irreducible representations Π and Π are

supported on the symmetric and antisymmetric subspaces, respectively, and will
be referred to as such in the following.

3.1 Constructing 2-designs

A unitary 2-design can be constructed from a unitary representation of a finite
group if the irreducible subspaces of the 2-fold tensor product are equivalent
to the irreducible subspaces of the 2-fold tensor product of the unitary group
according to Proposition 2. In general, the decomposition may not be preserved
after restricting to a finite subgroup, but there may exist certain subgroups,
for which the decomposition is preserved on some irreducible subspace(s).
The current section investigates the possibility of creating 2-designs from such
subgroups. This can be done by the construction method stated by the following
theorem:

Theorem 1. Let d > 1 and H,K < U(d) be finite subgroups with Π |K and
Π |H being irreducible representations, then the sets of unitaries HK = {hk :

h ∈ H, k ∈ K} and KH = {kh : k ∈ K,h ∈ H} both form a weighted unitary
2-design with weights

wHK(U) = wKH(U†) =
|{(h, k) ∈ H ×K : hk = U}|

|H| |K|
. (7)

Proof. According to Proposition 3 found in the Appendix, if the statement is
true for HK, the same statement is automatically true for KH as well, therefore
only proof for HK is needed.
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Let M be an arbitrary matrix of dimension d2 × d2. Consider the averaging
over the elements of HK, taking into account the possibly non-equal weights
given by Eq. (7):∑
V ∈HK

wHK(V )V ⊗2M(V ⊗2)† =
1

|H|
∑
h∈H

h⊗2

(
1

|K|
∑
k∈K

k⊗2M(k⊗2)†

)
(h⊗2)†.

(8)
The irrep Π |K appears with multiplicity one in the irrep decomposition of
the 2-fold tensor product representation of K by dimensional arguments. By
Proposition 1, when performing the averaging with respect to K one acquires

MK :=
1

|K|
∑
k∈K

k⊗2M(k⊗2)† = c P +N, (9)

where c = Tr(P M) and N is some operator such that N = P NP . The

averaging of MK with respect to H can be done with respect to the splitting
V ⊕ V since the off-diagonal blocks are zero. The block corresponding to V

remains the same since it commutes with any operator. On the other hand, the
block corresponding to V after the averaging becomes c P based on Schur’s

lemma since Π |H is an irreducible representation. As a result, we get

1

|H|
∑
h∈H

h⊗2MK(h⊗2)† = c P + c P , (10)

which proves the theorem by Proposition 1. ⊓⊔
Using the GAP system [16] we have found groups which have the property

as described in Theorem 1:

Example 1. A 6-dimensional unitary 2-design can be constructed from the groups
PSU(3, 3) and A7. The first group, PSU(3, 3), has a unitary irreducible repre-
sentation in 6 dimensions for which the symmetric irreducible representation on
the 2-fold tensor product of the unitary group restricted to this representation of
PSU(3, 3) remains irreducible while the antisymmetric does not. On the other
hand, the alternating group on 7 elements has a 6 dimensional unitary irre-
ducible representation that remains irreducible on the antisymmetric subspace
of the 2-fold tensor product while being reducible on the symmetric subspace.
As a result, we can construct a weighted unitary 2-design in 6 dimensions with
weights given by Eq. (7) based on Theorem 1.

Example 2. Similarly to Example 1, a 4-dimensional unitary 2-design can
be constructed from two groups found in the SmallGroup library of GAP.
The group K which is obtained from the 6-th irreducible representation of
SmallGroup(640,21454) and the group H which is obtained from the 2-
nd irreducible representation of SmallGroup(120,34) behave as described in
Theorem 1. This means that the representation Π⊗2 restricted to group K
remains irreducible on the symmetric subspace and restricted to group H
remains irreducible on the antisymmetric subspace (however, they are reducible
on their respective complement).
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3.2 Possible Construction of Higher Designs

As in the previous construction described in Section 3.1 for the t = 2 case, a
similar method is expected to work for t = 3 or higher-order designs. However, for
t ≥ 3, the irreducible decomposition of the t-fold tensor product ofΠ contains at
least a subspace with multiplicity 2 or higher, which results in different behaviour
when averaging over the unitary group, as described in Proposition 1. Luckily,
the following theorem asserts that the previous construction generalizes:

Theorem 2. Let d > 2 such that d ̸= 4 and H,K < U(d) finite subgroups such
that for each γ = , , either Πγ |K or Πγ |H is irreducible. Then the sets of

unitaries HK = {hk : h ∈ H, k ∈ K} and KH = {kh : h ∈ H, k ∈ K} both form
a weighted unitary 3-design with weights given by

wHK(U) = wKH(U†) =
|{(h, k) ∈ H ×K : hk = U}|

|H| |K|
. (11)

Remark 3. In case of d = 4 the dimensions ofΠ andΠ are equal which would

result in a different condition for this Theorem which will not be discussed here.

Proof. According to Proposition 3 found in the Appendix, if the statement is
true for HK, the same statement is automatically true for KH as well, therefore
only proof for HK is needed.

Let M be an arbitrary matrix of dimension d3 × d3. One can write

∑
V ∈HK

wHK(V )V ⊗3M
(
V †)⊗3

=
1

|H|
∑
h∈H

h⊗3

(
1

|K|
∑
k∈K

k⊗3M
(
k†
)⊗3

)(
h†
)⊗3

,

(12)

where the appearance of wHK follows from the fact that some elements in the
product of groupsH andK may coincide. For brevity the following is introduced:

MK :=
1

|K|
∑
k∈K

k⊗3M
(
k†
)⊗3

, (13)

MHK :=
1

|H|
∑
h∈H

h⊗3MK
(
h†
)⊗3

. (14)

To prove the theorem, we need to show that MHK takes the form of the
RHS in Eq. (3) from Proposition 1. This could be demonstrated by describing

all the block elements ofMHK given by the projections corresponding to Eq. (6).
Firstly, we investigate the block in the decomposition corresponding to the
subspace V . If the representation Π |K remains irreducible on the subspace
V , one can write

1

|K|
∑
k∈K

k⊗3P MP (k†)⊗3 = Tr(P M)P . (15)
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Consequently, the matrix MK on the subspace V acts as an identity matrix,
therefore taking the average over H has no effect here. Moreover, if the
representation Π |H remains irreducible then the average of P MKP over
H diagonalizes the matrix. As a consequence, by taking the average over HK
with weights wHK , the resulting transformation on the subspace V acts as a
unitary 3-design. The case of block P MP is analogous to the case V .

According to the statement, d ̸= 4, hence dim (Vγ) ̸= dim (Vγ′) for γ ̸= γ′.
Consider a block described by PγMPγ′ where γ ̸= γ′. Let dim (Vγ) < dim (Vγ′),
without loss of generality. By assumption, the representation restricted to either
group H or K remains irreducible on Vγ′ . By taking the average by H or K, the
considered block may become zero, since it could only be an intertwiner between
two different dimensional irreducible subspaces. After taking the average by both
H and K consecutively, every off-diagonal block must vanish.

If the representation Π |K remains irreducible, then after averaging over K

the matrix P MP is by Proposition 2 and Proposition 1:

P MKP =
1

Tr(P )
TrH(P MP )⊗ PH. (16)

Since for all h ∈ H the h⊗3 is block diagonal on the subspace corresponding to
V , the matrix in Eq. (16) commutes with it.

If the representation Π |H remains irreducible, then the same happens to

the matrixMK , and due to the cyclic property of the partial trace if tracing out
over H it gives the same as partial trace for the matrix M :

TrH
(
P MP

)
= TrH

(
P MKP

)
. (17)

Consequently, all blocks are the same as in Proposition 1. ⊓⊔

Example 3. Using the GAP system it can be shown that a 10-dimensional
unitary 3-design can be constructed from two groups using Theorem 2. Let H be
the 3-rd irreducible representation of the group "(3xU5(2)).2" and K the 36-th
irreducible representation of the group "2x2.M22". Then H⊗3| is irreducible
and K⊗3| and K⊗3| are irreducible. Therefore the set of unitaries given by the

product HK with weights given by Eq. (11) produces a 10-dimensional 3-design
by Theorem 2.

4 Unitary 2-designs from Orthogonal and Symplectic
2-designs

In the previous section, we provided methods to build unitary designs from
the irreducible representations of two finite unitary subgroups. Let us turn our
attention to the scenario where one fixes a 2-design V of a subgroup G of the
unitary group. This is then transformed resulting in a set of unitary matrices
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also exhibiting design properties. Using this construction, unitary designs can
be obtained from these two sets. In particular, the orthogonal and the unitary
symplectic group (also called compact symplectic group) will be considered for
G. Note that using Definition 1, orthogonal and unitary symplectic t-designs are
just t-designs of the groups G = O(d) and G = USp(d), respectively.

Theorem 3. Let V ⊂ O(d) form an orthogonal 2-design, and consider the set
Wα :=WαVW †

α, where Wα is the unitary describing the basis transformation in
Eq. (18), then the set of unitaries Wα · V forms a unitary 2-design.

Proof. Let {|j⟩}d−1
j=0 be the basis of Cd with respect to which the representation

of the orthogonal group is considered as real matrices. This leads to a basis
on the tensor square (Cd)⊗2 defined by the tensor power of the elements:

{|j⟩ ⊗ |k⟩}d−1
j,k=0. Let Wα be the operation on the basis elements defined by

Wα |j⟩ = (τα)
j |j⟩ , (18)

where τα = e
2πiα
2d .

Let Φ denote the defining representation of the orthogonal group with re-
spect to the basis {|j⟩}d−1

j=0 . This can be embedded into the defining representa-

tion of the unitary group. The irreducible decomposition of Φ⊗2 is the following:

Φ⊗2 ∼= Φ|ψ⟩ ⊕ Φc|ψ⟩ ⊕ Φ , (19)

where Φ|ψ⟩ is a 1-dimensional representation acting on the subspace spanned by

|ψ⟩ = 1√
d

∑d−1
j=0 |j⟩ ⊗ |j⟩ , Φ|ψ⟩ ⊕ Φc|ψ⟩ and Φ act on the symmetric subspace V

and on the anti-symmetric subspace V , respectively, where the indices are used

as in Eq. (5). The projections to these subspaces are P|ψ⟩ = |ψ⟩ ⟨ψ| , P − P|ψ⟩
and P , respectively.

Let us now examine the set Wα = WαVW †
α. This also forms an orthogonal

2-design, however in this case for the representation Φ′ which is unitarily
equivalent to Φ but the matrices are considered real with respect to the
basis {|Wαj⟩}d−1

j=0 . This means that in the irrep decomposition of the two-
fold tensor product, the distinguished one-dimensional subspace is spanned by
|ψ′⟩ = 1√

d

∑d−1
j=0 |Wαj⟩ ⊗ |Wαj⟩.

One can take the scalar product f(α) := |⟨ψ,Wα ⊗Wαψ⟩|2. This gives
f(0) = 1 and f(1) = 0 and, by the continuity of the scalar product, for arbitrary
q ∈ [0, 1] there is an α ∈ [0, 1] which gives f(α) = q. This is used later to
define the value of α for a given d. The main idea of this proof is, using the fact
that when V and Wα form an orthogonal 2-design, that the value of α can be
determined in a way that the product WαV also forms a unitary 2-design.
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Let M be an arbitrary complex matrix of dimension d2 × d2. According to
Proposition 1, averaging with V results in

M :=
∑
v∈V

(v ⊗ v)M(v ⊗ v)†

=
Tr
(
P|ψ⟩M

)
Tr(P|ψ⟩)

P|ψ⟩ +
Tr
(
P M − P|ψ⟩M

)
Tr
(
P − P|ψ⟩

) (
P − P|ψ⟩

)
+

Tr
(
P M

)
Tr(P )

P .

(20)

Moreover, averaging M with Wα one acquires

M :=
∑
w∈Wα

(w ⊗ w)M(w ⊗ w)†

=
Tr
(
P|ψ′⟩M

)
Tr(P|ψ′⟩)

P|ψ′⟩ +
Tr
(
P M − P|ψ′⟩M

)
Tr(P − P|ψ′⟩)

(
P − P|ψ′⟩

)
+

+
Tr
(
P M

)
Tr(P )

P . (21)

On the antisymmetric subspace, the averaging acts like a unitary design since

Tr
(
P M

)
= Tr(P M) = Tr(P M). However, for it to act like a unitary design

on the symmetric subspace, it is required that all diagonal elements are equal to
each other. This means that in the remaining part of the proof it is enough to
consider only the symmetric subspace so as to get this desired property.

Let the action of M on the unitary symmetric subspace be D := M |V =
a · P + b · P|ψ⟩ for some a, b ∈ C. By averaging it with Wα this expression gets
modified to

Tr(P|ψ′⟩D)

Tr(P|ψ′⟩)
P|ψ′⟩ +

Tr
((
P − P|ψ′⟩

)
D
)

Tr
(
P − P|ψ′⟩

) (
P − P|ψ′⟩

)
. (22)

One can calculate the coefficient of the first term of Eq. (22) by

Tr(P|ψ′⟩D) = Tr(P|ψ′⟩aP + P|ψ′⟩bP|ψ⟩) = a+ bq. (23)

Analogously, the coefficient of the second term is

Tr
((
P − P|ψ′⟩

)
D
)
=

(
d(d+ 1)

2
− 1

)
a+ (1− q)b. (24)

The two coefficients in equation (22) need to be equal for WαV to form a
unitary 2-design. Therefore the following condition needs to be met:(

d(d+ 1)

2
− 1

)
(a+ bq) =

(
d(d+ 1)

2
− 1

)
a+ (1− q)b, (25)
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which simplifies to

q =
2

d(d+ 1)
. (26)

This can be achieved independently from the a and b values. ⊓⊔

Using the GAP system [16] we have found groups which have the property
as described in Theorem 3:

Example 4. The group PSU(3,3) has a 7-dimensional irreducible representation
(PSU(3,3)[3] in GAP where the index denotes the third irrep) with which a
7-dimensional 2-design can be constructed using Theorem 3.

For constructing unitary 2-designs from symplectic 2-designs a similar
theorem can be formulated:

Theorem 4. Let V ⊂ USp(d) form a unitary symplectic 2-design, and consider
the set Wα = WαVW †

α, where Wα is a unitary describing the basis transforma-
tion in Eq. (27), then the set of unitaries Wα · V forms a unitary 2-design.

Proof. The proof is similar to the proof of Theorem 3 with the 1-dimensional
subspace determined by |ψ⟩ =

∑d−1
j=0 |j⟩ ⊗ |j + d⟩ − |j + d⟩ ⊗ |j⟩. The operator

corresponding to the basis transformation is defined as

Wα |j⟩ = τ j |j⟩
Wα |j + d⟩ = τ j |j + d⟩ (27)

for each j = 0, . . . , d− 1 and τα = e
2πiα
2d . ⊓⊔

Using the GAP system [16] we have found groups which have the property
as described in Theorem 4:

Example 5. The group denoted as SmallGroup(640,21454) in GAP has 4-
dimensional irreducible representation (SmallGroup(640,21454)[6] in GAP
where the index denotes the sixth irrep) with which a 4-dimensional 2-design
can be constructed using Theorem 4.

Example 6. The group PSU(3,3) has 6-dimensional irreducible representation
(PSU(3,3)[2] in GAP) with which a 6-dimensional 2-design can be constructed
using Theorem 4.

5 Summary and Outlook

The current paper establishes a procedure for constructing a weighted t-design
using finite groups whose representation admits an easily verifiable property
and some examples are shown to use this procedure to construct 2-designs.
Furthermore, a method for constructing a unitary 2-design from an orthogonal
or a unitary symplectic 2-design is proposed with some examples to demonstrate
the working of construction. However, there are a plethora of possible research
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directions regarding group representations based on these ideas. In particular, we
plan to carry out a very thorough symbolic search through finite groups using
GAP to identify cases, and perhaps even families of cases, when our current
methods could be used successfully. We also aim to extended the basis change
trick to cases beyond orthogonal and symplectic 2-designs, considering rather
general examples of the splitting of the 2-fold tensor product representation of
finite group families. On the more ambitious side, one of the goals could be to
extend some of the results (or the ideas) in the paper to families of random
circuits, which have different splitting and convergence properties in different
irreducible subspaces of U(d). Specifically, one may intend to study random
circuits that are made of sequences of random orthogonal and random symplectic
gates, and compare them with the convergence of other gate-set families.
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Appendix A: Symmetry of Product Designs

Proposition 3. Let H,K ⊂ U(d) be finite subsets invariant to the elementwise
adjoint operation (H† = H, K† = K). If HK forms a t-design, then KH also
forms a t-design, where HK = {hk : h ∈ H, k ∈ K}.

Remark 4. H,K being finite subgroups of U(d) is a special case.

Proof. It is easy to see from the properties of the adjoint that (HK)† = KH,
where (HK)† = {(hk)† : h ∈ H, k ∈ K}. Starting from this observation, we

now provide proof that for any t-design {Vi}ni=1 it follows that {V †
i }ni=1 is also a

t-design, which then completes the proof of the theorem.
To see that the above-mentioned proposition is true, we will use the non-

degeneracy of the Hilbert-Schmidt inner product ⟨A,B⟩HS = Tr(A†B), which
implies that if Tr(AB) = Tr(CB) for all B ∈ B(Cd) then A = C. From this non-

degeneracy statement it follows that given a t-design {Vi}ni=1, the set {V †
i }ni=1

is also a t-design if and only if

Tr

(
1

n

∑
i

(V †
i )

⊗tXV ⊗t
i Y

)
= Tr

(∫
U(d)

U⊗tX(U†)⊗tdU Y

)
(28)
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holds for all X,Y ∈ B((Cd)⊗t). Using the linearity and the cyclic property of
the trace one can write

Tr

(
1

n

∑
i

(V †
i )

⊗tXV ⊗t
i Y

)
= Tr

(
1

n

∑
i

V ⊗t
i Y (V †

i )
⊗tX

)

= Tr

(∫
U(d)

U⊗tY (U†)⊗tdU X

)

= Tr

(∫
U(d)

(U†)⊗tXU⊗tdU Y

)

= Tr

(∫
U(d)

U⊗tX(U†)⊗tdU Y

)
, (29)

where the last equality follows from the invariance of the Haar measure with
respect to inversion, that is for any X ∈ B((Cd)⊗t):∫

U(d)

U⊗tX(U†)⊗tdU =

∫
U(d)

(U†)⊗tXU⊗tdU. (30)

Using this line of thought, Eq. 28 follows, which proves the theorem. ⊓⊔
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