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Abstract. The growing availability of quantum computers raises questions
about their ability to solve concrete problems. Existing benchmark protocols
still lack problem diversity and attempt to summarize quantum advantage in a
single metric that measures the quality of found solutions. Unfortunately, the
solution quality metric is insufficient for measuring quantum algorithm perfor-
mance and should be presented along with time and instances coverage metrics.
This paper aims to establish the TAQOS protocol to perform a Tight Analysis
of Quantum Optimization Systems. The combination of metrics considered
by this protocol helps to identify problems and instances liable to produce
quantum advantage on Noisy-Intermediate Scale Quantum (NISQ) devices for
useful applications. The methodology used for the benchmark process is de-
tailed and an illustrative short case study on the Max-Cut problem is provided.

Keywords: Benchmark protocol · Quantum computing · QAOA · Quantum
annealing.

1 Introduction

Quantum manufacturers are currently building chips with several hundred qubits for
circuit-based quantum computers and thousands of qubits for quantum annealers. As
the NISQ era [20] begins, it remains unclear whether noisy quantum computers will
have useful applications in the near term, since quantum error correction codes still
require too much qubits to be efficient. Defining whether a quantum algorithm could
bring a quantum advantage on a specific task is far from straightforward, as the full
quantum stack usually involves complex classic and quantum processing where each
subpart constitutes a full research domain. One relevant class of problems that may
be subject to quantum advantage are optimization problems that naturally map on
Adiabatic Quantum Optimization (AQO) systems. Hybrid quantum algorithms also
provide an interesting option to solve optimization problems, especially using the
Quantum Approximate Optimization Algorithm (QAOA) [8]. This algorithm exhibits
a robust behavior under noisy regime [11,23] and encouraging theoretical bounds of
convergence have been proven for specific problems at fixed depth [4,8]. The plethora of
optimization problems being developed and benchmarked using Quantum Annealing
(QA) and the QAOA requires a rigorous methodology to report the performance
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of these heuristics. To this end, this paper introduces one methodology termed the
TAQOS protocol, which performs a Tight Analysis of Quantum Optimization Systems
performance. This protocol defines the guidelines and properties of an application-
based competitive benchmark. The instances and the source code are available at [10].

1.1 Related Work

Protocols used to benchmark the performance of classical heuristics appeared in
the 1970s and provide useful guidelines to produce high-quality classical computer
benchmarks. Several best practices and guidelines for evaluating computer performance
exist in the current literature [15]. One important approach is found in [3], which splits
the performance study into two types of benchmarks. The first type is competitive
benchmark which aims to directly and quantitatively compare the performance of
different algorithms. Whereas the second type, named descriptive benchmark, is used
to analyze and understand the factors that impact algorithm performances. While
competitive benchmark should be composed of fast-to-compute unbiased metrics to
compare algorithm performance, descriptive benchmark can be composed of more
complex metrics serving a better understanding of the algorithmic behavior.
As quantum annealers have improved (e.g., D-Wave systems [1]), the scientific
community has begun to evaluate their performance against advanced classical
heuristics. T. Albash et al. [2] showed that the scaling advantage of QA could
outperform well-known classical heuristics such as simulated annealing. Several
studies on specific Ising models, such as Spin-Glass and Sherrington-Kirkpatrick
models, have shown that quantum annealers could perform better than classical
methods on specific cases [12,19].
Quantum circuit performance evaluation started with randomized benchmarking
methods of single-qubit gates circuits. This protocol, presented by E. Knill in [13],
was then extended to multi-qubits gates circuits in [17]. Both protocols are scalable
as they are strictly based on circuits only using Clifford gates, producing an output
distribution that can be known efficiently with a classical computer.
Other studies have tried to define a set of metrics to measure the potential of quantum
circuits. The Quantum Volume [6] evaluates the maximum size of a square circuit that
can run reliably on a given quantum chip. The Volumetric Benchmark [5] extends
this method to rectangle circuits. Both metrics provide insights about the volume
(width and depth) that can run reliably on a chip. The precise and costly evaluation
of the output distribution (based on Heavy Output Generation) classifies both metric
use into descriptive benchmark. These metrics do not report on the fidelity nor quality
of the output of specific application circuits and are not scalable for such uses.
A scalable competitive metric, called the Q-score, has recently emerged to evaluate
solutions to the Max-Cut problem [18]. This metric is the first attempt to design
a hardware-independent way to measure quantum performance. Fellous et al. [9]
introduced a methodology named Metric-Noise-Resource (MNR) to evaluate the
ratio between energy consumption and quality of the solution provided by an error-
corrected quantum computer. MNR is the first methodology to estimate energy
consumption with the launching of the Quantum Energy Initiative.
Finally, several frameworks have been developed to benchmark applications, such as
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the QEC-D framework [16] and the QASM Bench [14]. These frameworks provide sets
of metrics to test applications but are still dedicated to perform descriptive benchmark
of small instances by studying the fidelity of the output distribution of the circuit.

2 TAQOS Benchmark Protocol

The TAQOS protocol aims to establish a fair benchmarking protocol to compare
quantum algorithms, such as AQO and the QAOA, with classical algorithms. Fig. 1
shows the workflow of the two quantum heuristics. Each dotted box is an abstract de-
scription of a computational task. One can perform a factorial study by testing several
implementations of a single dotted box and letting the rest of the workflow unchanged.
Each of the two quantum heuristics exhibits at least one critical task proven NP-Hard:
the Quadratic Unconstrained Binary Optimization (QUBO) problem mapping for
AQO (task #2) and the transpilation of the circuit to the hardware topology for the
QAOA (task #8). The methods used to select optimized hyper-parameters (task #3,
#7, #8 and #10) for the execution of quantum algorithms should be specified. For
example, the selection of the chain strength and the unembedding method should
be documented for experiments on AQO using D-Wave systems. For the QAOA,
the local and global optimization procedure to get an appropriate set of angles
should be detailed with processing time spent and termination conditions. For the
fairness of benchmark studies, each experiment should analyze the computation time
corresponding to each dotted box.
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Fig. 1: Workflow of quantum optimization methods: AQO and the QAOA. Each
dotted line box defines a processing action with run time variables tx involved.
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2.1 Metrics

Competitive benchmark metrics must be scalable, hardware-independent, and effi-
ciently computed. In addition, the metrics must be comparable to the results obtained
by state-of-the-art optimization methods. The TAQOS protocol considers three dif-
ferent quantities to evaluate the performance of a quantum solver: the quality of
the result, the time to get the solution, and the energy spent by the computer to
get the result. A fourth metric evaluates the robustness of the quantum heuristic
and computes the coverage of the set of instances. Let P={P1,P2,...,PN} be a set
of combinatorial problems and I the set of all possible instances associated to the
problem Pn. Each instance Ii∈I has a set of solutions S. Let Sq be the subset of
solutions found by a quantum computer. The objective function c evaluates the quality
of a solution s. Considering a maximization problem, the best solution obtained by a
quantum computer has the cost c∗q=maxsi∈Sq

c(si) and is denoted s∗q. Let cc∗ be the
cost associated with the best solution obtained by a classical heuristic and cref the
cost of reference (for example, the best-known solution to a specific problem). The
function rref evaluates the quality of a solution si as a ratio of the reference cost:

rref(c(si),cref)=
cref−c(si)

cref
(1)

A negative ratio implies that the quality of the solution si is better than the solution of
reference. Let the wall clock time associated with the quantum (classical) computation
be tq (tc) and the energy consumption be eq (ec).The following set of inequalities de-
fines a definitive quantum advantage over classical computation for a specific instance:

rref(c
∗
q,cref)≤rref(c

∗
c,cref)

t∗q≤t∗c

e∗q≤e∗c

(2)

Quality metric. The benchmark of NP-Hard problems requires the definition of an effi-
ciently calculated quality metric. We opt to measure the quality of the solution follow-
ing the recommendations of R. S. Barr et al. [3], taking the Best-Known Solution (BKS)
as the solution of reference of cost cref. rϵ(I) computes the fraction of instances for
which the ratio rref is less than ϵ. We define slices with ϵ∈ [0,1], e.g., within 1, 5 or 10%
to optimality, to detect sets of instances amenable to produce close-to-optimal results:

rϵ(I)=
|{Ii∈I with rref(cq∗,cref)<ϵ}|

|I| (3)

r0(I) outputs the ratio of solutions that are better than the solution of reference.
Wall clock time metric. Wall clock time metric should include the whole processing
time from the problem formulation to the solution extraction (see Fig. 1). The device
setting time of hyper-parameter that require quantum (classical) processing is denoted
thyper−pq

(thyper−pc
). The wall clock processing time of AQO is defined in Eq. 4.

tquantum=(tinit+trun+tdelay)×nbshots+thyper−pq

tclassical=treduction+tembedding+thyper−pc
+tcom+tqueue+tpost−proc

tAQO wall clock=tquantum+tclassical

(4)
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The wall clock processing time of the QAOA with local and global optimization of
angles can be specified as:

tlocal quantum=(tinit+trun+tdelay)×nbshots×nblocal opt

tlocal classical=nblocal opt×(tcom+tqueue+thyper−pc
+topt angles)

tquantum=nbglobal opt×tlocal quantum

tclassical=nbglobal opt×(tbuild circ+tcompile+tlocal classical)+tpost−proc

tQAOA wall clock=tquantum+tclassical

(5)

Energy consumption metric. Quantum computers are deemed less energy-consuming
than supercomputers. However, their power consumption is presently not disclosed
with enough precision by quantum hardware manufacturers. At this stage, we there-
fore let energy consumption metrics as perspectives.
Coverage metric. The last metric evaluates the coverage of the set I. Classical studies
based on Algorithm Selection Problem [21] demonstrated an existing link between the
instance structure and the relative performance of specific heuristics [7,22]. Combined
with the quality metric, the coverage metric evaluates the robustness of the heuristic.
We follow the work of I. Dunning [7] and compute a set of metrics specific to one
optimization problem (e.g., the density of an instance for a problem based on graphs).
The coverage cϵ of a metric f is an interval at fixed ϵ:

cϵ(f,Ii)=[f(Ii)−ϵ,f(Ii)+ϵ]∩[0,1] (6)

The whole coverage of a metric f on a set of instances I is:

Cϵ(f,I)=
⋃
Ii∈I

cϵ(f,Ii) (7)

These four metrics define the building blocks of the TAQOS protocol. An illustration
of their use is presented in the next section.

2.2 Use Case on the Max-Cut Problem

This section presents a case study of the TAQOS protocol on the Max-Cut problem.
The Max-Cut formulation is very close to the Ising model problem, easily mapped on
existing qubit interconnects. Moreover, the classical community has studied this prob-
lem well, with several open-source implementations of heuristics (e.g., the MQLib [7]).

Let G def
= (V,E) the graph with a set of vertices V and a set of edges E. The maximum

cut of a graph is the partition of its vertices into two subsets S and T such that the
number of edges shared by S and T is maximum. The cost function to be maximized
is C(G)=−

∑
i,j∈Eωijsisj with si,sj=±1. The problem is turned into a minimization

problem by changing the sign of ωij.
Our instances of the Max-Cut problem are generated from the topology of four
D-Wave systems. Random ωij coefficients are drawn from the set {+1,−1} with same
probability. Each instance is strongly favorable to D-Wave systems as it perfectly
maps the topology of the quantum chip. However, the generated Ising Spin-glass
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problem is still hard to solve for classical heuristics. Results are presented in Table 1.
The benchmark is done on 30 instances for each graph, considering D-Wave solutions
as reference solutions. The annealing time is set to 100µs and the sampling is done
over 256 shots (nbshots). We did not tune the gauge inversion or pausing times.
The D-Wave’s performance is compared with algorithms from the MQLib [7] that
constitute state-of-the-art methods used to solve the Max-Cut problem. Each classical
algorithm is run over three time periods (1 s, 10 s, 100 s) on a single processor Intel®

CoreTM i7-6600U 2.6GHz. The metric cϵ is measured for ϵ∈{0,0.01,0.05,0.1}. For
large graphs (i.e., Chimera and Pegasus) D-Wave annealers constantly outperform
classical heuristics, even with less run time. The classical heuristics perform well on
smaller graph (Zephyr) and outperform some reference solutions found by D-Wave,
even with less run time. However, the competitive performance of the D-Wave systems
must be interpreted considering the coverage rate of tested instances, shown in the Fig.
2a. These four graphs cover a very small range of graph-specific coverage metrics (less
than 10% for almost every metric with ϵ=0.05). The run time of D-Wave systems
is low because the set of instances, owing to their topology, avoids time-consuming
operations such as reduction, embedding and hyper-parameter settings (see Fig. 2b).
This use case shows the importance of being transparent about experiments done on
quantum devices. The topology of instances strongly impacts the quality of the results

Table 1: Performance comparison between quantum and classical algorithms used to
solve the Max-Cut problem on four different graphs tailored for D-Wave’s quantum
chips topology. Results are averaged over 30 instances for each graph. Green cells
underline best classical runs for each time frame:{1, 10, 100}.

Quantum
solvers

Wall
clock
time
(s)

Chimera graph
DW 2000Q
|V| :2041
|E| :5974

Pegasus graph
Adv4.1
|V| :5621
|E| :40279

Pegasus graph
Adv6.1
|V| :5616
|E| :40135

Zephyr graph
Adv2
|V| :563
|E| :4790

DW2000Q 1.43 cref / / /

Adv4.1 2.90 / cref / /

Adv6.1 2.88 / / cref /

Adv2 1.18 / / / cref

Classical r0 r0.01 r0.05 r0.1 r0 r0.01 r0.05 r0.1 r0 r0.01 r0.05 r0.1 r0 r0.01 r0.05 r0.1
Random 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03

DUARTE 1 0 0 0.97 1 0 0 0.9 1 0 0 0.7 1 0.1 0.3 1 1
2005 10 0 0 1 1 0 0 1 1 0 0 1 1 0.23 0.47 1 1

100 0 0 1 1 0 0 1 1 0 0 1 1 0.4 0.6 1 1

FESTA 1 0 0 0 1 0 0 0 0.37 0 0 0 0.53 0 0.17 0.93 1
2002 10 0 0 0.9 1 0 0 0 1 0 0 0 0.9 0.3 0.5 1 1
GPR 100 0 0 1 1 0 0 0 1 0 0 0 1 0.3 0.53 1 1

FESTA 1 0 0 0 1 0 0 0.03 1 0 0 0 1 0 0.07 0.97 1
2002 10 0 0 0 1 0 0 0.03 1 0 0 0.07 1 0.1 0.3 1 1
GVNS 100 0 0 0 1 0 0 0.33 1 0 0 0.23 1 0.17 0.5 1 1

FESTA 1 0 0 0.03 1 0 0 0.03 1 0 0 0 1 0.07 0.27 1 1
2002 10 0 0 1 1 0 0 0.17 1 0 0 0.2 1 0.3 0.6 1 1

GVNSPR 100 0 0 1 1 0 0 0.5 1 0 0 0.37 1 0.4 0.67 1 1
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(a) Coverage of instances (b) Quantum heuristics run time

Fig. 2: (a) Shows the coverage rate of the set of evaluated instances. Coverage rates
are computed from normalized graph metrics such as density, diameter, eccentricity,
etc. The last metric measures the qubit mapping efficiency. The minimum, maximum,
mean and standard deviation are available to study the distribution of these
metrics. The coverage rate corresponds to the total length of intervals in C0.05(f,I).
(b) Details the run time of quantum heuristics. Each time is averaged over the
30 instances. treduction, tembedding and thyper−pq are set to 0 as the study does not
require any of the corresponding computational task.

returned by quantum devices. The coverage metric quantifies its robustness and can be
used to identify classes of instances producing high-quality results on quantum devices.

3 Conclusion

This paper has introduced the TAQOS benchmark methodology, which fairly com-
pares classical and quantum heuristics performance. TAQOS is a scalable framework
of metrics that analyses the trade-offs between quality and robustness. It constitutes
a competitive methodology to benchmark hybrid algorithms such as AQO and the
QAOA. It uses field-proven metrics to compare quantum to classical results obtained
with existing benchmark methodologies. This paper illustrated the application of
the TAQOS protocol on the Max-Cut problem in a favorable context for D-Wave
systems and showed that performance reports should consider instances set coverage
to avoid misleading conclusions. The use case illustrates the ability of TAQOS to
gauge the fairness of quantum optimization experiments. In particular, this allows
us to separate the experiments favorable to some quantum hardware from the more
generic experiments that would manifest a real and robust quantum advantage. Future
studies will be done on other optimization problems (especially Higher Order Binary
Optimization problems and the TSP). This future work will provide insight into
problems and instance properties that might benefit from a quantum advantage.
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