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Abstract. With the recent availability of Noisy Intermediate-Scale Quan-
tum devices, the potential of quantum computers to impact the field of
combinatorial optimization lies in quantum variational and annealing-based
methods. This paper further compares Quantum Annealing (QA) and the
Quantum Approximate Optimization Algorithm (QAOA) in solving Higher
Order Binary Optimization (HOBO) problems. This case study considers the
hypergraph partitioning problem, which is used to generate custom HOBO
problems. Our experiments show that D-Wave systems quickly reach limits
solving dense HOBO problems. Although the QAOA demonstrates better
performance on exact simulations, noisy simulations reveal that the gate
error rate should remain under 10−5 to match D-Wave systems’ performance,
considering equal compilation overheads for both device.
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1 Introduction

As we enter the Noisy Intermediate Scale Quantum (NISQ) era, companies are now
building chips that control a few hundred qubits for quantum circuit models and
several thousand for quantum annealers. The selection of interesting problems that
run successfully on noisy quantum chips is now a key point of interest for researchers
and industries alike. As quantum heuristics performance limits are easier to reveal in
the higher instance density regime, which either requires qubit duplications or larger
circuit depths, we use HOBO problems to generate k-local Hamiltonians of custom
density. An experimental study of the impact of the HOBO formulation on the QAOA
was done in [5], demonstrating that higher order formulations were favorable to the
QAOA. E. Pelofske et al. [11] also compared the ability of QA and the QAOA to
solve HOBOs perfectly adapted to ibm washington’s graph connectivity containing
cubic interaction terms, showing that current ideal QAOA execution on real hardware
could not match QA results quality.
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We propose another study case to experimentally evaluate bounds on the error rate
that would permit QAOA to beat QA on results quality. As a use case, we gener-
ate HOBO formulations from Balanced Hypergraph Partitioning (BHP) problems,
which is well-known in combinatorial optimization due to the difficulty of finding a
good solution. It consists in dividing the vertices into different subsets, considering
a balancing constraint while minimizing the number of hyperedges connecting the
partitions. The balancing constraint acts as a global constraint and requires a strong
coupling between the variables of the problem. This problem is interesting as its
transformation into the Ising model gives a fully connected 2-local Hamiltonian
with some k-local terms representing hyperedges. A general formulation for graph
bi-partitioning using the Ising model was proposed in [9]. This formulation has been
extended to graph k-partitioning in [16], with an experimental comparison between
state-of-the-art partitioning methods and the quantum hybrid method qbsolv , which
seems competitive. H. N. Djidjev et al. [6] are less optimistic and demonstrate that
the advantage of the quantum annealer is still limited by the size of the quantum
chip. They also underline the importance of accounting for compilation time, which
can represent up to 99% of the computation run time for large instances. Recent
theoretical results on the limitations of the QAOA on pure k-spin model are available
in [2]. The authors show that the QAOA is subject to optimality limitations for any
even k≥4 in the infinite size limit for fixed p. It sets a first theoretical bound, proving
that the QAOA may encounter strong limitations in solving HOBO problems.
Our contributions are two-fold. The first one is a recursive formulation of the BHP
problem as a HOBO problem. The second contribution is a performance comparison
of two quantum heuristics: the QA and the QAOA. In particular, our experiments
suggest that noisy QAOA will only compete with D-Wave systems on low density
problems if the error rate remains under 10−5.

2 Problem Formulation

The formulation of the BHP problem is an extension of a previous work based on
hypergraph bi-partitioning [13]. A Hypergraph is a generalization of a graph where

hyperedges can be connected to one or more vertices. Let H def
= (V,E) the hypergraph

defined from a set of vertices V and a set of hyperedges E. A k-partition Π of H is
a splitting of V into k vertex subsets πi with 1≤ i≤k, called parts, such that : (i)

each part πi respects the capacity constraint : ∀i,|πi|≤ |V|
k ; (ii) all parts are pairwise

disjoint : ∀i,j i≠j,πi∩πj = ∅ ; the union of all parts is equal to V:
⋃

iπi=V. A cut
for a k-partition Π of H is the union of hyperedges that contain at least two vertices
in different parts and the cut-size fc is the number of cut edges. Our formulation
minimizes the min-cut metric with a balanced constraint. Considering k the final
number of partitions, at a given level of recursion, the capacity constraint for one
recursion splitting the vertices v into 2 sub-parts xv∈{0,1} is:

HA=

(∑
v∈V

ωvxv−
⌈⌊

k

2

⌋
/k×Ω(V)

⌉)2

(1)
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where ωv is the weight of each node v and Ω(V)=
∑
v∈V

ωv. Ω(V)= |V| for unweighted

graphs. This expression weights the number of nodes that should appear in π0 and
π1 according to their total weight. The second component of the cost function is used
to minimize the min-cut metric fc:

HB=
∑
e∈E

(
ωe×

(
1−
∏
v∈e

xv−
∏
v∈e

(1−xv)

))
(2)

ωe corresponds to the weight of the hyperedge e. The weight ωe is added to fc when
∀v∈e,∃v′∈e with v′≠v and xv ≠xv′. The objectives HA and HB are then gathered
to create the final objective to minimize. Coefficients A and B are real numbers and
are used to weight each objective:

C(x)=AHA+BHB (3)

The reader can refer to the method described in the paper of Lucas et al. [9] to
set the coefficients A and B. The upper formulation is only valid for a recursive
k-partitioning algorithm. If the formulation was for a k-direct partitioning, it would
be possible to encode vertex affectation to each partition using logarithmic k-partition
encoding, as for coloring problems [15].

3 Experimental Setup

We solve HOBO problems using two quantum optimization methods: QA and the
QAOA. The metric used for comparison is the energy gap ∆∗

E, which is the difference
between the energy of the ground state (classically exhaustively computed) and the
mean energy of the expectation value.
Our work is based on hypergraphs composed of 10 nodes and 15 hyperedges. A
first set of instances is composed of k-uniform hypergraphs with k∈{2,3,4}. The
parameter k is limited to 4 to avoid trivial solutions. For each value of k, 15 instances
are randomly generated.

3.1 Setup of D-Wave Systems

D-Wave processors [3] are designed to minimize an Ising cost function H taking an
input vector s=(s1,s2,...,sn) with si∈{+1,−1} where hi and Jij are real numbers.

H(s1,s2,...,sn)=−
n∑

i=1

hisi−
n∑

i<j

Jijsisj (4)

The translation between QUBO and Ising cost function is straightforward with a
simple variable change xi=

1−si
2 .

Experiments were done on the most recent chip Advantage2 prototype1.1, which
produced the best results minimizing the Ising cost functions. D-Wave systems require
a QUBO formulation of the initial problem. The transformation used to convert
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HOBO to QUBO is done using Rosenberg reduction [14] to quadratize the terms
of the cost function.
We used the heuristic presented in [4] to map the QUBO on the D-Wave Quantum
Process Unit. Our experiments consider average-quality embedding to avoid bias by
selecting only the best embeddings over multiple tries. Majority voting is used during
the post-processing phase to determine the final value of each variable. We do not
use further specific processing such as spin reversal technique [12] or pausing time.
For each group of HOBO problems transformed to QUBO problems, we numerically
study their optimal chain strength cs using a factor called Relative Chain Strength [17]:

cs=RCS×max({hi}∪{Jij}) (5)

The sampling of different values for the chain strength experimentally determines
the optimal RCS factor. Fig. 1 a. shows that a phase transition occurs when the
RCS factor becomes sufficient, leading to a significant improvement. The duplication
error rate of qubits measured when the majority vote occurs follows the same phase
transition. This evaluation is repeated for each k and optimal average values RCS∗

are presented in Table 1.

3.2 Setup of the QAOA

The QAOA [7] circuit is built from the Hamiltonian derived from the HOBO cost
function. Unlike D-Wave systems, the k-local Hamiltoninan can be implemented by
the QAOA without quadratization. Fig. 1 b. and c. show the unitary implementation
corresponding to both problem and mixing Hamiltonian. We perform perfect and
noisy simulations of these quantum circuits using the IBM Qiskit library [10]. The Aer

ΔE
*

εd

(a) RCS parameter sampling

|qi⟩ • •
|qj⟩ • •

· · ·

|qn⟩ · Rz(2ωij...nγ) ·

(b) Uγ modelling

|qi⟩ Rx(2β)

(c) Uβ modelling

Fig. 1: Parameter settings of QA and the QAOA. (a) shows the RCS parameter
sampling for 2-uniform instances with impact on the energy gap ∆∗

E and duplication
error rate on qubits ϵd. (b) shows the implementation of each ωij...nσiσj...σn term
derived from the HOBO cost function terms. (c) shows Uβ implementation with
β rotation around the X-axis since the domain is not restricted.
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simulator is used to perform the simulations, which offers a nice trade-off between
execution speed and quality of the results. We use Qiskit Pauli error model for noisy
simulation with the same error rate ϵ for bit-flip and phase-flip. We assume that the
initialization and measurement of qubits are noiseless. Noisy simulations of quantum
circuits are executed on different topologies to analyze the benefits of each chip density
D. We study 3 different topologies: one which is fully connected, another one based on
IBM’s ibmq guadalupe heavy-hex topology with a cycle layout of 12 qubits (D=0.17).
The last topology comes from sycamore chip and is a grid layout of 12 qubits (D=0.26).
The mapping of circuits on topologies that are not fully connected requires additional
SWAP gates added by the Qiskit transpiler, which generates gate depth overheads.
The QAOA experiment is done from p= 1 to p= 30. At each step p= i, a local
optimizer is used to find the optimal set of angles γ⃗∗p =(γ1,...,γp), β⃗∗

p =(β1,...,βp).
We use Nelder-Mead optimization method [8] with a maximal number of function
evaluations (i.e. quantum circuit execution) set to 300. The concentration of good

parameters at p-depth (γ⃗∗p,β⃗
∗
p) for small values of p has been analytically proven in [1].

L. Zhou et al. [18] introduced an optimization method based on discrete sine and
cosine transform that benefits from this parameter concentration. The authors call
it FOURIER[q, R], and use it to initialize angles (γp+1, βp+1) from the sets γ⃗p,β⃗p.
The variable q specifies the length of the vector of frequencies. We consider the case
when q=p, meaning that q parameter grows with p when a pair of angles is added.
R parameter is the number of local optima calculated at each level p. Following
their notations, we use FOURIER[∞,10] global optimization method for each QAOA
simulation. For each experiment, we set γ∈ [0,2π] and β∈ [0,π].

4 Results

The impact of HOBO problem’s density on QA and the QAOA is shown in Fig.
2. It compares D-Wave Advantage2 prototype1.1 and the QAOA ability to find
optimal solutions to HOBO problems generated from k-uniform hypergraphs. The
perfect simulation of the QAOA surpasses D-Wave systems on 2-uniform (3-uniform)
hypergraphs when p=24 (p=22). It shows that the increase in the cardinality of
the hyperedges severely limits the performance of the D-Wave quantum computer,
which becomes highly inefficient for cardinalities greater than 4. This performance
loss is caused by the Rosenberg decomposition coupled with the qubits duplication
needed for mapping the problem on D-Wave chip’s topology. These two processing
steps multiply the required physical qubits by 581% for 4-uniform hypergraphs for
D-Wave systems (see Table 1). Comparatively, 4-uniform hypergraphs only increase
QAOA depth by 155% on the cycle topology compared to a fully connected topology.
The overheads difference is less important for 2-uniform hypergraphs (175% qubit
overhead for D-Wave against 173% gate depth overhead on the cycle topology). One
can observe that there is no significant difference in circuit depth overheads between
cycle and grid layouts, meaning that the Qiskit transpiler algorithm doesn’t fully
take advantage of the higher connectivity of the grid layout.
We further study the group of 2-uniform hypergraphs and estimate a noise rate
threshold of single and double qubit gates that would permit the QAOA to reach
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BHP instances D-Wave system Advantage2 prototype 1.1

#terms RCS∗ #var QR #qubits

min max mean min max mean ratio

2-uniform 55 3.6 10 10 10 17 18 17.5 175%

3-uniform 55 3.0 10 10 10 17 18 17.5 175%

4-uniform 119.6 0.5 24 29 26.8 48 70 58.1 581%

BHP instances QAOA Circuit depth p=1

complete topology cycle topology grid topology

min max mean min max mean ratio min max mean ratio

2-uniform 96 126 110.6 167 220 191.3 173% 178 220 196.9 178%

3-uniform 105 150 129.2 174 234 206 159% 185 264 213.9 166%

4-uniform 281 362 323.2 438 581 499 155% 400 485 439 135%

Table 1: BHP problem instances description. Each set of instances is composed of
15 hypergraphs having 10 nodes and 15 edges. The (RCS∗) is calculated for each set.
The first table shows the overheads of physical qubits needed by D-Wave systems.
The second table shows the overheads of gate depth for each topology compared
with a fully connected topology. Green cells highlight smallest overheads.

D-Wave performance. Optimal angles are considered to be known at each p-layer.

The simulation is done with optimal angles ( ⃗γoptp , ⃗βopt
p ) found by the FOURIER[∞,10]

method on Aer simulator. Fig. 3 shows the simulation of the QAOA considering
various qubit layouts compared to D-Wave systems’ best performance on the same
instances. The QAOA simulation reaches the best expectation value found by D-
Wave Advantage2 prototype1.1 at p=30 with ϵ=10−5. Under this threshold, the
QAOA becomes inefficient at p≈ 10 for ϵ=10−3 and p≈ 27 for ϵ=10−4. Curves
on Fig. 3 a) and b) demonstrate lots of fluctuation, reminiscent of the noise impact

Fig. 2: Quantum heuristics performance solving the BPH problem, using the energy
gap ∆∗

E as performance measure. Graphs (a), (b) and (c) respectively show the
performance of D-Wave Advantage2 prototype1.1 and QAOA on 2, 3 and 4-uniform
hypergraphs. The shaded area represents the standard deviation of each curve.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_18

https://dx.doi.org/10.1007/978-3-031-36030-5_18
https://dx.doi.org/10.1007/978-3-031-36030-5_18


Solving HOBO Problems on NISQ Devices: Experiments and Limitations 7

Fig. 3: Simulation of bi-partitioning 2-uniform hypergraphs using QAOA (red) and
D-Wave (blue). a) , b) and c) respectively show noisy simulations on fully connected,
cycle, and grid layouts. The shaded area represents the standard deviation at ϵ=10−5.

on the optimization landscape, even when perfect angles are already known. This
last experiment can be considered equally favorable to D-Wave and the QAOA,
implying approximately 175% overheads for each physical implementation: 175%
qubits overheads for D-Wave systems, versus 173% and 178% depth overheads for
cycle and grid topologies. Considering an equal overhead produced by the compilation
step, this experiment sets a first bound on noise rate to allow the QAOA to reach
D-Wave best available systems, which is 10−5.

5 Conclusion

This work proposes a general approach to compare the performance of D-Wave
systems with the QAOA solving HOBO problems. We proposed a method to generate
HOBO cost functions from BHP problems with various densities. The higher density
regime, illustrated by HOBO problems with many terms, identifies the performance
limitations of the QAOA and D-Wave systems. The former is limited by the noisy
implementation of gates and the latter by its sparse topology. Even if the QAOA
reaches D-Wave systems performance on perfect simulations for low-density problems,
the variational heuristic gets rapidly stuck on noisy simulations. Our experiment
suggests that a single quantum gate error rate ϵ<10−5 would permit the QAOA
to reach D-Wave systems performances, when the compilation overheads are the
same for QA and the QAOA. This bound could be improved with more experiments
and a larger set of instances. Current circuit chip designers are approaching this
threshold with superconducting systems having ϵ≈10−3 and ion-based qubits systems
having ϵ≈10−4 for single-qubit gates. On the other hand, dense HOBO problems
represent hard instances for D-Wave systems, implying the use of quadratic reduction
techniques and qubits duplications. Future work will investigate the density threshold
for which the performance of the QAOA and QA crosses.
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