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Abstract. We present two variants of the QAOA modification for solv-
ing constrained combinatorial problems. The results presented in this
paper were obtained using the QHyper framework, which we developed
specifically for this purpose. More specifically, we use the created frame-
work to compare the QAOA results with its two modifications, namely:
Weight-Free QAOA (WF-QAOA) and Hyper QAOA (H-QAOA). Addi-
tionally, we compare the Basin-hopping global optimization method for
subsequent sampling of the initial points for the proposed QAOA mod-
ifications with a simple Random Search. The results obtained for the
Knapsack Problem indicate that the proposed solution outperforms the
original QAOA algorithm and can be promising for QUBO, where ad-
justing the relative importance of the cost function and the constraints
is a significant challenge.

Keywords: QAOA - Constrained Optimization - Hyperparameters -
QUBO - Penalty

1 Introduction

Recently, using and developing quantum algorithms for solving combinatorial
problems is becoming a popular subject in the research field of quantum compu-
tation. Examples of the main findings in this area include variational algorithms
for gate-based quantum devices, such as the Quantum Approximate Optimiza-
tion Algorithm (QAOA) [4], or quantum annealing solvers realized by D-Wave
deviceﬂ However, successful usage of such algorithms usually requires careful
setting of their initial parameters, which is quite crucial yet nontrivial task.
Furthermore, the required formulation of the objective function as Quantum
Unconstrained Binary Optimization (QUBO) in most cases requires cautious
setting of weights between the cost function and the constraints. This is also
not obvious; therefore, the weights often become additional hyperparameters
of the problem. There are also attempts to efficiently search for such parame-
ters and hyperparameters [1}/13,/15] but research in this direction is in its early
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development stage. In this paper, we propose two variants of the QAOA modi-
fication that improve optimization for constrained problems. The first modifica-
tion (Weight-Free QAOA or WF-QAOA) is based on the definition of the new
weight-free observable for the QAOA-based variational algorithm. Furthermore,
this allows extending the variational parameter set with the QUBO weights
in the second modification (Hyper QAOA or H-QAOA). When comparing the
performance of the proposed variants, we examined two ways of sampling the
initial points for the variational algorithms: simple Random Search and global
optimizer Basin-hopping [18]. Additionally, to facilitate conducting a variety
of planned experiments, we introduce the architecture of the QHyper software
framework as a modular tool for researchers. The results show that the proposed
variants perform better than the regular QAOA algorithm. Random Search with
WF-QAOA produced the best results when the number of variational algorithm
launches was small. However, Basin Hopping variants performed better with a
larger number of the algorithm launches, particularly when using multiple ini-
tial points. Although we present the results using the Knapsack Problem, the
proposed solution can be used for any combinatorial problem transformed to
QUBO.

This paper is organized as follows: in Section [2] we introduce important pre-
liminaries and in Section |3| we describe related work. The proposed variants of
the QAOA modification are shown in Section ] The QHyper experiment frame-
work is presented in Section [B] Section [6] discusses different sampling methods
based on global optimizers used in our experiments. The results are presented
in Section [ and conclusions can be found in Section

2 Preliminaries

In this section, we provide a concise overview of the key aspects related to quan-
tum solutions for combinatorial problems necessary to enhance the the readabil-
ity of the paper.

2.1 Combinatorial Problem Formulation Models

In the Constrained Quadratic Mode]ﬁ (CQM), the cost function Cy(x) can be
represented using an n X n cost matrix C' where

Ci(x) = xl'Cx = Z CiiTi + Zcijximj 4+ const. (1)

% 1<j

Similarly, the constraints are given by functions chk) (x) represented by an n xn

cost matrix G*) where
chk)(:v) —2"GWgx = ngf)xl + Zggc)xiwj + const o0 (2)
i i<j

4 https://docs.ocean.dwavesys.com/en/stable/concepts/cqm. html
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where k = 1,..., M and M is the number of constraints. The variables {z;};=1..~
can be binary or integer and the matrices C G are real-valued. The symbol
o denotes a comparison operator {>, <, =}.

To use quantum solvers, the CQM problem must be transformed into the
forms of and , where all {z;};=1,.. ~ are binary. Additionally, all functions

have to be combined into Quantum Unconstrained Binary Optimization. In the

first step, this is done by transforming the constraints chk) (z)o0 into the equality

constraints K}k) () = 0 where V:E,K}k) () > 0. Next, by adding weighted
constraints and the cost function together, the objective function is obtained
in the form

M
foupo(x) = aoCy(x) + Y ark (™ (@), (3)
k=1

where «q is the weight of the cost function and «j is the weight of the k-th
constraint, a; > 0.

2.2 Quantum Approximate Optimization Algorithm

The QAOA is a variational combinatorial optimization algorithm for gate-based
quantum devices. To apply the algorithm, the objective function foupo(x) is
translated into the cost Hamiltonian Hg

M
He = agHe, + Y arHyo, (4)
k=1 !
where Hg ' and H (k) are the Hamiltonians that encode the cost function and

the constraints, respfectively. In addition, a mixing Hamiltonian Hp; that is not
commuting with H¢ is required. A common choice is Hy; = Ef\il X;, where X;
is the Pauli-X gate. The QAOA ansatz consists of p alternating layers Ugo and
Uum

Uc(y) = e 1@, (5)

Um (B) = eiiﬁHMv (6)

where v, 3 are adjustable parameters. The algorithm uses a chosen classical
optimizer to minimize the expectation value

FP(PYMB) = <73/6|HC |77Ig>’ (7)

of the quantum state prepared with a quantum device (or its simulator):

7, 8) = Unt(Bp)Uc(vp) -+ - Unt (B1)Uc (1) 4™, (8)

where |—|—)®" is a uniform superposition of n qubits. The optimization is per-

formed with respect to 2p parameters (v, 3) € [0, 27]? x [0, 7]?.
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2.3 Knapsack Problem

The Knapsack Problem is a combinatorial optimization problem where given a
set of items, each of a certain weight and value, the aim is to determine which
items should be packed to the knapsack to maximize the total value of selected
items while not exceeding the knapsack’s weight limit. The problem can be
represented as a QUBO [9]

N w w N
feupo_kp(®,y) = —ag Z cizi+on(l— Z%)Q + al(z i — Z wiz;)?, (9)
i=1 i=1 i=1 i=1

where N is the number of items available, W is the maximum weight of the
knapsack, ¢; and w; are the value and weight of the item i, respectively. & = [z;]n
is a Boolean vector, where x; = 1 if and only if the item ¢ was selected to be
inserted into the knapsack. y = [y;]w is a one-hot vector where y; = 1 if and
only if the weight of the knapsack is equal to 7. In this paper, we focus on the
version from [9], where the weight for both of the constraints is the same. That
is, g is the weight of the cost function and «; is the weight of the constraints.

3 Related Work

The original version of the QAOA [4] focuses on solving unconstrained binary
optimization problems. However, constrained problems can also be solved by
this algorithm. There are two main methods to incorporate constraints into the
QAOA [8]. The first of them, called the hard constraints, is based on designing a
Quantum Approximate Optimization Ansatz with a special mixing Hamiltonian
that prevents finding unfeasible solutions |7|. Examples of such mixing Hamilto-
nians include XY mixers (and their variations) [58}/19], Grover mixers [2], and
problem-specific mixers based on the use of quantum machine learning [14].

Another option — called soft constraints — is incorporating the constraints
in the objective function (in the form of QUBO) and using the standard X mix-
ing Hamiltonian. In this case, setting optimal weights between the cost function
and the constraints that will allow obtaining feasible results is a major challenge.
There are several methods available to select appropriate weights. These include
ways of static settings of weights using the information taken from the objec-
tive function, such as the maximum QUBO coefficient or the maximum absolute
value of the difference achieved by flipping one QUBO variable [1]. There are also
efforts of using Monte Carlo-based iterative improvement of distribution from
which hyperparameters are sampled, such as the Cross Entropy Method [15] or
Tree-structured Parzen Estimator [13]. Monte Carlo methods are also an inspi-
ration for global optimizers such as SHGO [3]| or Basin-hopping [18]. As these
methods originated from effort towards finding the minimum energy structure
for molecules [12], their usefulness in the context of Quantum Variational Algo-
rithms is a promising approach [6}10].

To the best of our knowledge, the QAOA modification proposed in this pa-
per (see Section [4)) was never considered in the literature. Additionally, although
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most of the libraries for gate-based quantum computation provide an implemen-
tation of variational algorithms such as QAOA and VQE [16], performing ex-
periments that join global optimizers with QAOA variants requires additional
tedious effort from the researchers. The presented QHyper system (see Section
is intended to fill this gap.

4 Proposed QAOA modifications for constrained
problems

In this section, we propose two QAOA modifications for QUBO-based con-
strained problems. The obtained experiment results for the Knapsack Problem
described in Section [7]indicated that presented variants seem to be a promising
alternative for the QAOA.

4.1 Weight-free Hamiltonian

A constrained problem presented in the Hamiltonian form (see Eq. [4]) as a di-
agonal matrix requires appropriate weights (a) setting so that the lower energy
states are better solutions than higher energy ones. In this paper, we propose the
formulation of an alternative weight-free diagonal Hamiltonian that satisfies the
condition of appropriate order of energies. The new Hamiltonian is used for the
expectation value estimation (see Eq. . The formulation is valid for problems
with cost function satisfying Cy(x) > 0 for all «, where & = [2;]5 is a binary
vector that encodes the solution fulfilling constraints (see Eq. . This is true for
numerous combinatorial problems including the Knapsack Problem. Under this
assumption, we define the Hamiltonian H,,¢ as a diagonal matrix of the order
2N namely

—Cy(x) if = satisfies constraints

0 otherwise (10)

H, ¢|decimal(x), decimal(x)] = {

Algorithm 1 Estimating Expectation Value with Weight-Free Hamiltonian

Require: results - vector of binary results from anzatz measurements in shots,
shots_num - number of shots

: for i = 1 — shots_num do
sol < results]i] > taking binary vector of solution ¢
if sol satisfies constraints then

score < —C'f(sol) > equivalent to (sol| Hyy |sol)
else

score <— 0 > equivalent to (sol| Hyy |sol)
end if
sum-+ = score
9: end for
10: exp_value = G-
11: return exp_value

> estimating expectation value of the measured state
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The main idea of the QAOA modification is to use an anzatz based on its
original Hamiltonian (see Eq. 4) while changing the operator for estimating the
expectation value. This is illustrated in Fig. in comparison to the regular
QAOA in Fig. The proposition can also be seen as a variant of the VQE
algorithm valid due to the variational principle [16].

Since the weight-free Hamiltonian is not used for the anzatz building, there
is also no need to present the full formula of the new Hamiltonian as the Ising
model. We require only a simple algorithmic way of calculating eigenstates for
a fixed number of eigenvectors that were measured to estimate the expectation
value. This is presented as Algorithm

Prepare Use local Prepare Use local Prepare Use local
quantum state optimizer quantum state optimizer quantum state optimizer
[%(v, B)) Fnew, Brew [%(v, B)) Ynew, Brew [%(7,B,)) | |Vnews Bnew, new
L Compute Compute Compute
expectatlon value expectation value expectation value
P(7, B) | Hel (v, B)) (W, )lefl"/"('yv B)) (¥(7, B, a)lefl"/"('Yv B, )
Return result Retu.m result Return result
and best params and best params and best params
a) QAOA ) WF-QAOA (c) H-QAOA

Fig.1: Comparison of execution schemes for regular QAOA(a), Weight-free
QAOA (b) and Hyper QAOA(c)

4.2 Alternate variational parameter set

For anzétze built with weighted Hamiltonians (see Eq. , the measurement re-
sult depends not only on the choice of the 7, 3 angles but also on the Hamiltonian
weights — hyperparameters a.. Based on Eq. 4| and Eq. |p|it can be observed that
the Ug layer that encodes the objective function of the optimization problem is
parameterized by both the angle v; and the weights «

M

vl e 13 Ry 4 UC( 77l) - exp( Q- ’YI(QOHCJ" + ZakHK(k)))
k=1

(11)
= exp(—i-1(naoHe, + Z%%HKM))
k=1

= Uzv(ma,l).

The vector of hyperparameters a must be a proper multiplier for all of the p
angles 7. As a result, a can be treated as an additional variational parameter
together with 4 and 3. Therefore, we propose the Hyper QAOA (H-QAOA)
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extension using such parameters set with a weight-free Hamiltonian as an ob-
servable (see Fig. [Ld).

5 QHyper Experiment Framework

The experiments results presented in this paper were performed using the QHy-
per framework designed as a software support tool for researchers working with
the problem of setting hyperparameters. The architecture of the system is shown
in Fig. 2] Below, we present the main components of the system.

Supported combinatorial optimization problems. QHyper allows defin-
ing various optimization problems that can be solved by integrated solvers. The
problem definition should include a cost function and a constraint list in the
form of Sympy expressionsﬂ The definitions should satisfy the requirements of
the CQM model (see Section . QHyper supports the transformation of CQM
to QUBO based on the D-Wave dimod libraryﬂ The produced QUBO can then
be passed to any available solver in our framework. Currently, the library’s limi-
tations restrict the transformation of CQMs to QUBOs only to linear constraints.
Inspired by the results from [15] we chose the Knapsack Problem as the use case
for our research. However, the system includes other predefined problems such as
multistage calculations planning (the Workflow Scheduling Problem [17]) or the
Traveling Salesman Problem [9]. Custom problem definitions can also be added.

Solver

Global Optimizer QAOA

Problem Random

Knapsack Problem WF-QAOA
B C rrm—s——

Basin-hopping

Other combinatorial H-QAOA
problems
\ J/ Other methods

P

(CEM)

\ / Other solvers
(CQM, Gurobi)

Fig.2: QHyper architecture.

® https://docs.sympy.org/latest/tutorials/intro-tutorial/intro.html
S https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/
generated/dimod.cqm_to_bgm.html
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Supported solvers. Currently, as shown in Fig. 2] the system is integrated
with different types of solvers. Apart from the regular QAOA solver (see Sec-
tion , modifications proposed in Section [4| are provided, namely: WF-QAOA
described in Section [£.1] and H-QAOA with both modifications from Section
The solvers are implemented using the PennyLaneﬂ library. Additionally, the
system also provides an overlay to the D-Wave Leap CQM Solvelﬂ Another
integrated solver is the purely classical solution Gurobi’] that is used as a conve-
nient reference method. The modular structure of the system enables effortless
integration of additional solvers.

Global optimizers. We added the possibility of different sampling of the initial
parameters set by using a predefined set of global optimizers. Currently, QHyper
supports the following: Basin-hopping, the Cross Entropy Method (CEM), and
the simple parallel optimizer based on a Random Search. The details of the
possible variants used in this paper are presented in Section [f]

# 1. Creating the Knapsack Problem instance
knapsack = KnapsackProblem(max_weight=1, items=[(1, 2), (1, 1)])

s # 2. Specyfing the solver configuration

1

N
1

solver_config = {
# Choosing the type of the local optimizer
’optimizer’: {
’type’: ’scipy’,
’maxfun’: 200

}:
# Choosing the type of the parameterized quantum circuit
'pac’: {
’type’: ’hqaoa’,
’layers’: 5,
b

5 3

; # 3. Specyfing the initial parameters configuration

params_config = {
’angles’: [[0.5]%5, [1]%5],
*hyper_args’: [1, 2.5, 2.5],
}
# 4. Creating the variational algorithm (VQA)

> vqa = VQA(knapsack, config=solver_config)
; # 5. Creating the Random global optimizer

random = Random(processes=5, number_of_samples=100,
bounds=[[1, 10], [1, 10], [1, 1011)

# 6. Running the solver with the Random hyperoptimizer

best_params = vqa.solve(params_cofing, random)}

Code Listing 1.1: Sample usage of QHyper for solving a Knapsack Problem

" https://pennylane.ai/
8 https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html)
9 https://www.gurobi.com/
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Example usage. Code snippet in the Listing. shows the sample usage of
the QHyper API. In the example, the H-QAOA solver is used with the default
optimizer from the Scipy library (Broyden—Fletcher—Goldfarb—Shanno — BFGS
[11]). As the example of a global optimizer Random Search was chosen.

6 Global Optimizer Variants

In this work we used QHyper to compare three variants of QAOA-inspired solvers
described in Section[d] We employed two different probabilistic global optimizers.
In the first case, we used a simple Random Search (RS) approach, where an N-
element set of parameter vectors is sampled from the uniform distribution. Next,
for each vector, a separate variational algorithm is launched. In the QHyper
system, in the case of simulation of the quantum algorithm on the classical HPC
machine, this is done in parallel (parameter study approach). After the execution,
the best result is chosen. The detailed pseudocode is shown as Algorithm

Algorithm 2 Random Search

Require: n - samples number, a - vector of lower bounds, b - vector of upper bounds
1: LlyeeeyTp ™~ u[a,b]
2: v1,...,Un < variational algorithm(x1), ..., variational_algorithm (zy) > This step
can be done in parallel
3: return (z;,v;), where v; = min(vi, ..., vy)

Algorithm 3 Basin-hopping

Require: zo - initial guess, niter - number of Basin-hopping iterations, stepsize -
maximum step size for use in the random displacement, a - vector of lower bounds,
b - vector of upper bound

1: v_zo  variational algorithm(zo)

2: for i =1 — niter do

3: x < random_step(xo) > The step is chosen uniformly in the region from

zo-stepsize to xo+stepsize, in each dimension

4: while z ¢ (a,b) or x doesn’t meet all criteria do
5: x < random_step(xo)

6: end while

T v_x < variational_algorithm(x)

8: if v.xr < wv_zo then

9: xTo < T
10: V_Xg — VT
11: end if
12: end for

13: return (xo,v_xo)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36030-5_10 |



https://dx.doi.org/10.1007/978-3-031-36030-5_10
https://dx.doi.org/10.1007/978-3-031-36030-5_10

10 T. Lamza, J. Zawalska, M. Sterzel and K. Rycerz

In the second case, single sampling with improvement was used on the exam-
ple of the Basin-hopping algorithm [18]. A single parameter vector is sampled
with the uniform distribution. Next, the variational algorithm is run and its out-
put is accepted if the result is better. Finally, the next parameter vector is chosen
uniformly in the region around the last accepted result. The process is repeated
N times and, after that, the best result is chosen. The detailed pseudocode of
the Basin-hopping algorithm is shown as Algorithm [3]

7 Experiment Results

All experiments were performed on a Knapsack Problem instance with three
items, each with a weight of 1 and values of 2, 2, and 1. The maximum knap-
sack weight capacity was 2, so the maximum possible value was 4. Hence the
number of binary variables is equal to 5. To compare the results of all the pre-
sented approaches, the same local minimizer was used (the Scipy implementa-
tion of L-BFGS-B). The sampling range for angles v, 3 € [0, 27|, and for weights
a1, as € [1,10], where oy, as € R. We set the number of layers in each variational
algorithm to p = 5.

Random Search tests were performed by sampling 10.000 initial points (i.e.,
variational parameter initial sets) and then calculating the results of Algorithm
for each point. In particular, as we wanted to check the performance against the
number of variational algorithm (QAOA, WS-WAOA or H-QAOA) launches,
the results were obtained as follows (n — number of launches of a particular
QAOA-based variant):

— shuffle set of 10.000 points,

split initial set into 10.000/n groups, each containing n points,

— for each group, find the minimum value in this group,

calculate mean and standard deviation for the 10.000/n minimum values.

Tests for Basin-hopping (see detailed parameters in Tab. [1]) were performed
with different numbers of starting points, keeping the number of variational
algorithm launches the same as for Random Search. For Basin-hopping the choice
of the initial point is important as it determines the next steps of the algorithm
(see random_step() in Algorithm [3). Therefore, in this paper, we also compare
the results of splitting the global optimizer run into several independent trials
with different initial points. These configurations were: (10, 1), (10, 5), (10, 10),
(10, 20), (10, 25), (10, 50), (10, 100), (50, 1), (50, 2), (50, 4), (50, 5), (50, 10),
(50, 20), (100, 1), (100, 2), (100, 5), (100, 10), (200, 1), (200, 5), (250, 1), (250,
2), (250, 4), (500, 1), (500, 2), (1000, 1), where the first number indicates the
number of iterations per initial point, and the second one indicates the number
of initial points. Each configuration was tested 10 times and then the mean and
standard deviation were calculated. All calculations were performed on Ares
Supercomputer (ACC Cyfronet AGH) with an Intel(R) Xeon(R) Platinum 8268
CPU @ 2.90GHz.
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Table 1: Basin-hopping parameters. N is the number of iterations per init point.
The description of each parameter can be found in the SciPy documentation.

Basin-hopping parameters
To niter|T|stepsize|interval
init point| N |1]| 0.5 50
¢ RANDOM QAOA
—1.251 ® RANDOM WF-QAOA
Y RANDOM H-QAOA
~1.501 4 BASIN-HOPPING WF-QAOA
BASIN-HOPPING H-QAOA

s
E —1.751
c
=l
T —2.001
(8]
@
o
x
@ —2.254
v
[}
©
(%]
& —2.50
C
z

~2.751 } jl

—3.00

10 50 100 200 250 500 1000
Number of variational algorithm launches

Fig. 3: Negated knapsack expectation value calculated by Algorithmwith stan-
dard deviation (standard error, normalized by N — 1). For Basin-hopping only
the best configuration for each number of launches was chosen (the exact ratio
of initial points and number of iterations can be found in Tab. . The lower the
expectation value, the better the quality of the results.
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Table 2: The detailed results from Fig |3| with Basin-hopping configuration of

number of iterations (iters) and number of initial points (init).
Basin-hopping Random Search

H-QAOA WF-QAOA

iters|inits| result [iters|inits| result H-QAOA [WF-QAOA| QAOA

10 | 1 |-1.89+0.26 10 | 1 |[-1.934+0.24|-1.8740.24|-1.99+£0.24 |-1.424+0.27
10 | 5 [-2.214£0.25] 10 | 5 |-2.234+0.21]-2.1740.21|-2.2940.20 |-1.76£0.22
100 | 10 | 10 |-2.37£0.25| 10 | 10 |-2.36+£0.21|-2.2940.22| -2.39£0.17 |-1.89+£0.20
200 | 10 | 20 [-2.494+0.25/200 | 1 |-2.4840.27|-2.39£0.22|-2.51+£0.17 |-1.9940.21
250 | 10 | 25 |-2.56£0.22| 50 | 5 [-2.50£0.19(-2.43£0.22|-2.52£0.17 |-2.02£0.20
500 (250 | 2 [-2.6940.16| 10 | 50 |-2.6340.23|-2.55£0.22|-2.624+0.16 |-2.13£0.22
1000 10 | 100 |-2.80+£0.17{200 | 5 |[-2.85%+0.24|-2.6540.22|-2.71£0.17 |-2.2440.22

= l\{"ulmber
S| 2| of launches

Fig. [3| and the corresponding Tab. [2| indicate that with increasing number of
launches of the QAOA-based variants, the results improve, which is expected.
We can observe that all the proposed modifications performed better than the
regular QAOA. For lower number of variational algorithm launches, the best
results were achieved by Random Search with WF-QAOA. On the contrary,
Basin Hopping variants took advantage of higher number of launches, especially
with more initial points (see Tab. |2| for details) and performed slightly better.
In general, the difference between results of Basin-hopping H-QAOA and WF-
QAOA extensions is very small and requires further investigation.

8 Summary and Future Work

In this paper, we proposed two variants of QAOA modifications dedicated to
constrained combinatorial problems. The first one is based on using weight-free
Hamiltonian as the observable. The second method further extends this idea by
adding QUBO weights to the set of variational parameters. We used the pre-
sented QHyper framework to compare proposed modifications with the original
algorithm on the example of the Knapsack Problem. Additionally, we compare
the sampling of the initial variational parameters using two global optimizers:
a simple Random Search and a more sophisticated algorithm — Basin-hopping.
All of the proposed modifications outperform the original QAOA algorithm. Due
to the flexibility of the QHyper API, we were able to quickly evaluate various
approaches with different configurations. Additionally, the modular architecture
of QHyper should allow for extension to repeat experiments for a new problem.

Our experiments demonstrate that using the proposed weight-free Hamil-
tonian (see Section to calculate the expectation value of the problem cost
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function can have a significant impact on the outcomes. This is feasible in gate-
based variational algorithms, where the Hamiltonian used for the ansatz problem
encoding does not have to be identical to the actual observable. What is more,
estimating the expectation value can be performed using a classical algorithm
based on a fixed number of measurement results (see Algorithm ). On the con-
trary, the solution cannot be easily transformed to quantum annealers, where
the Ising formulation of the problem Hamiltonian is required.

The next step will be to further investigate the impact of the Basin-hopping
method on the results as well as the usefulness of other global optimizers such
as the CEM. We also plan to try out the presented approach on larger Knap-
sack Problem instances and for different problems like the Traveling Salesman
Problem or the Workflow Scheduling Problem.
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