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Abstract. Gaussian Boson Sampling (GBS) is one of the most popular
quantum supremacy protocols as it does not require universal control
over the quantum system, which favors current photonic experimental
platforms and there is strong theoretical evidence for its computational
hardness. However, over the years, several algorithms have been pro-
posed trying to increase the performance of classically simulating GBS
assuming certain constraints, e.g., a low number of photons or shallow
interferometers. Most existing improvements of the classical simulation
of GBS provide a performance increase regarding the probability cal-
culation, leaving the sampling algorithm itself untouched. This paper
provides an asymptotically better sampling algorithm in the case of low
squeezing and shallow circuits.

Keywords: Quantum Computing · Quantum Computer Simulation ·
Quantum Advantage

1 Introduction

In the last decade, photonic quantum computing has gained more relevance in
the quantum computing world due to its apparent scalability and the recent
demonstration of photonic quantum advantage [17]. In particular, in recent ex-
periments, the so-called Gaussian Boson Sampling (GBS) scheme was used in
recent experiments to demonstrate that photonic quantum devices are capa-
ble of solving a classically hard task [16]. This sampling schemes has also been
demonstrated to have several special applications, e.g., in graph problems [2] and
quantum chemistry [3]. Therefore, trying to improve algorithms for simulating
GBS has gained attraction.

Simulation of GBS is also a necessary step in creating a photonic quantum
computer, since quantum computer manufacturers need to compare experimen-
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tal data with a simulation for assessing inaccuracies. Moreover, an efficient sim-
ulation algorithm enables researchers to be able to perform various numerical
experiments on a classical computer testing new quantum protocols.

In its essence, GBS means the mode-wise photon detection of a multimode
Gaussian state [9,10]. The scheme can be simulated by calculating the probabili-
ties of the photon detection events using the displacement vector and covariance
matrix of the Gaussian state. However, the probabilities turn out to be classically
hard (#P-hard) to compute in general and there is also theoretical evidence that
sampling from this distribution is hard [8], hence an existing photonic quantum
computer has an advantage over classical computers.

One feature that makes the direct simulation of GBS hard is the size of the
event space. The number of photon detection events exponentially increases in
the number of modes, repeating the calculation of the probabilities many times.
To counter this problem, one can introduce a mode-by-mode sampling algorithm
which does not calculate the probabilities for all the possible events, but only
for a certain subset of the sample space, hence reducing the complexity of the
calculation [12].

The complexity of the (loop) hafnian is at the heart of the classical simula-
tion of GBS. The state-of-the-art algorithm for calculating this quantity is the
power trace method introduced by Björklund et al. [5]. Additionally, one could
achieve a considerable speedup by modifying the original mode-by-mode sam-
pling algorithm, described by Quesada et al. [12]. In their paper, they achieved a
quadratic speedup over the original particle-resolved GBS algorithm, using the
fact that the formula of (loop) hafnian for Gaussian pure states simplifies [14].

Since the inception of GBS, several algorithms have been proposed to sim-
ulate certain edge cases more efficiently [11,4]. Important edge cases are, e.g.,
when the Gaussian states have relatively low average particle numbers (sparse
circuit) or when the interferometer used in the production of the Gaussian state
is shallow. In the sparse and shallow case, a faster algorithm for calculating
the (loop) hafnian has been already proposed [11], but a modification of the
sampling algorithm in this scenario has not been considered before. Therefore,
we propose an algorithm for simulating GBS for sparse and shallow photonic
Gaussian circuits.

The structure of the paper is as follows: in Section 2 the basics of the GBS
scheme are introduced. In Section 3 the proposed sampling algorithm is derived
and introduced. Lastly, in Section 4, the complexity of the algorithm is calculated
in the case of non-displaced threshold GBS.

2 Setup

In this section, basic familiarity with quantum optics and photonic Gaussian
states is assumed. For reference, the reader may visit Refs. [1,15].

A d-mode Gaussian state ρ can be completely characterized by its displace-
ment vector r̄ = tr [r̂ρ] and covariance matrix σ = 1

2 tr [{r̂ − r̄, r̂ − r̄}ρ], where
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r̂ = (x1, . . . , xd, p1, . . . , pd) is the vector containing the xi, pi quadrature opera-
tors, and {A,B} denotes the anticommutator of the operators A and B .

Gaussian states can be similarly characterized by their complex displacement
vector and their Q-function covariance matrix

γ = tr [ξρ] , (1)

Σ =
1

2

(
tr
[
{(ξ − γ), (ξ − γ)†}ρ

]
+ 1

)
, (2)

where ξ = (a1, . . . , ad, a
†
1, . . . , a

†
d) is the vector containing the creation and anni-

hilation operators.
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Fig. 1. The basic setup of GBS without displacement. On the vacuum state, a column
of squeezings is applied with different squeezing parameters, and then k column of
beamsplitters with alternating starting positions depending on the parity of the column,
as demonstrated by the diagram.

In the most usual variant of the GBS scheme one performs a mode-wise pho-
ton number detection measurement, which is a projective measurement described
by the projections

Pn = |n⟩⟨n| (n photon, n ∈ N0). (3)

One can easily specialize towards a coarser detection scheme, the so called thresh-
old detection. The threshold detection measurement for one mode is defined by
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4 Z. Kolarovszki, Á. Kaposi, T. Kozsik, Z. Zimborás

projections

Q0 = P0 = |0⟩⟨0| (0 photon),

Q1 =

∞∑
n=1

Pn = 1−Q0 (≥ 1 photons, click). (4)

On multiple modes, the tensor product of the one-mode projection elements
define measurement projections

{Rs1 ⊗ · · · ⊗Rsd}(s1,...,sd)∈Id =: {RS}S∈Id , (5)

where I could either denote {0, 1} or N0 = {0, 1, 2, . . . } and RS could denote
either PS or QS , and d is the number of modes. Given a quantum state ρ, the
probability of detecting the sample S ∈ Id is

p(S) = tr [ρRS ] . (6)

Consider a d-mode Gaussian state with complex displacement vector γ and Q-
function covariance matrix Σ. An important observation is that in GBS the
probability of detecting a sample S ∈ Id can be multiplicatively factorized to a
function which depends on S, brS γ,brS Σ−1 only, and a second function which
depends purely on Σ, γ. More concretely, one can write

p(S) = N(γ,Σ)f
(
S,brS γ,brS Σ−1

)
, (7)

where brS denotes the block-wise repetition of rows and columns by S (0 en-
try means elimination of the row or column); for the formal definition see Ap-
pendix A. The calculation of f is usually a classically hard task, and N is just a
normalization factor, independent of the sample S, fulfilling the following block
matrix factorization property:

N(γ1 ⊕b γ2, Σ1 ⊕b Σ2) = N(γ1, Σ1)N(γ2, Σ2). (8)

Probability expressions of the form of Eq. (7) are motivated by several GBS-
related sampling schemes, where the function f contains the (loop) toronto-
nian [6] or (loop) hafnian [5]. As a simple example, for a Gaussian state 0 com-
plex displacement vector and Q-function covariance matrix Σ, the threshold
detection probability can be calculated by the formula

p(S) =
tor (brS O)√

det (Σ)
, (9)

where O = 1 − Σ−1 and tor denotes the torontonian [13]. Naively, to sample
from the probability distribution one would need to calculate the probability
for all elements in the sample space Ω = {S ∈ Id}. Since |Ω| = |I|d scales
exponentially in the number of modes d, the sampling algorithm constructed in
this fashion may be computationally demanding in general. Instead, one can opt
for a sampling method where knowledge of all the probabilities is not necessary.
For the simulation of photonic quantum computing, the mode-by-mode sampling
method is used extensively, which is introduced by Quesada et al. [13] for the
case of non-displaced threshold GBS.
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3 Classical simulation of sparse and shallow GBS

In this section, we would like to introduce a classical algorithm which may have
better performance than previous algorithms in the case of low particle num-
bers (sparse) and shallow interferometers. A key observation is that the (loop)
torontonian and (loop) hafnian functions factorize over block direct sum due to
Theorem 3 in Appendix B. The following question arises: can the mode-by-mode
algorithm be improved using Theorem 3? The answer turns out to be positive,
as demonstrated in this section.

Consider a d-mode photonic quantum system according to Figure 1 with k
beamsplitter columns. Let r = (r1, . . . , rd) ∈ Rd

+ squeezing parameters corre-
sponding to the squeezing gates and U ∈ U(d) unitary matrix corresponding to
the interferometer consisting of the beamsplitters. Then the Q-function covari-
ance matrix of the state before threshold detection is

Σ =

[
U

U∗

] [
cosh2 r cosh r sinh r

cosh r sinh r cosh2 r

] [
U†

UT

]
. (10)

The unitary U ∈ U(d) corresponding to the columns of beamsplitters can get
“banded” if the number of beamsplitter columns k is smaller than d. To properly
formulate this, we need the definition of bandwidth:

Definition 1 (Set of k-bandwidth matrices). The set of k-bandwidth ma-
trices is

Bandk(Cn×n) :={
A ∈ Cn×n | ∀i ∈ [n] :

{
if i < n− k : ∀a ∈ [n− i− k] : Ai,i+k+a = 0

if i > k : ∀a ∈ [i− k] : Ai,i−k−a = 0

}
.

(11)

For convenience, let us define a function which assigns the minimal number of
matching row and column eliminations to decompose the “overestimated” matrix
to direct sums of smaller matrices.

Definition 2. Let n ∈ N+ and let A ∈ Cn×n. The function band : Cn×n → N
is defined as

A 7→ min
k∈[n]

{
k : A ∈ Bandk(Cn×n)

}
(12)

Consider a d-mode circuit of m ≤ d/2 columns of beamsplitters, and denote
the interferometer of each column by Ui ∈ U(d), 1 ≤ i ≤ m. One can easily show
that the bandwidth of U := U1 . . . Um is just m, i.e. band(U1 . . . Um) = m, and
hence band(Σ) = 2m =: k. Therefore, for circuits where band(Σ) < d, one can
have occurrences during the sampling procedure when the reduction bitstring
S has 0-substrings of length k and using Theorem 3, the probabilities would
factorize. More concretely, define a bitstring S by concatenating two arbitrary
bitstring S1, S2 by k 0s, i.e. let S = S10

kS2. Moreover, let n = |S| and consider
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a matrix M ∈ C2n×2n which can be decomposed into A,B,C,D ∈ Cn×n blocks,
i.e.

M =

[
A B
C D

]
(13)

such that band(A) = band(B) = band(C) = band(D) = k. Then we can write

brS M =

[
A1 ⊕A2 B1 ⊕B2

C1 ⊕ C2 D1 ⊕D2

]
=: M1 ⊕b M2, (14)

where - again - the bandwidth of every submatrix is k. In Theorem 3 it has
already been shown, that the part of the probability which depends on the sam-
ple S factorizes over block direct sums. A natural question would be whether
one could use this formula in the mode-by-mode sampling algorithm. One could
immediately note that factorizing is not a trivial matter, since in the algorithm,
the Q-function covariance matrix is block reduced for each iteration by the first
n modes. In each iteration indexed by n, the (r1n0d−n Σ)−1 matrix is calculated,
which is different for each iteration. This matrix then needs to be reduced again
by the previous samples to calculate probability, according to Eq (7). If one could
interchange the inversion on Σ and the first reduction by 1n0d−n, Theorem 3
could be trivially used to factorize in the algorithm whenever a 0k substring
appears in the sample, but it is not entirely obvious if such interchange of op-
erations is permitted. Luckily, the following theorem asserts that this is indeed
the case:

Theorem 1. Let Σ ∈ C2d×2d be the Q-function covariance matrix for a pure
Gaussian state in which the interferometer matrix U ∈ U(d) is m-bandwidth and
r = (r1, . . . , rd) ∈ Rd

≥0. Let k = 2m, k ≤ n ≤ d, S = 1(n−k)0k and F = 1n0(d−n).
Then

(brS ◦ inv ◦ brF )Σ = (brS ◦brF ◦ inv)Σ = brS brF
(
Σ−1

)
. (15)

Proof. By direct computation one gets

brS brF
(
Σ−1

)
=

[
1 − rS rF B

− rS rF B∗ 1

]
, Σ−1 =

[
1 −B

−B∗ 1

]
, (16)

where B := U tanh(r)UT ∈ Cd×d, which is equivalent to the result of Proposi-
tion 4 from Appendix C. ⊓⊔

Let Σ ∈ C2d×2d have k-bandwidth submatrices as before. Let S1 and S2 be
arbitrary bitstrings, and let n := |S1|+ |S2|+ k ≤ d. Then

brS10kS2
Σ−1 = brS10kS2

Σ−1 = brS10k0|S2| Σ−1 ⊕b br0|S1|0kS2
Σ−1, (17)

where using Theorem 1 we can write

brS10k0|S2| Σ−1 = (brS10k ◦ inv ◦ br1|S1|1k0|S2|)Σ, (18)

br0|S1|0kS2
Σ−1 = (br0kS2

◦ inv ◦ br0|S1|1k1|S2|)Σ, (19)

brS10kS2
Σ−1 = (brS10k ◦ inv ◦ br1|S1|1k0|S2|)Σ

⊕b (br0kS2
◦ inv ◦ br0|S1|1k1|S2|)Σ. (20)
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Putting it all together, it is apparent that we can cut the mode-by-mode sampling
at a 0k pattern. Finally, using Theorem 3 we conclude that

f(S10
kS2,brS10kS2

γ,brS10kS2
Σ−1)

= f(S10
k,brS10k br1|S1|1k0|S2| γ,brS10k(br1|S1|1k0|S2| Σ−1))

× f(0kS2,br0kS2
br0|S1|1k1|S2| γ,br0kS2

(br0|S1|1k1|S2| Σ−1)), (21)

which means that when at least k zeroes are encountered, the Q-function covari-
ance matrix Σ will be factorized during the sampling algorithm. More concretely,
the terms in the product are independent of S1 and S2 respectively, so during
the sampling algorithm where the S2 sample is varied for calculating the proba-
bility distribution, the first term dependent on S1 will not change. Furthermore,
one can also omit to calculate the normalization factor N and keep track of the
probability from the previous sampling for calculating conditional probability.

In particular, for the case of non-displaced Gaussian Threshold Boson Sam-
pling, one can write

(tor ◦ brS10kS2
) (1−Σ−1) = tor brS10k

(
1− (br1|S1|1k0|S2| Σ)−1

)
× tor br0kS2

(
1− (br0|S1|1k1|S2| Σ)−1

)
, (22)

and using all these insights, one can build an algorithm which could be seen
in Algorithm 1. In this algorithm, when a 0k substring appears in the samples,
the input of the torontonian function can be factorized, and it is sufficient to
consider only a subsystem which starts from the beginning of the 0k substring in
the sample. The non-displaced threshold GBS is emphasized because one could
give an upper bound for its average complexity, discussed in the following section.

Algorithm 1 Proposed non-displaced threshold GBS algorithm for small-depth interferometer

Require: Q-function covariance matrix Σ, bandwidth k
d← dimΣ/2
S,A← [] ▷ Empty list for samples and accumulator
while |S|+ |A| < d do

n← |A|+ 1
if |S| = 0 then

F ← 1n0d−n

S0 ← S + [0]
S1 ← S + [1]

else
F ← 0|S|−k1k+n0d−n−|S|

S0 ← 0k + S + [0]

S1 ← 0k + S + [1]
end if
w0 ← N tor(brS0

(1− brF (Σ)−1)) ▷ 0-detection weight

w1 ← N tor(brS1
(1− brF (Σ)−1)) ▷ 1-detection weight

c← choose from (0, 1) with weights (w0, w1)
S ← S + [c]
if last k elements in S are all 0s then

A← A + S
S ← [] ▷ Sample is emptied

end if
end while
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4 Complexity of the classical algorithm for non-displaced
Gaussian Threshold Boson Sampling

According to the proposed Algorithm 1, the size of the matrices serving as inputs
of the torontonian can be reduced, since the sample S is emptied when a 0k

bitstring is encountered in the sample. To give an upper bound for the complexity
of the algorithm, one is required to find a lower bound for the vacuum detection
probability, given a set of squeezing parameters.

Theorem 2 (Lower bound for vacuum probability). Let Gd
r be the set

of d-mode pure non-displaced Gaussian states with squeezing parameters r =
(r1, . . . , rd), and S ∈ P ([d]) a set containing mode numbers. Then

inf
ρ∈Gd

r

pSρ (0) ≥ cosh−2|S|max
i∈[d]

ri, (23)

where pρ(S = 0) is the probability of detecting vacuum on modes defined by S.

Proof. For a non-displaced Gaussian state, the vacuum probability can be calcu-

lated by pSρ (0) = det [brS Σρ]
− 1

2 , where Σρ is the Q-function covariance matrix
corresponding to ρ. Hence, one needs to calculate

inf
ρ∈Gd

r

pSρ (0) = sup
U∈U(d)

det [brS Σ]
− 1

2 .

According to Eq. (10), for pure Gaussian states the Q-function covariance ma-
trices only depend on the squeezing parameters r and the interferometer U , i.e.,
Σ = Σ(r, U). Since the squeezing parameters r are fixed, one can restate the
previous optimization over states as an optimization over unitary matrices as

sup
ρ∈Gd

r

det [brS Σρ] = sup
U∈U(d)

det [brS Σ(r, U)] . (24)

If A is a positive semi-definite matrix, then detA ≤
(

TrA
dimA

)dimA
, from the

arithmetic mean-geometric mean inequality. Using this relation, one can provide
an upper bound for det [brS Σ]. Let rmax = maxi∈[d] ri and write

sup
U∈U(d)

det [brS Σ] ≤ sup
U∈U(d)

 1

|S|
∑
s∈S

 d∑
j=1

usju
∗
sj cosh

2 rj

2|S|

= cosh4|S| rmax. (25)

⊓⊔

Using Theorem 2, one can bound the probability distribution pSρ from below
by an i.i.d. probability distribution p as

pSρ (0) ≥ p(0)|S| = cosh−2|S| rmax, (26)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_17

https://dx.doi.org/10.1007/978-3-031-36030-5_17
https://dx.doi.org/10.1007/978-3-031-36030-5_17


Simulating sparse and shallow Gaussian Boson Sampling 9

where p(0) is the lower bound for the probability of detecting vacuum on the
single mode Si, and the corresponding probability distribution is

p(0) = cosh−2 rmax, p(1) = 1− p(0), (27)

which yields an i.i.d. probability distribution over all modes in S.
To give an estimate of the average complexity of Algorithm 1, we need a prob-

ability distribution which gives the probability of detecting n many 1s between
2 bitstrings of the form 0k. For example, one could consider the bitstring

0000︸︷︷︸
k 0s

101100010011︸ ︷︷ ︸
n = 6 1s

0000︸︷︷︸
k 0s

, (28)

where 6 1s are found between two 0k substrings, and in this section, we will refer
to these as clusters. Suppose that the probability of detecting 0 is uniform and
independent for all modes, and denote this probability p. To generate bitstring
beginning and ending with a 1, we can write

G = 1T + 1

(
k−1∑
i=0

0i

)
G. (29)

This recursion could be used to generate many other quantities, e.g., probabil-
ities, by formally replacing 1 and 0 in the formula. For this reason, we replace
1 7→ z(1 − p) and 0 7→ p, where we included a parameter z in 1 since we only
want to count the 1s in the bitstring (the 0s do not increase the complexity).
The resulting equation can be solved for G := G(z) as

G(z) =
1− p

z−1 − 1 + pk
, (30)

which is to be interpreted as the generator for the probability distribution for
detecting 1s. However, G(z) is not normalized in the sense that the coefficients of
G(z) would not sum up to 1, therefore one has to normalize it to yield a proper
probability distribution. After normalization and expansion, we acquire

Ĝ(z) :=
G(z)

G(1)
=

pk

z−1 − 1 + pk
=

∞∑
n=1

znpc(n), (31)

where pc(n) = pk(1 − pk)n−1 represents the probability of encountering n 1s
between two 0k substrings. With the knowledge of this probability distribution,
it is a trivial matter to calculate the average number of 1s between two 2 0k

substrings and is given by E[n] = p−k. The lower bound given by Eq. (27) is a
probability distribution which is uniform and independent over all modes and
using p(0) = p one can write

E[n] = (coshmax
i

ri)
2k, (32)
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which gives an upper bound for the number of 1s in terms of the maximal
squeezing parameter.

To calculate the complexity of Algorithm 1, one needs to use the complexity
for the torontonian itself. It should be emphasized, that the underlying method
of calculating the torontonian can be chosen freely. Suppose that the calculation
of the torontonian has exponential complexity and write Ctor = NαβN , where
α, β > 1. One can give an upper bound to the complexity of a cluster of n 1s as

Ccluster(n) =
n∑

N=1

NαβN ≤ nα+1βn, (33)

which can be used to give an upper bound for the average complexity of the
cluster

E[Ccluster] ≤
∞∑

n=1

pc(n)n
α+1βn =

pk

1− pk

∞∑
n=1

nα+1[β(1− pk)]n, (34)

and this expression is convergent when pk > 1− β−1.

In summary, the complexity of the problem reduces in the proposed algorithm
when a 0-substring is encountered with a certain length, which is not considered
in the original threshold GBS algorithm presented in [13]. Hence, the presented
sampling algorithm is faster in general for sparse and shallow circuits. It should
also be noted, that the speedup presented in this section is just an illustration
of the main principle of the proposed algorithm. One could simulate threshold
GBS using (loop) hafnians which have lower complexity than the original algo-
rithm [14,7], but the main principle of the proposed algorithm is applicable in
these algorithms as well.

5 Conclusion and Outlook

A modified classical algorithm has been given for simulating Gaussian Boson
Sampling, which takes into account the shallowness of the circuit and the low
number of particles in the system. The algorithm can be applied for the thresh-
old and the particle-resolved GBS as well, and the average complexity of the
proposed algorithm has been calculated in the case of non-displaced threshold
GBS.

The proposed sampling algorithm can also be employed in Gaussian Boson
Sampling with photon number resolving measurements and even using displaced
states. However, calculating the average complexity needs further investigation
in these cases, since the calculation is not feasible by using similar assumptions
as for the Threshold Gaussian Boson Sampling using torontonian. Moreover, the
case of mixed Gaussian states has not been considered during this work, and
it is still an open question whether the proposed algorithm is still valid in this
case. This problem has been set aside for a future project.
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A Matrix operations

There are several notations regarding matrix operations throughout the article,
and this section aims to collect all of them to avoid confusion.

Definition 3 (Row reduction). Let A ∈ Cn×m and let S ∈ Nn
0 be a bitstring

with k :=
∑|S|

i=0 Si. Then the row reduction rrS : Cn×m → Ck×m is the function
mapping A to a matrix formed by repeating the i-th row of A Si many times.

Definition 4 (Column reduction). Let A ∈ Cn×m and let S ∈ Nn
0 be a

bitstring with k :=
∑|S|

i=0 Si. Then the column reduction crS : Cn×m → Cn×k is
defined by crS(A) := rrS(A

T )T .

Definition 5 (Reduction). Let A ∈ Cn×n and let S ∈ Nn
0 be a bitstring with

k 1s. Then the reduction rS : Cn×n → Ck×k is defined by rS := rrS ◦ crS .

Definition 6 (Block reduction). Block reduction can only be defined on an
even-dimensional matrix M ∈ C2n×2n. Let A,B,C,D ∈ Cn×n and S ∈ Nn

0 .
Then

brS

[
A B
C D

]
=

[
rS A rS B
rS C rS D

]
. (35)

Definition 7 (Block direct sum). Let n,m ∈ N+, A1, B1, C1, D1 ∈ Cn×n and
A2, B2, C2, D2 ∈ Cm×m. Then the block direct sum ⊕b : C2n×2n × C2m×2m →
C2(n+m)×2(n+m) is defined as[

A1 B1

C1 D1

]
⊕b

[
A2 B2

C2 D2

]
=

[
A1 ⊕A2 B1 ⊕B2

C1 ⊕ C2 D1 ⊕D2

]
. (36)

B Factorizing probabilities over block direct sums

Theorem 3 (Factorization of probabilities). Consider a 1-mode POVM
{Ri}i∈I for some index set I = {0, 1} or I = N0, where Ri is either Pi or
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Qi described by Eq. (3) and Eq. (4). A d-mode Gaussian state with complex
displacement vector γ and Q-function covariance matrix Σ. Suppose that the
probability of detecting S ∈ Id is

tr [ρ (PS1
⊗ . . . PSd

)] = f
(
S, brS γ,brS Σ−1

)
N(γ,Σ), (37)

where the normalization N has the block matrix factorization property, i.e.

N(γ1 ⊕b γ2, Σ1 ⊕b Σ2) = N(γ1, Σ1)N(γ2, Σ2). (38)

Then suppose ρ1, ρ2 are Gaussian states over d1 and d2 modes with γ1 and
γ2 complex displacement vectors and Σ1, Σ2 Q-function covariance matrices
respectively, and consider S ∈ Id1 , T ∈ Id2 . Then f also has the block matrix
factorization property in the following sense:

f(S × T, brS×T (γ1 ⊕b γ2),brS×T (Σ
−1
1 ⊕b Σ

−1
2 ))

= f(S,brS γ1,brS Σ−11 )f(T, brT γ2,brT Σ−12 ). (39)

Proof. By direct calculation,

f(S × T, brS×T (γ1 ⊕ γ2),brS×T (Σ
−1
1 ⊕Σ−12 ))

=
tr
[
(ρ1 ⊗ ρ2)

(
P (S) ⊗ P (T )

)]
N(γ1 ⊕b γ2, Σ1 ⊕b Σ2)

=
tr
[
ρ1P

(S)
]
tr
[
ρ2P

(T )
]

N(γ1, Σ1)N(γ2, Σ2)

= f(S, brS γ1,brS Σ−11 )f(T, brT γ2,brT Σ−12 ), (40)

where P (V ) = PV1
⊗ · · · ⊗ PVd

, for any V ∈ Id. ⊓⊔

Corollary 1. The torontonian, loop torontonian, hafnian and loop hafnian also
factorize in the manner described by Theorem 3.

C Supplementary calculations

Proposition 1. Let U ∈ U(d) and D ∈ Cd×d diagonal matrix, and S = 1n0(d−n)

with n < d. Then

rS
(
UDU†

)
= rrS (U)D crS

(
U†
)
=: V DV †, (41)

where V = rrS (U) ∈ Cn×d, and rr, cr are defined in Appendix A.

Proposition 2. Let U ∈ U(d) be an m-bandwidth unitary, and let m < n < d,
S = 1n0(d−n). Then let V be defined by

rrS (U) =: V =
[
W
∣∣X] . (42)

where W ∈ Cn×(n−m), X ∈ Cn×(d−n+m). Then V †V = 1n−m⊕K, where X†X =
K ∈ C(d−n+m)×(d−n+m).
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Proof. U ∈ U(d) can be written using d unit vectors {ui}di=1,ui ∈ Cd as U =
[u1, . . .ud], where ⟨ui,uj⟩ = δij and ⟨·, ·⟩ is the standard inner product over Cd.
When we reduce by S = 1n0d−n, elements from ui are removed consequently.
Split up the reduced matrix as V = [W |X]. We know that W †W = 1n−m
since i, j fulfill the conditions i, j ≤ n−m, and the reduction only removes zero
elements from ui and uj . More concretely, one can write rrS ui = wi ⊕ 0n−i−m
which is still orthogonal to uj vectors where only zeros have been trimmed.
Moreover, W †X = 0, since for i ≤ n − m and j > n − m, the reduction by
S only cancels zeros from ui, and the non-zero elements cancelled in uj by
the reduction are multiplied by zero when calculating the inner product with
ui, hence the inner product of reduced vectors is equal to the inner product of
original vectors in this case. Putting everything together one can conclude that
V †V = 1n−m ⊕X†X. ⊓⊔

Proposition 3. Let U ∈ U(d) be a unitary and let n ∈ [d], S = 1n0d−n. Let
V = rrS (U) and D ∈ Cd×d a diagonal matrix. Then

(V DV †)−1 = V D−1V †. (43)

Proposition 4. Let Σ ∈ C2d×2d be a Q-function covariance matrix of the form

Σ =

[
U

U∗

] [
cosh2 r cosh r sinh r

cosh r sinh r cosh2 r

] [
U†

UT

]
, (44)

where U ∈ U(d) is m-bandwidth, and k := 2m. Let F = 1n0d−n and S = 1n−k0k

with k ≤ n ≤ d. Then

(brS ◦ inv ◦ brF )Σ =

[
1 − rS rF (B)

− rS rF (B)∗ 1

]
. (45)

where B = U tanh(r)UT .

Proof. Let us denote cosh2(r) =: C and cosh(r) sinh(r) =: S. Then

brF Σ =

[
V CV † V SV T

V ∗SV † V ∗CV T

]
, (46)

using Proposition 1. The inverse can be divided into blocks as

(brF Σ)−1 =

[
(brF Σ)−111 (brF Σ)−112

(brF Σ)−121 (brF Σ)−122

]
. (47)

By explicit calculation, one can show that

(brF Σ)−111 =
(
V (C − SV T (V ∗CV T )−1V ∗S)V †

)−1
, (48)

and using Proposition 3 we can write

C − SV T (V ∗CV T )−1V ∗S = C − SV TV ∗C−1V TV ∗S. (49)
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Moreover, using Proposition 2 we may write

C − SV TV ∗C−1V TV ∗S = C − S(1n−m ⊕K∗)C−1(1n−m ⊕K∗)S

=: 1n−m ⊕M, (50)

where K,M ∈ C(d+m−n)×(d+m−n). We also know that

(
V (1⊕M)V †

)
ij
=

d∑
a,b=1

Via(1n−m ⊕M)a,bV
∗
jb, (51)

but since V is m-bandwidth, we know that there is no terms overlapping with m
if i, j ≤ n−m−m = n−k. Therefore it is guaranteed that (brF Σ)−111 = 1n−k⊕E,
where E ∈ C(d+k−n)×(d+k−n), which means that rS(brF Σ)−111 = 1n−k. Similarly,
one can write

(brF Σ)−112 = −(1n−k ⊕ E) V SV TV ∗C−1V T , (52)

and after reduction one acquires

rS((brF Σ)−112 ) = − rS
(
V (rG(tanh r)⊕H)V T

)
, (53)

where G = 1(n−m)0(d−n+m) and H ∈ C(d+m−n)×(d+m−n). Consider indices i, j ≤
n− k. Then

(
V (rG(tanh(r))⊕H)V T

)
ij
= −

d∑
a,b=1

Via (rG(tanh(r))⊕H)ab Vbj , (54)

but we know that Via = Vbj = 0 for a, b > n − m, i.e. the values of H are
irrelevant when we are computing matrix elements with indices i, j ≤ n − k.
Therefore we can just write(

V (rG(tanh(r))⊕H)V T
)
ij
=
(
V tanh(r)V T

)
ij
, (55)

which essentially yields that

rS(brF (Σ)−1)12 = − rS rF (V tanh(r)V T ) = − rS rF (U tanh(r)UT )

= − rS rF (B). (56)

⊓⊔
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