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Abstract. One of the first fields where quantum computing will likely
show its use is optimisation. Many optimisation problems naturally arise
in a quadratic manner, such as the quadratic knapsack problem. The
current state of quantum computers requires these problems to be for-
mulated as a quadratic unconstrained binary optimisation problem, or
QUBO. Constrained quadratic binary optimisation can be translated
into QUBOs by translating the constraint. However, this translation can
be made in several ways, which can have a large impact on the perfor-
mance when solving the QUBO. We show six different formulations for
the quadratic knapsack problem and compare their performance using
simulated annealing. The best performance is obtained by a formulation
that uses no auxiliary variables for modelling the inequality constraint.

Keywords: quadratic knapsack problem · quadratic unconstrained bi-
nary optimisation problem · quantum computing · simulated annealing

1 Introduction

Over the past decades quantum computing research has made an impressive
growth. In less than 25 years, quantum computers have evolved from laboratory
experiments to public-access devices which are already being used in practice
[8, 19]. While there is currently no advantage in using quantum devices over
their classical counterparts, their development suggests that this may soon be
otherwise. Experts believe that quantum computers will first show its use in the
fields of chemistry, machine learning and optimisation, as indicated by [21]. In
this work, we will focus on the latter.

Within the field of optimisation, the Knapsack Problem is well-known. In
short, the problem entails of selecting a subset of items with the highest total
gain, such that the weight or costs of that subset is below a certain limit. In
mathematical terms we can define it as follows. We have a list of N objects,
labelled by indices i, where the weight of each object is given by wi, and its
value given by ci. We have a knapsack which can only carry weight W . If xi is
a binary variable denoting whether (denoted by 1) or not (denoted by 0) object
i is contained in the knapsack, the total weight and gain of the knapsack are:
W =

∑N
i=1 wixi and C =

∑N
i=1 cixi, respectively. We wish to maximise within
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the limitations of our knapsack, which gives the optimisation problem max C
such that W ≤ W.

Over the years, various adaptations to the basic knapsack problem have been
proposed. In [1] and [4], they give an overview of such adaptations, such as
multiple knapsacks, special constraints, fractional items, multiple dimensions
and many more. This work studies the adaptation called the Quadratic Knapsack
Problem (QKP) as proposed by [9]. The knapsack problem above is extended
by adding a value cij for every two nodes i and j. This value equals the extra
gain we obtain if both object i and j are in the knapsack. Using the notation
cii = ci, the total gain in case of the QKP then equals: C =

∑N
i=1

∑N
j=1 cijxixj ,

which is a problem of quadratic nature. The problem is known to be (strongly)
NP-hard as shown in [12]. Applications of the QKP can be found in the field of
telecommunication, logistics, production and more [20].

Numerous methods have been proposed to solve the QKP since its intro-
duction in 1980. From early on, various methods based upon the Langrangian
methods were proposed, for example by Billionnet et al. [2] and Caprara et al. [5].
These methods work by decomposing the QKP in smaller instances, after which a
branch-and-bound algorithm is used to find the final solution. A similar approach
is given by Pisinger et al. [20], which reduces the dimension of the problem by
aggresive reduction instead of decomposition, after which a branch-and-bound
algorithm is used to find the final solution as well. Other methods take a different
approach in which they linearise the QKP, after which the method ends with a
branch-and-bound algorithm again. For example, Billionnet and Soutif [3] pro-
posed three ways of linearising the QKP using Mixed-Integer Programs, while
Rodrigues et al. [23] obtained linearisation by replacing quadratic terms by lin-
ear constraints. More recently, Schauer [24] showed that a greedy algorithm
achieves asymptotically the same results on the instances usually used in QKP
works. The most recent work comes from Fomeni et al. [6], which presented a
cut-and-branch algorithm which combines the concepts of cutting-planes and
branch-and-bound.

With the rise of quantum computing, it is interesting to wonder how quan-
tum devices perform at solving the QKP. Especially the quadratic nature of the
QKP is of particular interest for quantum computing, as currently most quan-
tum computing methods for solving optimisation problems require problems to
be of quadratic nature. While we do not expect quantum computing to efficiently
give best-case solutions for all NP-hard problems, it does seem to help in find-
ing better approximate solutions and finding them faster [21], as shown in, for
example, [13, 16, 19].

To apply quantum computing to quadratic optimisation problems, we usually
require them to be formulated as a Quadratic Unconstrained Binary Optimisa-
tion problem (QUBO), or Ising problem. At the time of writing, there are two
popular quantum techniques that can solve QUBOs, namely the so-called Quan-
tum Approximate Optimisation Algorithm (QAOA) on gate-based quantum de-
vices, as proposed by [7], and Quantum Annealing, which runs on a different
form of quantum device, namely quantum annealers [11]. While these methods
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solve such QUBOs in a generic, problem-independent way, the formulating of
such QUBOs is different for each problem. It should be noted that there can be
different ways of formulating a problem as a QUBO.

For many famous optimisation problems at least one QUBO formulation is
known, examples of which can be found in [10, 14]. The second overview also
shows a QUBO formulation for the QKP, which is used in the thesis from [15].
On the contrary, the number of optimisation problems for which multiple QUBO
formulations are present in literature is much lower. Even if QUBO formula-
tions solve the same problem, they can be different both mathematically and
performance-wise. That is why for practical purposes, it can be interesting to
consider different QUBO formulations for the same problem.

In this work, we list various QUBO formulations for the QKP, either from
literature or constructed by the authors. In addition, we compare their perfor-
mance in practice by using the classical method of Simulated Annealing, which
is similar to quantum annealing. While different mathematically equivalent for-
mulations for general QUBOs have been studied before [22], we take a different
approach. We specifically consider how the translation of the constraint into the
QUBO influences its performance. To the our best knowledge, we are the first to
make a comparison of the performance of different QUBO formulations for the
QKP based on different ways of incorporating the constraint into the QUBO.
While our work focuses on the QKP, it has implications for other optimisation
problems as well. Particularly, we show that it can be very beneficial to consider
other or multiple ways of translating constraints into a QUBO.

We have structured our work as follows. We start with background informa-
tion on quantum and simulated annealing, a definition of a QUBO and different
QUBO formulations for the QKP in Section 2. Then, we describe our approach
at comparing these formulations and list the corresponding results in Section 3.
In Section 4 the conclusions and directions for further research are presented.

2 Background

In this section we explain how quantum and simulated annealing works and
define the general QUBO formulation. Subsequently, we explain how to formulate
the Quadratic Knapsack Problem as a QUBO and present five additional QUBO
formulations of the QKP. All of these formulations use a different technique to
include the weight constraint into the objective function.

2.1 Quantum and Simulated Annealing

Quantum annealing is a quantum computing optimisation process specifically
suitable for finding minimal solutions of objective functions with many local
minima. It is designed for objective functions which have a certain number of
binary decision variables and it works by mapping each of the decision variables
to one or multiple qubits on the quantum annealer. Each of the basis states of
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the qubits then correspond to a possible assignment of the decision variables.
QUBO problems are perfectly suitable for being solved in a quantum annealer.

A quantum annealer finds minima in the following way. It starts out in an
equal superposition of all possible states, after which it lets the qubits evolve
under a problem-specific Hamiltonian. This Hamiltonian yields a certain energy
landscape, in which minima of the energy landscape corresponds to minimal
solutions of the original objective function. By evolving this system for a suitable
time, the quantum state ends up near a minimum of the energy landscape, after
which a measurement likely results into a local minimum of the objective function
with high probability. The shape of the energy landscape directly influences the
ability of the system to evolve towards lower local minima. In general, a smoother
energy landscape results in lower minima and hence has a better performance.

In this work we do not work with quantum annealing, but with simulated
annealing instead. This which can be seen as the classical alternative of quantum
annealing , but it does not simulate quantum annealing. Instead, it simulates the
annealing process found in metallurgy. Still, simulated annealing is suitable for
the same family of problems as quantum annealing. Just like quantum annealing,
simulated annealing is a method which walks along the energy landscape and
tries to find local minima. Where quantum annealing achieves this by running a
quantum system under a specific Hamiltonian, simulated annealing uses a tem-
perature parameter. At each time step, the simulated annealing solver chooses
a candidate solution which directly neighbours the current solution. When the
temperature parameter is higher, the system is more likely to accept worse solu-
tions, allowing it to explore a wide range of solutions. By gradually decreasing
the temperature, this becomes less likely because of which the system is likely
to settle in one of the local minima at the end of the process.

2.2 QUBO Definition

A QUBO is an optimisation problem of the form min y = xtQx, where x ∈
{0, 1}n are binary decision variables and Q is an n × n coefficient matrix. The
term y is called the objective function. Note that this expression contains linear
as well as quadratic terms, as x2

i = xi for decision variables xi ∈ {0, 1}. Many
NP-hard problems can be written as a QUBO [10].

While some NP-hard problems naturally arise in this form, most, including
the QKP, contain constraints as well. If these constraints are linear, they can
be transformed into a quadratic penalty function and added to the objective
function. This should be done so that that minimising the penalty function
corresponds to satisfying the constraints. In this way we can write quadratic
problems with linear constraints as a QUBO as well. Linear inequality contraints
can be included as a quadratic penalty function as well by considering them as
many equality constraints together.

For example, consider a general quadratic objective function xtQx with linear
constraint Ax = b, corresponding to the problem,

min y = xtQx, subject to Ax = b. (1)
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We bring the constraint into the objective function by adding a penalty term:

min y = xtQx+ λ(Ax− b)t(Ax− b) = xtQx+ xtRx+ d = xtPx, (2)

where P = Q + R and the matrix R and constant d follow from the matrix
multiplication. Note that the term d can be neglected, as it is constant.

The term λ is called the weight of the penalty function, or the penalty value.
This parameter controls both the importance of the constraint, as well as the
performance of the resulting QUBO. On the one hand, larger values of λ corre-
spond to a higher likelihood that the constraint is met in minimal solutions. On
the other hand, larger values of λ also reduce the performance of the resulting
QUBO in practice. The choice of suitable weight is a study in itself and depends
largely on the application. While the theoretical value to enforce the constraint
can be computed for each use case, this usually results in too large weights, which
influence the energy landscape too much. Each time, a deliberate consideration
has to be made between performance and whether the constraints are satisfied.

2.3 Original QUBO Formulation for the QKP

To model the QKP as a QUBO, we start with the formulation from Section 1:

max C =

N∑
i=1

N∑
j=1

cijxixj s.t. W =

N∑
i=1

wixi ≤ W. (3)

If we assume the constraint in Eq. (1) to be an equality first, we can create the
following objective and penalty function respectively, with penalty weight λ:

N∑
j=1

N∑
i=1

cijxixj and λ

(
W −

N∑
i=1

wixi

)2

. (4)

To derive the inequality constraint we have to introduce auxiliary variables to
fill up the inequality to an equality:

HB = λ

(
W −

N∑
i=1

wixi −
M∑
j=1

2j−1yj

)2

,

where yj are M = ⌈log2(W +1)⌉ auxiliary binary variables. This yields a binary
sum which can yield all numbers up to W. This results in the following QUBO:

−
N∑
i=1

N∑
j=1

cijxixj + λ

(
W −

N∑
i=1

wixi −
M∑
k=1

2k−1yk

)2

. (5)

This QUBO formulation was originally posed by [10].
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2.4 Alternative QUBO Formulations for the QKP

We now list five alternative QUBO formulations for the QKP. These QUBO
formulations are devised by the authors and are, to the best of our knowledge,
not listed in literature yet. We call the formulation of Eq. (5) Type 1. All these
formulations can easily be shown to be solve the same QKP problem. For each
type, we will indicate what the difference is between the different formulations
and mention in which way they encode the constraint.

Type 2:

−
N∑
i=1

N∑
j=1

cijxixj + λ

((
W + 1− 2M−1

)
yM +

M−1∑
k=1

2k−1yk −
N∑
i=1

wixi

)2

. (6)

In contrast to Type 1, we use the slack variables to encode the remaining
capacity instead of encoding the total weight of the items. To achieve this, an
offset of 2M−1 − 1 is introduced and again a set of binary auxiliary variables. In
this case again M = ⌈log2(W + 1)⌉ auxiliary binary variables are needed.

Type 3:

−
N∑
i=1

N∑
j=1

cijxixj + λ

(
W −

N∑
i=1

wixi −
M∑
k=1

(k − 1) yk

)2

. (7)

This QUBO formulation is similar to Type 1, but in this definition a one-hot en-
coding is used instead of a binary one. Here, M = maxni=1 wi auxiliary variables
are needed, as any solution with a difference between total weight and capac-
ity larger than M is clearly suboptimal, since one can add any item without
violating the capacity constraint. Note that this QUBO formulation only works
when all cij are non-negative, when any of the cij are non-positive, one should
set M = W + 1. Also note that the one-hot encoding is not strictly enforced.

Type 4:

−
N∑
i=1

N∑
j=1

cijxixj + λ

(
M∑
k=1

(W − k + 1) yk −
N∑
i=1

wixi

)2

. (8)

This formulation is similar to Type 2, however we use a one-hot encoding
instead of a binary encoding. Here also, M = maxni=1 wi auxiliary variables are
needed, using the same trick. Again, this trick requires that all cij are non-
negative and if not, we require M = W + 1 auxiliary variables. Note that again
the one-hot encoding is not strictly enforced.

Type 5:

−
N∑
i=1

N∑
j=1

cijxixj + λ

(
W −Woffset −

N∑
i=1

wixi

)2

. (9)
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This type requires no auxiliary variables. The goal of this QUBO is to get the
total weight

∑N
i=1 wixi as close to the capacity W as possible. To achieve this,

we introduce a variable Woffset, which measures the offset from the capacity.
The QUBO then has the goal to get the capacity as close to the fictional capacity
Wfictional := W − Woffset as possible. Note that while this formulation does
have the advantage that it does not have any auxiliary binary variables, this
comes at the cost of having an extra free parameter Woffset.

Type 6:

−
N∑
i=1

N∑
j=1

cijxixj + λ1

(
W −

N∑
i=1

wixi −
M∑
k=1

(k − 1) yk

)2

+ λ2

(
M∑
k=1

yk − 1

)2

.

(10)

This type is an extension to type 3. By adding an extra penalty term with
weight λ2 we enforce the one-hot encoding in type 3. The original penalty term
has weight λ1. Again, we need M = maxni=1 wi auxiliary variables if all cij are
non-negative and M = W + 1 if not.

3 Benchmark of QUBO formulations

In this section, we compare the performance of the QUBO formulations defined
in the previous section. First, we discuss the QKP instances used to asses the
performance, and then reason which penalty values we used across the differ-
ent formulations. Finally, we discuss how we implemented these instances using
Simulated Annealing and present the performance of each QUBO formulation.

3.1 Problem Instances

We use the existing QKP instances from [3]. Each QKP instance is labelled as
N D S, which corresponds to an instance with the following parameters: the QKP
considers N objects, the matrix C = (cij) has density D, and the seed or index
of the instance is denoted by S. For each of the following combinations of N and
D, there are 10 different instances, namely D = 25%, 50% for N = 100, 200, 300
and D = 50%, 100% for N = 100, 200. For each instance, the cost values cij and
weight values wi lie in the interval [0, 100].

3.2 Penalty Values

We now discuss the process of determining penalty values for our different for-
mulations. To theoretically enforce the constraint, we require penalty values in
the order of magnitude of 10,000. However, our experience suggests that these
values do not work with annealing. As these values are much larger than the
QUBO entries, this would influence the energy landscape too much and likely
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result in a bad performance. Instead, we believe that penalty values between 1
and 10 will be more suitable. In addition, in [17], they suggest

λ = strength ·N ·D,

with a strength of 0.1. In our case this results in values from 2.5 to 20. That is
why we have decided to focus on penalty values between 1 and 20.

To determine the optimal penalty value for each formulation, we use sim-
ulated annealing to determine an approximation of where the optimal penalty
value should lie for each of the given QUBO formulations. For these experiments,
we try all integers from 1 to 10 as well as 15 and 20 as potential penalty values.
For QUBO Type 6 we take λ1 and λ2 to be equal.

From these initial experiments, it follows that the seed S has no significant
influence on the optimal penalty value, which is therefore discarded in the final
selection for the best penalty value. By considering 3 or 4 different seeds per
(size, density) instance, we determined the computed optimal values for each
(size, density) instance and QUBO type combination. Optimality is determined
by using the penalty value that results in the highest area-under-the-curve value
(see section 3.4 for an explanation). It turned out that the optimal penalty value
is independent of the QUBO type. However, the different instances show quite
a variety of optimal penalty values, ranging from 3 to 20. The resulting penalty
values can be found in Table 6.

For Type 5, we chose the offset variable as follows. As we believe that local
minima will likely lie close to the constraints, we choose offset variables which are
close to 0. To fully gauge the performance of this somewhat special formulation,
we consider it a total of six times, each with a different offset from 0 up to 5.

3.3 Approach

We now gauge the performance of the various QUBO formulations by finding
solutions with simulated annealing (SA). Specifically, we use the D-Wave im-
plementation3 with its default parameters. For each QUBO formulation with
corresponding penalty values, we run the following steps a total of 200 000 times:

1. Pick a random initial value for the simulated annealing algorithm.
2. Run simulated annealing for our QUBO formulation from this initial value.
3. Check whether the result satisfies the constraints. If so, we add it to our

results. If not, we discard it.

Note that we repeat the above steps 200 000 times to limit the considerable
amount of randomness involved in applying simulated annealing. We call each
of the 200 000 different runs an SA sample. Note that due to discarding of the
results not meeting the constraints, it is likely that for each QUBO formulation
there are less than 200 000 SA samples considered in the results below.

3 https://docs.ocean.dwavesys.com/projects/neal/en/latest/reference/sampler.html
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3.4 Results

In this section we discuss the results for each QUBO instance. We consider three
different metrics to measure the performance of the formulations, namely, the
best solution value that is found; the number of times the optimal4 value is found;
and the area-under-the-curve (AUC) value of the curve that plots the highest
solution value (y-axis) found within the number of SA samples (x-axis) so far.
The y-axis is normalised against the optimal solution values of the respective
instances as defined in [18]. More details can be found in below.

The first two metrics give an intuition on how likely it is that a given for-
mulation returns an optimal solution. However, it does not say anything about
the quality of other solutions. The AUC value tells us how many simulating an-
nealing steps one needs to get a good solution. In particular, the AUC value will
be high if a value close to the optimum is found within a reasonable number of
steps. If either of those are not the case it will be notably lower.

Best solution. The first performance metric is the best solution value found
after 200 000 SA samples. We gauge this best solution value by comparing it to
the optimum as a percentage of this optimum. This allows us to compare the
formulations over all problem instances. We also compare our best solutions
with those found by the QUBO formulation solved with SA in [15] to see how
our QUBO formulations perform against the solutions there. These results are
summarised in Tables 1 and 2.

Surprisingly, some of the solutions found in [15] return higher objective values
than the optimal value. It is suspected that these values belong to infeasible
solutions, since the optimal values found in [18] are widely assumed to be correct.
Despite this, it is interesting to see that, for most instances, the solutions of all
our QUBO formulations seem to be better than the SA solutions of [15].

Additionally, we find that formulations of Type 1, 2, and 4 seem to perform
worse. For Type 3, 5, and 6, we see similar performances, where one does not
clearly outperform the other. Although, we do observe that Type 5 performs
slightly better with higher offsets, especially for the larger instances.

Optimal solution fraction. This metric measures the number of times an
optimal solution is found. The results are shown in Table 3. We see that for most
instances - especially those with a higher number of objects - no optimal value
is found for all of the QUBO formulations. However, when an optimal value is
found by any QUBO type, then usually the Type 5 formulation also finds the
optimal value. In addition, the Type 5 formulations usually find the optimal
value most often, specifically the formulations with higher offset value.

Area under the curve The area-under-the-curve value represents the area
under the curve of which the graph which depicts the best solution found over a
certain number of SA samples. In this diagram, the x-axis denotes the number
of SA samples that have been taken from 500 up to and including 20 000, and
the y-axis denotes the best solution over all valid solutions given by this number

4 Optimal meaning true optimal solution for each instance (from [18]), and thus not
necessarily the best value we found.
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Table 1. Optimal objective value per instance, accompanied by the relative best found
objective value as a percentage of the optimal value for the QUBO formulations over
200,000 SA samples. The highest and lowest percentage per problem instance are dis-
played in bold and underline respectively.

Problem
instance

Optimal
value [15] Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Offset 0 Offset 1 Offset 2 Offset 3 Offset 4

100 25 1 18558 93.6% 97.8% 97.4% 97.7% 84.3% 97.8% 97.7% 97.6% 97.5% 98.3% 98.8%
100 25 2 56525 75.5% 85.1% 88.4% 97.3% 98.1% 98.7% 98.8% 98.8% 99.1% 98.7% 97.1%
100 25 3 3752 92.1% 98.6% 98.6% 98.6% 0.0% 98.6% 98.6% 99.1% 99.1% 99.1% 98.6%
100 25 4 50382 72.6% 93.7% 91.6% 94.9% 97.4% 97.0% 97.4% 98.1% 97.7% 97.4% 95.6%
100 25 5 61494 66.7% 81.5% 79.9% 97.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 97.4%
100 25 6 36360 62.1% 97.2% 98.4% 97.4% 97.2% 97.3% 97.6% 98.0% 99.3% 98.5% 97.5%
100 25 7 14657 86.9% 99.1% 99.3% 99.5% 0.0% 99.5% 98.6% 99.5% 99.3% 99.7% 98.9%
100 25 8 20452 92.1% 99.3% 97.9% 99.3% 85.5% 98.0% 98.7% 97.3% 97.8% 97.4% 100.0%
100 25 9 35438 81.1% 94.9% 96.4% 95.2% 94.6% 97.5% 94.8% 95.7% 95.8% 95.7% 94.3%
100 25 10 24930 89.1% 96.6% 96.1% 94.8% 95.5% 97.1% 96.2% 95.7% 96.0% 96.6% 96.3%
100 50 1 83742 87.4% 97.9% 97.2% 99.0% 97.7% 97.8% 97.8% 98.3% 98.1% 98.5% 98.4%
100 50 2 104856 64.2% 96.2% 96.8% 99.6% 99.0% 99.1% 99.5% 99.1% 99.0% 99.4% 99.4%
100 50 3 34006 96.9% 99.2% 99.9% 99.9% 0.0% 99.2% 99.5% 99.8% 99.8% 99.6% 99.5%
100 50 4 105996 60.2% 91.8% 90.1% 98.6% 98.8% 98.9% 99.2% 99.1% 99.3% 99.2% 99.0%
100 50 5 56464 83.3% 98.4% 98.2% 99.7% 98.6% 98.2% 99.2% 99.0% 98.8% 99.3% 98.7%
100 50 6 16083 97.0% 100.0% 100.0% 100.0% 0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
100 50 7 52819 87.4% 96.6% 96.5% 97.3% 96.2% 97.1% 97.3% 97.1% 97.1% 97.9% 98.3%
100 50 8 54246 93.4% 97.9% 98.0% 98.1% 98.0% 97.0% 97.5% 97.5% 97.6% 98.4% 98.5%
100 50 9 68974 87.5% 96.9% 97.0% 97.2% 96.9% 96.3% 96.9% 97.3% 96.9% 97.1% 97.3%
100 50 10 88634 61.4% 96.8% 97.1% 98.2% 98.4% 98.7% 98.7% 98.9% 98.7% 98.9% 99.2%
100 75 1 189137 62.1% 83.0% 82.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
100 75 2 95074 95.5% 98.9% 97.5% 98.4% 97.5% 98.5% 97.9% 98.6% 97.9% 97.9% 98.4%
100 75 3 62098 95.0% 98.4% 97.5% 97.5% 95.3% 97.5% 99.9% 97.7% 98.4% 97.7% 99.7%
100 75 4 72245 95.7% 99.7% 98.7% 99.2% 98.3% 98.5% 98.6% 98.7% 98.8% 99.3% 99.2%
100 75 5 27616 99.0% 99.7% 99.7% 99.7% 0.0% 99.7% 99.9% 100.0% 100.0% 100.0% 99.7%
100 75 6 145273 65.9% 97.5% 97.5% 99.2% 99.2% 98.9% 99.4% 99.4% 99.7% 98.9% 99.3%
100 75 7 110979 96.1% 98.3% 98.1% 98.9% 98.1% 98.7% 97.9% 98.1% 98.0% 97.9% 98.4%
100 75 8 19570 97.7% 100.0% 99.8% 100.0% 0.0% 100.0% 99.7% 99.2% 99.2% 98.6% 99.4%
100 75 9 104341 87.1% 98.5% 97.7% 98.6% 97.5% 97.7% 98.0% 97.7% 97.6% 99.0% 98.8%
100 75 10 143740 98.9% 97.7% 96.7% 99.5% 99.2% 99.4% 99.5% 99.3% 99.4% 99.1% 99.6%
100 100 1 81978 100.1% 99.1% 100.0% 100.0% 91.8% 99.1% 97.5% 100.0% 99.8% 97.6% 99.9%
100 100 2 190424 86.5% 97.3% 97.2% 97.6% 98.1% 97.7% 98.1% 97.9% 97.9% 97.9% 97.6%
100 100 3 225434 76.7% 87.0% 91.9% 99.5% 99.8% 99.8% 99.9% 99.8% 99.5% 100.0% 99.7%
100 100 4 63028 193.6% 97.4% 97.7% 97.6% 0.0% 97.3% 97.6% 97.2% 99.7% 97.7% 98.0%
100 100 5 230076 72.9% 85.7% 87.6% 97.9% 99.6% 99.9% 99.8% 99.8% 99.7% 99.9% 98.8%
100 100 6 74358 99.0% 96.7% 95.9% 99.7% 91.8% 96.2% 96.4% 96.9% 97.0% 96.7% 97.4%
100 100 7 10330 103.7% 75.6% 73.6% 88.5% 0.0% 0.0% 97.1% 97.1% 98.6% 100.0% 88.5%
100 100 8 62582 99.7% 96.3% 96.4% 96.6% 74.9% 96.6% 96.2% 96.1% 97.0% 96.1% 96.6%
100 100 9 232754 76.5% 87.1% 84.0% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.6%
100 100 10 193262 77.6% 97.6% 96.8% 98.9% 99.0% 98.9% 99.1% 99.1% 99.3% 99.3% 99.0%
200 25 1 204441 74.8% 89.2% 91.3% 98.5% 98.9% 98.9% 98.8% 98.4% 98.7% 98.6% 98.6%
200 25 2 239573 53.8% 79.5% 81.8% 99.7% 99.8% 99.8% 99.8% 99.9% 99.9% 99.8% 99.8%
200 25 3 245463 54.4% 74.1% 77.2% 99.7% 99.8% 100.0% 100.0% 99.9% 100.0% 100.0% 99.7%
200 25 4 222361 60.8% 83.5% 80.1% 99.2% 98.8% 98.9% 98.9% 98.9% 99.1% 98.9% 99.1%
200 25 5 187324 65.9% 93.7% 93.2% 98.0% 98.3% 98.3% 98.8% 98.5% 98.4% 98.3% 99.1%
200 25 6 80351 79.6% 94.8% 94.3% 95.5% 95.1% 95.4% 95.7% 96.4% 96.6% 96.6% 96.1%
200 25 7 59036 73.3% 98.6% 98.1% 97.4% 0.0% 98.2% 98.6% 98.4% 98.4% 98.2% 98.0%
200 25 8 149433 65.5% 97.0% 97.4% 98.3% 97.9% 97.7% 98.1% 97.8% 98.1% 97.7% 98.3%
200 25 9 49366 67.9% 97.9% 97.4% 99.2% 0.0% 97.6% 98.4% 98.8% 98.4% 99.0% 97.8%
200 25 10 48459 76.6% 98.1% 99.0% 98.4% 0.0% 98.4% 98.5% 98.9% 99.3% 98.7% 98.4%
200 50 1 372097 84.9% 90.3% 91.7% 96.9% 96.7% 97.1% 96.8% 97.0% 96.8% 96.8% 96.5%
200 50 2 211130 75.2% 94.3% 94.5% 94.6% 94.1% 94.7% 94.0% 93.6% 94.9% 94.1% 94.7%
200 50 3 227185 73.4% 95.0% 94.3% 95.0% 95.5% 94.8% 95.7% 95.2% 95.6% 95.0% 95.5%
200 50 4 228572 70.2% 93.4% 94.1% 94.5% 94.1% 94.0% 94.8% 94.1% 95.1% 94.2% 94.5%
200 50 5 479651 77.3% 71.6% 73.3% 98.6% 99.8% 99.7% 99.8% 99.7% 99.8% 99.9% 99.2%
200 50 6 426777 76.5% 83.3% 78.0% 98.4% 98.5% 98.6% 98.6% 98.6% 98.6% 98.7% 98.7%
200 50 7 220890 86.6% 93.3% 93.6% 94.5% 93.1% 93.5% 93.5% 94.4% 93.6% 94.1% 94.0%
200 50 8 317952 49.7% 94.7% 94.2% 96.2% 96.2% 95.9% 96.1% 95.9% 96.0% 95.8% 96.3%
200 50 9 104936 91.2% 96.4% 95.1% 95.5% 0.0% 94.1% 95.2% 96.3% 97.5% 96.2% 96.1%
200 50 10 284751 81.5% 95.0% 95.1% 95.8% 95.5% 95.0% 95.7% 95.4% 95.5% 95.9% 95.7%
200 75 1 442894 59.5% 93.6% 93.9% 94.9% 94.2% 95.4% 94.7% 94.7% 95.5% 94.3% 95.0%
200 75 2 286643 77.6% 89.5% 89.2% 91.2% 90.0% 89.8% 91.3% 89.8% 89.8% 91.3% 91.2%
200 75 3 61924 101.7% 98.1% 97.7% 96.7% 0.0% 92.9% 99.8% 99.8% 100.0% 99.6% 96.2%
200 75 4 128351 93.2% 82.3% 86.4% 85.9% 0.0% 85.7% 85.0% 85.7% 83.8% 86.3% 86.6%
200 75 5 137885 93.5% 92.6% 93.8% 95.3% 0.0% 94.3% 95.6% 95.3% 96.4% 94.6% 95.4%
200 75 6 229631 73.1% 93.6% 94.5% 94.3% 85.8% 94.6% 93.4% 93.1% 94.8% 94.6% 95.5%
200 75 7 269887 80.5% 90.4% 92.2% 93.1% 91.3% 90.2% 92.4% 92.7% 91.6% 92.3% 91.9%
200 75 8 600858 68.7% 87.8% 86.3% 97.0% 97.3% 97.2% 97.3% 97.4% 98.0% 97.2% 98.1%
200 75 9 516771 84.0% 91.4% 92.4% 94.8% 95.0% 95.6% 95.1% 95.0% 95.1% 95.7% 95.5%
200 75 10 142694 94.7% 91.5% 92.7% 91.8% 0.0% 91.3% 92.5% 95.2% 92.3% 91.8% 93.7%
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Table 2. Optimal objective value per instance, accompanied by the relative best found
objective value as a percentage of the optimal value for the QUBO formulations over
200,000 SA samples. The highest and lowest percentage per problem instance are dis-
played in bold and underline respectively.

Problem
instance

Optimal
value [15] Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Offset 0 Offset 1 Offset 2 Offset 3 Offset 4

200 100 1 937149 79.1% 69.5% 68.4% 98.5% 99.7% 99.7% 99.7% 99.7% 99.8% 99.8% 98.7%
200 100 2 303058 86.8% 92.8% 93.6% 94.3% 0.0% 92.9% 94.4% 93.6% 92.6% 92.4% 92.7%
200 100 3 29367 103.4% 83.5% 83.4% 93.1% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0% 92.7%
200 100 4 100838 101.2% 96.9% 96.4% 97.4% 0.0% 96.8% 96.5% 97.2% 97.5% 97.2% 97.8%
200 100 5 786635 94.4% 81.5% 85.2% 96.1% 96.6% 96.5% 96.6% 96.5% 96.5% 96.6% 96.3%
200 100 6 41171 102.9% 86.8% 86.8% 91.7% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0% 91.7%
200 100 7 701094 87.2% 91.1% 90.3% 95.6% 95.1% 95.1% 95.0% 95.2% 95.6% 95.3% 95.8%
200 100 8 782443 78.2% 90.4% 86.2% 97.5% 97.5% 97.1% 97.5% 97.5% 97.4% 97.4% 97.2%
200 100 9 628992 87.1% 93.3% 94.4% 95.3% 95.1% 94.6% 94.8% 94.9% 95.1% 95.1% 95.1%
200 100 10 378442 86.5% 91.6% 92.0% 93.0% 91.5% 91.3% 91.4% 91.6% 91.9% 93.4% 93.2%
300 25 1 29140 89.7% 98.6% 98.8% 98.3% 0.0% 91.6% 99.1% 99.6% 99.2% 99.7% 98.1%
300 25 2 281990 68.2% 90.0% 88.4% 89.0% 89.0% 89.3% 89.5% 89.2% 89.0% 90.3% 89.3%
300 25 3 231075 86.7% 88.4% 87.6% 89.1% 89.4% 89.4% 89.8% 87.7% 88.5% 89.4% 88.7%
300 25 4 444759 77.8% 78.1% 78.3% 93.1% 94.7% 95.2% 94.6% 95.2% 94.8% 94.8% 93.9%
300 25 5 14988 101.0% 92.0% 92.8% 93.4% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0% 93.6%
300 25 6 269782 76.0% 88.5% 87.7% 89.3% 87.7% 86.9% 88.3% 87.6% 88.0% 88.2% 87.6%
300 25 7 485263 85.6% 73.9% 74.2% 93.8% 96.3% 96.5% 96.5% 96.7% 96.4% 96.4% 94.6%
300 25 8 9343 102.4% 88.6% 88.7% 90.6% 0.0% 0.0% 0.0% 94.4% 100.0% 100.0% 90.3%
300 25 9 250761 58.5% 88.5% 87.3% 89.1% 88.5% 88.8% 90.1% 88.9% 88.9% 89.0% 90.4%
300 25 10 383377 71.2% 87.2% 85.9% 90.4% 91.5% 91.2% 90.8% 91.1% 91.7% 91.4% 90.5%
300 50 1 513379 80.3% 89.2% 89.2% 91.1% 89.5% 89.8% 90.2% 89.7% 90.3% 89.8% 91.2%
300 50 2 105543 75.2% 92.3% 90.5% 92.5% 0.0% 89.9% 91.4% 92.4% 94.4% 92.1% 91.8%
300 50 3 875788 76.8% 79.9% 78.8% 94.7% 95.7% 95.7% 95.0% 95.7% 95.3% 95.6% 95.0%
300 50 4 307124 74.4% 89.7% 89.9% 91.3% 0.0% 90.9% 92.9% 90.2% 90.8% 91.0% 91.4%
300 50 5 727820 84.5% 90.5% 89.7% 94.3% 93.3% 93.4% 94.0% 93.2% 94.0% 94.1% 93.8%
300 50 6 734053 75.4% 90.5% 89.9% 94.2% 93.7% 94.3% 93.6% 94.5% 94.2% 94.1% 93.9%
300 50 7 43595 101.0% 97.8% 99.6% 99.8% 0.0% 97.9% 99.8% 99.4% 99.7% 99.2% 98.9%
300 50 8 767977 80.0% 88.8% 89.6% 93.7% 94.3% 94.5% 94.5% 94.4% 94.3% 94.3% 93.8%
300 50 9 761351 58.8% 90.0% 90.3% 93.9% 94.1% 94.3% 94.3% 94.9% 94.5% 94.6% 94.0%
300 50 10 996070 81.5% 69.5% 71.6% 97.2% 98.0% 97.8% 97.7% 97.7% 97.8% 97.8% 96.4%

Table 3. Number of times the optimal value was obtained out of 200 000 SA samples
per problem instance and QUBO formulation. The 85 instances for which no formula-
tion found the optimal value are left out.

Problem
instance Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Offset 0 Offset 1 Offset 2 Offset 3 Offset 4

100 25 5 0 0 0 2 4 4 4 6 8 0
100 25 8 0 0 0 0 0 0 0 0 0 1
100 50 6 163 172 238 0 97 98 67 38 11 235
100 75 1 0 0 133 8756 12946 12716 12938 13575 14012 244
100 75 5 0 0 0 0 0 0 74 18 16 0
100 75 8 2 0 1 0 1 0 0 0 0 0
100 100 7 0 0 0 0 0 0 0 0 29609 0
100 100 9 0 0 0 0 2 0 1 1 0 0
200 25 3 0 0 0 0 1 0 0 0 0 0
200 75 3 0 0 0 0 0 0 0 1 0 0
200 100 3 0 0 0 0 0 313 154 35 28 0
200 100 6 0 0 0 0 0 153 139 121 204 0
200 100 10 0 0 0 0 0 0 0 0 0 0
300 25 5 0 0 0 0 0 0 58 57 73 0
300 25 8 0 0 0 0 0 0 0 4739 3384 0
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of SA samples. All y-values are normalised against the optimal solution value for
the respective problem instance. In other words, if the value on the y-axis equals
1.0000 for some number n of SA samples, we know that at least 1 of those n SA
samples was an optimal solution. Therefore, the y-values lie in the range [0, 1].

Since SA is a random algorithm, its behaviour can differ each run, influencing
the AUC value significantly. To mitigate this, the curve used for computation
of the AUC values is obtained by averaging this curve over 10 different runs of
200 000 SA samples. An AUC value of 1.0000 thus implies that for each of the
10 runs a valid solution with optimal value was already found in the first 500
SA samples.

The AUC values for each combination of instance and QUBO Type is given in
Tables 4 and 5. We see that the Type 1, 2, and 4 (almost) never have the highest
AUC value. Moreover, we observe that quite often they even have an AUC value
that is significantly worse than that of the other formulations. Especially the
Type 4 formulation fails to find any valid solutions at all for quite some instances,
corresponding to an AUC value of 0.0000.

Furthermore, we see that QUBO Type 3 and 6 almost never have the worst
AUC value and often have a relatively high AUC value. For most instances the
AUC values of these two formulations are close together. Therefore, this metric
does not give a clear indication which formulation performs best.

When looking at the Type 5 formulation we see that it quite often has the
best AUC value, especially for offsets with value 3 and 4. Specifically, for the
instances with 300 items we see that this formulation is performing relatively
well when compared to the other QUBO formulations.

4 Conclusion

In this paper, we defined six different QUBO formulations for the Quadratic
Knapsack Problem and compared their performance when solved by simulated
annealing. Specifically, they were compared on how often an optimal value was
found, what the best value found was and how many SA steps are required until
the formulation delivers an optimal or good solution.

First of all, we saw that SA is in most cases able to find solutions that are
close to optimal. For some QUBO formulations and instances optimal solutions
were found. We also found that our QUBO formulations mostly performed better
than those found in [15]. This shows that all QUBO formulations are capable of
solving different instances of the QKP at a high level.

However, the performance of the 6 different formulations is still very different.
First of all, we see that Type 1, 2 and 4 are outperformed by Type 3, 5 and 6. Of
these last three, Type 3 and 6 perform similarly, while in turn Type 5 outperforms
both of them. Generally, the Type 5 formulation with higher offsets (such as 3
and 4) shows the best performance. Note that all three metrics suggest this and
that we can hence quite confidently draw these conclusions.

The better performance of the Type 5 formulation could be explained by the
fact that it is quite different in nature than the other formulations. The other 5
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Table 4. Area-under-the-curve values per problem instance and QUBO type, averaged
over 10 runs of 200 000 samples each. The highest and lowest AUC values are depicted
in bold and underline respectively.

Problem
instance Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Offset 0 Offset 1 Offset 2 Offset 3 Offset 4

100 25 1 0.9590 0.9600 0.9676 0.2935 0.9566 0.9575 0.9572 0.9596 0.9640 0.9649
100 25 2 0.8208 0.8089 0.9487 0.9756 0.9761 0.9784 0.9795 0.9781 0.9796 0.9516
100 25 3 0.9706 0.9759 0.9788 0.0000 0.8446 0.9853 0.9907 0.9907 0.9907 0.9816
100 25 4 0.8850 0.8764 0.9349 0.9627 0.9648 0.9645 0.9666 0.9672 0.9663 0.9391
100 25 5 0.7707 0.7643 0.9532 0.9961 0.9976 0.9970 0.9974 0.9979 0.9975 0.9584
100 25 6 0.9585 0.9627 0.9582 0.9605 0.9619 0.9621 0.9651 0.9695 0.9686 0.9637
100 25 7 0.9738 0.9747 0.9825 0.0000 0.9696 0.9711 0.9753 0.9755 0.9826 0.9773
100 25 8 0.9611 0.9609 0.9730 0.3519 0.9569 0.9611 0.9615 0.9589 0.9616 0.9719
100 25 9 0.9302 0.9307 0.9193 0.9280 0.9351 0.9343 0.9393 0.9379 0.9405 0.9251
100 25 10 0.9412 0.9409 0.9355 0.9365 0.9413 0.9406 0.9419 0.9417 0.9435 0.9394
100 50 1 0.9643 0.9631 0.9780 0.9711 0.9706 0.9706 0.9718 0.9711 0.9709 0.9752
100 50 2 0.9174 0.9267 0.9879 0.9844 0.9838 0.9873 0.9846 0.9839 0.9847 0.9880
100 50 3 0.9780 0.9801 0.9853 0.0000 0.9514 0.9828 0.9869 0.9891 0.9890 0.9862
100 50 4 0.8702 0.8736 0.9780 0.9810 0.9810 0.9814 0.9814 0.9819 0.9816 0.9796
100 50 5 0.9720 0.9699 0.9804 0.9707 0.9387 0.9728 0.9761 0.9766 0.9794 0.9740
100 50 6 0.9998 0.9998 0.9999 0.0000 0.9943 0.9997 0.9996 0.9989 0.9968 0.9999
100 50 7 0.9552 0.9550 0.9610 0.9478 0.9548 0.9568 0.9571 0.9554 0.9567 0.9635
100 50 8 0.9602 0.9642 0.9695 0.9601 0.9576 0.9582 0.9610 0.9615 0.9630 0.9705
100 50 9 0.9517 0.9511 0.9611 0.9526 0.9546 0.9574 0.9591 0.9553 0.9581 0.9601
100 50 10 0.9484 0.9486 0.9759 0.9753 0.9756 0.9759 0.9782 0.9771 0.9783 0.9751
100 75 1 0.7781 0.7785 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
100 75 2 0.9666 0.9654 0.9742 0.9665 0.9684 0.9680 0.9688 0.9688 0.9686 0.9720
100 75 3 0.9626 0.9621 0.9661 0.9244 0.9503 0.9673 0.9667 0.9667 0.9671 0.9665
100 75 4 0.9719 0.9711 0.9831 0.9689 0.9705 0.9738 0.9710 0.9722 0.9734 0.9820
100 75 5 0.9913 0.9890 0.9953 0.0000 0.9801 0.9892 0.9995 0.9992 0.9989 0.9954
100 75 6 0.9576 0.9581 0.9820 0.9787 0.9796 0.9806 0.9806 0.9804 0.9791 0.9849
100 75 7 0.9710 0.9688 0.9769 0.9709 0.9704 0.9704 0.9718 0.9708 0.9704 0.9753
100 75 8 0.9790 0.9800 0.9816 0.0000 0.9800 0.9744 0.9757 0.9722 0.9742 0.9823
100 75 9 0.9659 0.9632 0.9712 0.9669 0.9668 0.9687 0.9677 0.9680 0.9691 0.9727
100 75 10 0.9530 0.9418 0.9869 0.9840 0.9838 0.9829 0.9838 0.9842 0.9842 0.9874
100 100 1 0.9680 0.9711 0.9818 0.7725 0.9409 0.9636 0.9724 0.9694 0.9691 0.9794
100 100 2 0.9244 0.9250 0.9704 0.9741 0.9732 0.9753 0.9742 0.9747 0.9754 0.9707
100 100 3 0.8171 0.8217 0.9806 0.9861 0.9886 0.9872 0.9874 0.9861 0.9899 0.9815
100 100 4 0.9646 0.9618 0.9696 0.0000 0.9594 0.9585 0.9626 0.9663 0.9660 0.9695
100 100 5 0.8220 0.8206 0.9749 0.9902 0.9928 0.9916 0.9928 0.9931 0.9921 0.9761
100 100 6 0.9424 0.9341 0.9595 0.7809 0.9336 0.9431 0.9472 0.9531 0.9543 0.9579
100 100 7 0.7007 0.7198 0.8540 0.0000 0.0000 0.9459 0.9679 0.9859 1.0000 0.8550
100 100 8 0.9366 0.9422 0.9527 0.0509 0.9325 0.9352 0.9410 0.9394 0.9432 0.9539
100 100 9 0.7982 0.7882 0.9872 0.9977 0.9984 0.9981 0.9988 0.9984 0.9984 0.9880
100 100 10 0.9332 0.9362 0.9752 0.9749 0.9774 0.9780 0.9769 0.9791 0.9799 0.9742
200 25 1 0.8532 0.8488 0.9797 0.9804 0.9805 0.9820 0.9808 0.9812 0.9822 0.9790
200 25 2 0.7707 0.7745 0.9946 0.9958 0.9964 0.9963 0.9960 0.9962 0.9959 0.9948
200 25 3 0.7158 0.7158 0.9939 0.9962 0.9971 0.9973 0.9965 0.9971 0.9972 0.9942
200 25 4 0.7709 0.7643 0.9870 0.9840 0.9853 0.9849 0.9861 0.9857 0.9854 0.9876
200 25 5 0.9060 0.8995 0.9769 0.9767 0.9778 0.9771 0.9778 0.9786 0.9781 0.9781
200 25 6 0.9274 0.9254 0.9394 0.9218 0.6330 0.9088 0.9389 0.9508 0.9561 0.9405
200 25 7 0.9543 0.9583 0.9627 0.0000 0.9209 0.9625 0.9650 0.9693 0.9688 0.9638
200 25 8 0.9613 0.9643 0.9726 0.9681 0.9689 0.9722 0.9708 0.9729 0.9724 0.9737
200 25 9 0.9572 0.9566 0.9625 0.0000 0.9518 0.9657 0.9727 0.9732 0.9766 0.9662
200 25 10 0.9570 0.9564 0.9672 0.0000 0.9054 0.9636 0.9680 0.9730 0.9748 0.9649
200 50 1 0.8774 0.8848 0.9588 0.9599 0.9603 0.9612 0.9629 0.9628 0.9613 0.9579
200 50 2 0.9210 0.9215 0.9355 0.9277 0.9221 0.9251 0.9262 0.9292 0.9295 0.9357
200 50 3 0.9274 0.9270 0.9376 0.9374 0.9192 0.9285 0.9373 0.9374 0.9389 0.9389
200 50 4 0.9198 0.9212 0.9356 0.9301 0.9229 0.9279 0.9306 0.9328 0.9323 0.9346
200 50 5 0.6817 0.6877 0.9825 0.9957 0.9949 0.9956 0.9956 0.9957 0.9961 0.9845
200 50 6 0.7690 0.7576 0.9792 0.9819 0.9825 0.9828 0.9826 0.9828 0.9832 0.9795
200 50 7 0.9169 0.9161 0.9317 0.9216 0.9166 0.9248 0.9264 0.9263 0.9277 0.9308
200 50 8 0.9295 0.9286 0.9519 0.9496 0.9500 0.9495 0.9489 0.9513 0.9510 0.9527
200 50 9 0.9350 0.9295 0.9406 0.0000 0.8862 0.9334 0.9380 0.9502 0.9475 0.9437
200 50 10 0.9369 0.9365 0.9499 0.9458 0.9409 0.9435 0.9453 0.9447 0.9467 0.9488
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Table 5. Area-under-the-curve values per problem instance and QUBO type, averaged
over 10 runs of 200 000 samples each. The highest and lowest AUC values are depicted
in bold and underline respectively.

Problem
instance Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Offset 0 Offset 1 Offset 2 Offset 3 Offset 4

200 75 1 0.9202 0.9207 0.9366 0.9343 0.9304 0.9335 0.9359 0.9364 0.9360 0.9364
200 75 2 0.8790 0.8806 0.8955 0.8858 0.8772 0.8855 0.8854 0.8887 0.8922 0.8926
200 75 3 0.9206 0.9128 0.9470 0.0000 0.2275 0.9754 0.9898 0.9925 0.9898 0.9412
200 75 4 0.8020 0.8188 0.8345 0.0000 0.8098 0.8134 0.8223 0.8219 0.8284 0.8342
200 75 5 0.8961 0.8951 0.9268 0.0000 0.6068 0.9182 0.9234 0.9305 0.9301 0.9232
200 75 6 0.9134 0.9197 0.9230 0.2653 0.9000 0.9137 0.9219 0.9250 0.9238 0.9277
200 75 7 0.8911 0.8938 0.9097 0.8806 0.8765 0.9009 0.9048 0.9009 0.9053 0.9080
200 75 8 0.8310 0.8200 0.9622 0.9688 0.9674 0.9675 0.9690 0.9693 0.9684 0.9664
200 75 9 0.8944 0.8989 0.9417 0.9431 0.9415 0.9426 0.9428 0.9450 0.9461 0.9432
200 75 10 0.8788 0.8876 0.9042 0.0000 0.8682 0.8824 0.8980 0.8987 0.9014 0.9074
200 100 1 0.6648 0.6667 0.9687 0.9939 0.9951 0.9950 0.9950 0.9958 0.9953 0.9741
200 100 2 0.8924 0.8952 0.9260 0.0000 0.8112 0.8997 0.9121 0.9085 0.9100 0.9215
200 100 3 0.8065 0.8125 0.9010 0.0000 0.0000 1.0000 0.9999 0.9989 0.9990 0.8961
200 100 4 0.9355 0.9345 0.9572 0.0000 0.8877 0.9299 0.9466 0.9524 0.9532 0.9560
200 100 5 0.7928 0.7943 0.9492 0.9599 0.9602 0.9599 0.9593 0.9596 0.9596 0.9534
200 100 6 0.7891 0.8300 0.9119 0.0000 0.0000 0.9179 0.9974 0.9978 0.9995 0.9116
200 100 7 0.8763 0.8778 0.9442 0.9443 0.9398 0.9426 0.9458 0.9447 0.9456 0.9441
200 100 8 0.8491 0.8335 0.9608 0.9665 0.9623 0.9669 0.9674 0.9668 0.9682 0.9629
200 100 9 0.9186 0.9168 0.9420 0.9443 0.9388 0.9417 0.9418 0.9423 0.9436 0.9420
200 100 10 0.8979 0.8997 0.9169 0.9001 0.8896 0.8967 0.9027 0.9051 0.9105 0.9173
300 25 1 0.9236 0.9168 0.9428 0.0000 0.5000 0.9690 0.9829 0.9823 0.9835 0.9329
300 25 2 0.8722 0.8741 0.8736 0.8778 0.8766 0.8802 0.8797 0.8820 0.8831 0.8768
300 25 3 0.8647 0.8635 0.8716 0.8708 0.8657 0.8660 0.8680 0.8742 0.8754 0.8719
300 25 4 0.7521 0.7482 0.9180 0.9385 0.9393 0.9401 0.9406 0.9405 0.9412 0.9200
300 25 5 0.8345 0.8228 0.9212 0.0000 0.0000 0.0000 0.9989 0.9996 0.9997 0.9197
300 25 6 0.8610 0.8575 0.8656 0.8614 0.8570 0.8616 0.8656 0.8675 0.8664 0.8649
300 25 7 0.6921 0.6928 0.9283 0.9570 0.9576 0.9585 0.9588 0.9589 0.9591 0.9350
300 25 8 0.6386 0.5824 0.8923 0.0000 0.0000 0.0000 0.9232 1.0000 1.0000 0.8843
300 25 9 0.8649 0.8614 0.8741 0.8732 0.8630 0.8702 0.8726 0.8754 0.8794 0.8775
300 25 10 0.8376 0.8254 0.8914 0.9036 0.8984 0.9000 0.9034 0.9065 0.9067 0.8934
300 50 1 0.8784 0.8812 0.8936 0.8858 0.8790 0.8845 0.8850 0.8851 0.8868 0.8937
300 50 2 0.8682 0.8687 0.9036 0.0000 0.8336 0.8882 0.9000 0.9072 0.9050 0.8933
300 50 3 0.7516 0.7485 0.9368 0.9467 0.9464 0.9473 0.9472 0.9471 0.9482 0.9394
300 50 4 0.8768 0.8708 0.8985 0.0000 0.7979 0.8632 0.8811 0.8883 0.8914 0.8951
300 50 5 0.8849 0.8779 0.9268 0.9259 0.9232 0.9264 0.9265 0.9286 0.9283 0.9263
300 50 6 0.8706 0.8669 0.9279 0.9315 0.9306 0.9305 0.9337 0.9329 0.9330 0.9295
300 50 7 0.9329 0.9325 0.9478 0.0000 0.6653 0.9840 0.9856 0.9863 0.9865 0.9479
300 50 8 0.8501 0.8513 0.9297 0.9328 0.9332 0.9351 0.9341 0.9340 0.9346 0.9320
300 50 9 0.8711 0.8649 0.9306 0.9353 0.9329 0.9348 0.9364 0.9365 0.9377 0.9327
300 50 10 0.6713 0.6690 0.9558 0.9736 0.9735 0.9734 0.9738 0.9744 0.9735 0.9589

Table 6. Penalty values for each problem instance.

100 25 100 50 100 75 100 100 200 25 200 50 200 75 200 100 300 25 300 50
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formulations require auxiliary variables to incorporate the capacity constraint,
while Type 5 accomplishes this by introducing an offset variable. In general,
more variables means a larger energy landscape, which makes finding a solution
harder. In the case of the QKP, this indeed seems to be the case.

However, it should be mentioned that Type 5 also brings a disadvantage.
While Type 5 manages to remove the need for auxiliary variables, it does intro-
duce a new variable called the offset variable. For each use case, research needs
to be performed to gauge what a suitable value for this offset variable is. This
makes it less directly implementable than the other QUBO formulations.

Even though our conclusions are based on many different results, there are
some comments which can be made about these results. Firstly, we should note
that our results mainly consider one family of QKP problems. It will be inter-
esting to see whether our results could be reproduced for different families of
QKP problems. Secondly, we should mention that we only considered a small
set of potential penalty values and offset variables. It could very well be that
these values benefit one QUBO formulation more than the other. That is why we
think that repeating our assessment for a wider variety of penalty values would
allow for a fairer comparison between the different formulations.

While this work focuses on the QKP, it also has implications for other opti-
misation and QUBO problems. First of all, we show that the QUBO formulation
significantly influences the performance of the QUBO. It is hence advisory for
other QUBO problems to consider alternative formulations as well. In addition,
we show that the introduction of an offset variable might be more beneficial than
introducing auxiliary variables, a method which is currently not so widely used.
This also opens the door to research new, different techniques for generating
QUBOs to see whether they perform even better in practice.

Another avenue for future research would be to test our QUBO formulations
on quantum annealing devices. As quantum annealing devices currently have
limited resources and hence limited applicability, it is likely that performance
varies significantly over the different QUBO formulations. It might even turn
out that different QUBO formulations are preferred by quantum annealing de-
vices than the ones preferred by the simulated annealing solver. Since quantum
annealing devices are promising great applicability in the (near) future, choos-
ing suitable QUBO formulations could become an important are of research to
enhance to applicability of quantum annealers.
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