
Exploring the Capabilities of Quantum Support
Vector Machines for Image Classification on the

MNIST Benchmark

Mateusz Slysz1,2[0000−0003−3124−9899], Krzysztof Kurowski1[0000−0002−4478−6119],
Grzegorz Waligóra2[0000−0003−2108−1113], and Jan Węglarz2[0000−0002−2237−3479]

1 Poznań Supercomputing and Networking Center, IBCH PAS
{mslysz,krzysztof.kurowski}@man.poznan.pl

2 Poznań University of Technology
Institute of Computing Science

Poznań, Poland
{grzegorz.waligora,jan.weglarz}@cs.put.poznan.pl

Abstract. Quantum computing is a rapidly growing field of science with
many potential applications. One such field is machine learning applied
in many areas of science and industry. Machine learning approaches can
be enhanced using quantum algorithms and work effectively, as demon-
strated in this paper. We present our experimental attempts to explore
Quantum Support Vector Machine (QSVM) capabilities and test their
performance on the collected well-known images of handwritten digits for
image classification called the MNIST benchmark. A variational quan-
tum circuit was adopted to build the quantum kernel matrix and suc-
cessfully applied to the classical SVM algorithm. The proposed model
obtained relatively high accuracy, up to 99%, tested on noiseless quan-
tum simulators. Finally, we performed computational experiments on
real and recently setup IBM Quantum systems and achieved promising
results of around 80% accuracy, demonstrating and discussing the QSVM
applicability and possible future improvements.
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1 Introduction

Quantum computing is a growing field of science that uses quantum phenomena
and brings much hope for more efficiency than classical computing. It has been
proven theoretically that some classically intractable problems can be solved
more effectively using quantum approaches. Examples of well-known quantum al-
gorithms include Shor’s algorithm for factorizing large numbers [19], or Grover’s
algorithm for quickly searching through unsorted data sets [8]. However, we
are currently in the Noisy Intermediate Scale Quantum (NISQ) era [16], which,
due to hardware implementation difficulties, is characterized by quantum de-
vices with limited capacity and accuracy. While attempts to create fault-tolerant
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quantum computers are underway, researchers are looking for different areas in
which they could exploit the capabilities of existing quantum devices for com-
putation. Examples of such fields include discrete optimization [6], simulation
of quantum systems [11], and machine learning [5][13][18], also specifically for
image classification purposes [1][15][20].

The aim of this paper is to demonstrate the potential advantages of existing
NISQ devices used in a machine learning image classification problem. Using a
gate-based quantum device, we run experiments with the Support Vector Ma-
chine (SVM) algorithm [3] with quantum kernels to classify a benchmark dataset.

2 Theoretical background

2.1 Introduction to quantum computing

In a nutshell, quantum computers use qubits instead of bits to encode informa-
tion. Qubits are two-level quantum variables and are subject to follow principles
of quantum mechanics, such as superposition and entanglement. Superposition
is a feature of quantum systems that allows particles to be in many states simul-
taneously (in this case pseudo binary states |0⟩ and |1⟩ are used), and entangle-
ment is a property that binds quantum variables together in a way that allows
to transfer more information than would be classically possible. These quantum
effects can be exploited by cleverly designed algorithms to achieve faster and
better results than it would be possible with any classical machines [14].

2.2 Support Vector Machine

A classical Support Vector Machine is a machine learning model used for data
classification and regression. SVM parameters w and b are trained to find an
optimal separating hyperplane f to classify data points x into classes (nominally
y = ±1):

f(x) = sign (w · x+ b) (1)

This problem of maximizing the margin between decision classes resolves to
an optimization problem:

min
w

1

2
∥w∥2 (2)

subject to yi (w · xi + b) ≥ 1

However, classes in most datasets are not linearly separable, so SVMs must
be able to tackle this problem. It is done by using kernel functions to map data
to some high-dimensional feature space, in which it is possible to separate them
with a hyperplane. A kernel function K is, in fact, a dot product between feature
maps ϕ. For a pair of points, xi, xj it is given by

K(xi, xj) = ⟨ϕ(xi)| · |ϕ(xj)⟩ (3)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_15

https://dx.doi.org/10.1007/978-3-031-36030-5_15
https://dx.doi.org/10.1007/978-3-031-36030-5_15


Quantum Support Vector Machines for MNIST benchmark 3

and, for the sake of our optimization problem, should keep the similarity measure
between data points as close as possible to the original feature space.

After finding the optimal parameter values, a new example x̃ is classified by
the model following

f(x̃) = sign

(∑
i

yiαiK(xi, x̃) + b

)
(4)

This so-called kernel trick is a very useful tool and allows achieving good re-
sults on complicated datasets, without losing the ability of generalization. How-
ever, selecting a kernel is a difficult task and different kernel functions (e.g. lin-
ear, polynomial, Radial Based Functions, etc.) and have different strengths and
weaknesses, making it worthwhile to look for more and more mapping functions
that are better suited to specific applications.

2.3 Quantum Kernel

For this reason, we experimented with a new type of kernel which is computed
using a quantum computer. Based on [9] and [7] we encode the kernel function
as a readout of a parametrised quantum circuit. The data x is mapped to an
n-qubit quantum feature state through a unitary operator U(x):

ϕ(x) = U(x) |0n⟩ ⟨0n|U†(x) (5)

From equations (3) and (5) it follows that the kernel function of two variables
xi and xj is of the form of

K(xi, xj) = ∥ ⟨0n|U†(xi)U(xj)|0n⟩ ∥2 (6)

which can be estimated as the readout from a quantum circuit implementing
U†(xi)U(xj). Since the characteristics of the quantum circuit representing the
kernel function must depend not only on the input data x, but also on the
parameters describing the feature map, we must take into consideration the
more general definition of the feature map, which can be described as:

ϕ(x) = Dx |ψ⟩ ⟨ψ|D†
x (7)

where |ψ⟩ is some fiducial quantum state, corresponding to the feature map,
and Dx is some data-dependent unitary operator. We can impose a condition in
which the |ψ⟩ state value is the effect of applying an operator Vλ on the initial
state |0n⟩:

|ψ⟩ = Vλ |0n⟩ (8)

The unitary operator U(x) is now a combination of Vλ and Dx, so the kernel
function can be described as

K(xi, xj) = ∥ ⟨0n|V †
λD

†
xi
Dxj

Vλ|0n⟩ ∥2 (9)
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This can be represented in the form of a quantum variational circuit, which
was designed based on [7]. For the data encoding D block, RX(θ) and RZ(θ)
gates were chosen to represent data points, with angles θ corresponding to the
numerical values of variables. Due to the fact that RX and RZ are orthogonal
state rotations, it is possible to encode two data features on a single qubit – one
for each axis. In the variational V block RY (λ) gates were used and λ parameters
are subject to training, alongside with CZ gates to create entanglement between
qubits in the quantum circuit.

3 Computational experiments

To test and compare the behaviour of the QSVM algorithm with different param-
eters, we decided to apply it for image classification. We tested the algorithm on
images from the well-known MNIST dataset, containing images of handwritten
digits at 28 × 28 resolution [12]. The data was filtered only to have two classes
– ’0’s and ’1’s, as the basic version of the SVM algorithm only supports binary
classification.

Since the limitations of currently available quantum computers and simula-
tors did not allow the algorithm to fit a full-sized data set with a feature space
of 784, reducing the number of features was necessary. Since the data is image-
based, it was possible to use image scaling algorithms such as resize from Python
scikit-image library [22]. We obtained images with smaller resolutions of 4 × 4,
6 × 6 and 8 × 8. After scaling, we got data points of dimensionality 16, 36 and
64, respectively, which correspond to the size of a quantum circuit equal to 8,
18 and 32 qubits.

(a) 28× 28 (b) 8× 8 (c) 6× 6 (d) 4× 4

Fig. 1: A grid of original size and resized images of a digit ’0’ in different resolu-
tions.

The quantum circuit was designed so that CZ gates that create an entangled
state connect each qubit with its two neighbours. This method allowed to create a
maximum number of connections between neighbouring variables, as the original
data represents pixels, thus having a spatial interpretation. An example of the
circuit with randomly chosen starting parameters λ and two data points from
the training set x1 and x2 encoded is shown in Figure 2.
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Fig. 2: An example quantum circuit for 2 digits from the training set.

Using this representation, we could run our experiments using Qiskit [17]
and IBM Quantum services for all the resolutions on IBM qasm_simulator,
which supports the simulation of quantum circuits up to 32 qubits. However,
due to the connectivity limitations of actual quantum devices, it has been much
more difficult to fit such circuits on quantum processors. We were limited to
running experiments using 4×4 resolution images on available 27-qubit quantum
computers (e.g. ibmq_montreal with 128 Quantum Volume) and on 127-qubit
ibm_washington[10].

The training process was performed using the Simultaneous Perturbation
Stochastic Approximation (SPSA) [21] algorithm to find the optimal set of λ
parameters and solve the kernel alignment problem [4]. Based on averaged read-
outs from 1024 samples of the circuit executions, it was possible to construct
an approximated kernel matrix that best described the similarity between data
points in the dataset. The matrix dimensions were the same as the training set
size and was equal to 20. Figure 3 shows an example kernel matrix.

Fig. 3: Example kernel matrix of size 20× 20 computed on a NISQ device.
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This matrix was later used as a pre-computed kernel for the SVM algorithm
with a soft margin [3] factor C = 1 and the maximum number of the SPSA
iterations = 10 and used for classification on the test set of size 10. The bal-
anced accuracy measure [2] was used as a quality indicator of the algorithm.
Each configuration was run 10 times. The averaged results obtained from a set
of readouts comparing different image resolutions and different devices were pre-
sented in Table 1.

To compare the quantum algorithm with a benchmark model, we conducted
experiments using the classical SVM algorithm with a linear kernel. To maintain
a fair comparison, data preprocessing was done identically, and the instance sizes
were also the same. The results of the balanced accuracy for the classical SVM
for 3 resolutions - 4× 4, 6× 6 and 8× 8 are also shown in the Table 1.

Computer Number of qubits Instance size Balanced Accuracy [%]
4× 4 89.36

classical - 6× 6 97.71
8× 8 99.38
4× 4 79.83

qasm_simulator 32 6× 6 95.79
8× 8 99.29

ibmq_montreal 27 4× 4 77.68
ibm_washington 127 4× 4 81.03

Table 1: Accuracy of QSVM algorithm on the MNIST dataset, comparing dif-
ferent instance sizes and computers.

The results of the quantum algorithm are slightly worse than those of the
classical SVM classifier. However, the differences, especially between experiments
on larger instances - 6×6 and 8×8 - are relatively small, which puts the conclusion
that the quantum algorithm worked effectively and performed the classification
task well. Slightly larger differences can be seen on an 4 × 4 instance size, but
in this case still the vast majority of instances in the test set were classified
accurately.

Another interesting comparison is the performance of the quantum computer
simulator with the actual quantum machines. For the same configuration, the
results are very close to each other, which shows that the simulation process
is consistent with the performance of the actual quantum computers. The fact
that it was possible to successfully run the machine learning algorithm fully on
a quantum processor can already be considered a promising result of the study.

In addition, a trend analogous to classical machine learning algorithms can be
seen on quantum machines, where increasing the size of the instance significantly
affects the quality of the results. Thus, it can be concluded that in the near
future, with the growth of quantum processors, the performance of this and
other quantum machine learning algorithms will increase.
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4 Conclusions

Quantum Support Vector Machine is a quantum algorithm incorporating quan-
tum computing into the machine learning landscape. So far, the proposed model
has been discussed theoretically and tested on relatively simple tasks, which only
contain a few variables and is relatively simple to solve by state-of-the-art ma-
chine learning techniques. We have demonstrated experimentally in this paper
that the algorithm works well on the more complex image classification problem
on the MNIST dataset.

Admittedly, it was necessary to perform appropriate preprocessing to reduce
the resolution of the original images to fit them on still limited capabilities
offered by a quantum simulator and IBM quantum devices. Nevertheless, the
experimental results obtained show that relatively high classification accuracy is
possible. It was also possible to run instances on real quantum NISQ devices from
IBM, utilising IBM flagship quantum computers – the 127-qubit ibm_washington
and ibmq_montreal, receiving consistent results.

Additionally, we noticed an impact on the overall QSVM performance, as the
selected quantum devices provide a specific topology and connectivity among
superconducting qubits. Although recent research suggests adapting a model
to the interconnection network topology of a given quantum processor [9], we
decided to stay with a more dense structure of entanglement connections due
to the spatial nature of the data set to be processed. Still, it naturally requires
further inventions, especially in the context of new NISQ devices with denser
connectivity among qubits.

Further experiments with QSVM and other quantum machine learning al-
gorithms can be conducted to study the impact that different entanglement
strategies may have on the qualitative results of the considered algorithm. Also,
other ideas can be used to further improve the quality of the results, for exam-
ple using different classical preprocessing algorithms to shrink dataset size, such
as PCA and its variations, as well as the usage of error correction and mitiga-
tion techniques. As quantum technologies quickly evolve, quantum computers
will have more and better quality qubits, which will be more densely connected
soon. Consequently, we can run experiments for much larger input datasets by
applying the QSVM-based approach discussed in this paper.
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