
Quantum Factory Method: A Software
Engineering Approach to Deal with

Incompatibilities in Quantum Libraries

Samuel Magaz-Romero[0000−0001−6438−5569], Eduardo
Mosqueira-Rey[0000−0002−4894−1067], Diego Alvarez-Estevez[0000−0001−5790−0577],

and Vicente Moret-Bonillo[0000−0002−9435−3151]

Universidade da Coruña, CITIC, Campus de Elviña, 15071 A Coruña, España
{s.magazr,eduardo,diego.alvareze,vicente.moret}@udc.es

Abstract. The current context of Quantum Computing and its avail-
able technologies present an extensive variety of tools and lack of method-
ologies, leading to incompatibilities across platforms, which end up as
inconsistencies in the developed solutions. We propose a design called
Quantum Factory Method, based on software engineering and design
patterns, to solve these issues by integrating different quantum platforms
in the same development. We provide example implementations whose
results prove the suitability of the design in different cases, and conclude
on how this approach can be expanded for future work.

Keywords: Quantum Computing · Software Engineering · Design Pat-
terns · Rule-Based Systems · Uncertainty

1 Introduction

The exponential growth that has been experienced in recent years of the interest
towards the field of Quantum Computing (QC) is undeniable [4]. Despite its
theoretical basis being around since the 80s [8], the manufacturing of quantum
computers and their availability has put this field in the eyes of many.

Some of the most relevant groups that are leading this new field are IBM [12]
and Google [5], both of which offer different commercial solutions for QC. Other
important competitors are Amazon [1] or Atos [2]. These are some names in the
industry, but more are involved, showing the size of the QC environment so far.

From a Software Engineering (SE) perspective, this varying environment can
end up being detrimental. The lack of standardisation makes each group ap-
proach their solution differently, and while programming libraries in Python are
the most popular solution, these present differences on some core concepts.

Libraries are designed to work on the platform (programming tools and ex-
ecution stack) of their company. There are some common factors among them,
but they still present different philosophies and forms for users to interact with
them. This complicates the introduction into the QC world, as well as the work
for developers, dealing with the differences between several platforms.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

2 S. Magaz-Romero et al.

All these factors make the comparison between options more troublesome; for
example, when selecting the appropriate platform for a project. Each platform
presents advantages and inconveniences regarding development, maintainability
and usage, so the decision should be made taking these into account.

Therefore, the objectives that our approach must accomplish are: (i) to allow
for a single problem definition to be used in different platforms, without address-
ing their philosophies for each case, (ii) to obtain standard outputs across plat-
forms, facilitating their comparison, and (iii) to have the possibility to include
new platforms in the future as they are made available to the general public.

2 State of the art

We present a brief excerpt of QC’s state of the art, specifically on the current
situation of Quantum Software Engineering and the OpenQASM standard.

2.1 Quantum Software Engineering

While there is a lack of Quantum Software Engineering methodologies, they
exist, but there is not a consensus like on classical methodologies. It seems logical
due to Quantum Computing being on its early stages, yet it could benefit from
tools and procedures in order to keep expanding its horizons [15,17,10].

There is interest in the subject, but no proposal for a methodology of Quan-
tum Software Engineering has firmly established itself as the proper approach,
due to: (1) Quantum Computing is not as software-engineer oriented as other
branches of computing, drawing along users not familiarised with software engi-
neering methodologies, and (2) a general lack of interest in methodology inno-
vation, leading to not focusing on methodologies as much it would be needed.

In summary, there is no procedure or methodology (yet) to rely on when
developing software using Quantum Computing.

2.2 OpenQASM: a not-so-standard standard

Open Quantum Assembly Language (OpenQASM) is an imperative program-
ming language designed for near-term QC algorithms and applications. Programs
are described using the measurement-based quantum circuit model with support
for classical feed-forward flow control based on measurement outcomes [7].

It was proposed by the IBM Quantum Computing group as an imperative
programming language for quantum circuits. Since OpenQASM 2 was intro-
duced, it has become a de facto standard in the field.

Nowadays, OpenQASM 3 includes better support for the next phase of quan-
tum system development, as well as to incorporate some of the best ideas that
have arisen in other circuit description languages [6].

However, OpenQASM is not a standard per se, since each quantum program-
ming library implements it differently. Table 1 illustrates this situation [12,5,1,3,2].
OpenQASM is a suitable option for cases where only basic features are used, but
it is not enough for the variety of problems we want to address here.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

Quantum Factory Method 3

Table 1. OpenQASM’s features supported in each platform
S = Supported P = Partially supp. N = Not supp. X = Unavailable in version 2.0

Platform Qiskit Cirq Braket Pennylane myQLM

Version
2.0 S S S S S
3.0 S N S S N

Main types
qubit P S S P S
bit S S S S S
bool S X S S X

Secondary types
uint N X S N X
float N P S N S
complex N X S N X

Gates

Basis S S S S S
Custom N S S N S
Control (on non-basis gates) N X S N X
Barrier S N S S S

Flow

if S N S S S
else S X S S X
else if N X S N X
for P X S P X

Subroutines N X S N X

3 Proposal

Our proposal is based on the use of design patterns, which eases the elaboration
of an object-oriented design and its understanding for other developers.

3.1 Design patterns

In SE, a design pattern [16] is a general repeatable solution to a commonly
occurring problem in software design. It is a description or template for how to
solve a problem that can be used in many different situations.

Design patterns provide a common vocabulary that eases the sharing and un-
derstanding of concepts, preventing subtle issues that can cause major problems,
improving code readability for coders and architects familiar with them. The de-
sign patterns commonly known in the general literature are the ones presented
on [9]; the ones our solution needs are Factory Method and Adapter (Figure 1).

Factory Method is a creational pattern to deal with the problem of creating
objects without having to specify the exact class. This is done by creating objects
by calling a method that encapsulates a constructor. The Creator class defines a
method to build Product objects, but lets the subclasses like ConcreteCreator
decide which class to instantiate, in this case ConcreteProduct.

Adapter is a structural pattern that converts the interface of a class into
another, creating an intermediary abstraction that translates the old component
to the new system. The Client interacts with the Target class, from whom
expects the interface doThat(). The Adaptee class offers the interface doThis(),
which is converted by the Adapter class into the expected doThat().

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

4 S. Magaz-Romero et al.

(a) Factory Method structure (b) Adapter structure

Fig. 1. Design patterns’ structures

3.2 Application

We can now introduce the final design of our proposal, illustrated in Figure 2.
The Platform class (representing a quantum platform) acts as the Creator

from the Factory Method design pattern, and the Circuit class (representing a
quantum circuit) acts as the Product, including a subclass of each per quantum
platform. Regarding the Adapter design pattern, the Circuit class acts as the
Target, and each subclass is the Adapter of their quantum library.

The build method can receive an input to be translated into the quantum
circuit. Therefore, with a single definition, the same circuit can be built in dif-
ferent platforms and run on different quantum computers.

The execute method can return an object with the results, easing the com-
parison of platforms, for example for benchmarking studios.

Fig. 2. Quantum Factory Method structure

4 Examples

Two examples were developed, one using OpenQASM to build simple circuits
and other building Quantum Rule-Based Systems (QRBS) [14] with inferential
circuits. We use Qiskit and Cirq as platforms; code for the implementation is
in [13].

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

Quantum Factory Method 5

4.1 Building simple circuits

We define the classes required: one concrete Platform class and one concrete
Circuit class per platform, and a Result class to store the values.

In this case we use the OpenQASM standard to define simple quantum cir-
cuits. This definition is represented on a string used by the platforms indistinctly.
The Circuit classes encapsulate the quantum implementations for each library,
which are obtained in the build method and used in the execute method. The
Result class stores the values from the measurements of each qubit after the
execution of the quantum circuit, as real numbers in the range [0, 1].

With these elements defined, we obtain the design illustrated in Figure 3.

Fig. 3. OpenQASM example’s design

4.2 Building Quantum Rule-Based Systems

Rule-Based Systems (RBS) are systems commonly used in Artificial Intelligence
that encode and represent the knowledge of an expert in rules [11]. These rules
are composed by a precedent and a consequent. Both are logical statements,
known as facts, that can be evaluated as true of false.

Precedents can be formed combining several facts with logical operators like
AND, OR, and NOT. Consequents can act as the precedent for other rules,
allowing for the chaining of several rules. For example, the following rules are
chained one after another and conform an inferential circuit:

A AND B ⇒ C C OR D ⇒ E E AND (F OR G) ⇒ I

However, facts can be between true or false states. This idea is called un-
certainty, and can be implemented in RBS. Using QC to represent uncertainty
gives birth to QRBS. Overall, the elements that conform a QRBS are:

– Facts: single qubits, with state |0⟩ being false and state |1⟩ true.
– Operators: quantum operators, as illustrated in Figure 4.
– Uncertainty: a parameterized operator (Eq. 1) that puts a qubit in super-

position, mapping its uncertainty degree in [0, 1] to an angle in [0, π/2].

M(δ) =

[
cos(δ) sin(δ)
sin(δ) −cos(δ)

]
(1)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

6 S. Magaz-Romero et al.

|q0⟩ •
|q1⟩ •
|q2⟩

(a) Quantum AND

|q0⟩ • •
|q1⟩ • •
|q2⟩

(b) Quantum OR

|q0⟩ X

(c) Quantum NOT

Fig. 4. Quantum logical operators

We can now apply the proposed design to build QRBS: we need to define
one concrete Platform and Circuit per platform we want to implement, and
a Result class to store the values obtained after measuring. In this case, the
Platform class provides a build method that receives an inferential circuit as
the input, and an execute method that receives the Circuit object and returns
a Result object with the measured values. To represent classical inferential
circuits we use the Composite design pattern, used to model tree structures
that represent part-whole hierarchies. For the building process we incorporate
the Visitor design pattern, where quantum platforms visit the elements of an
inferential circuit to build its quantum circuit. The Result class stores the values
obtained after measuring in a key-value dictionary, where the key is the tag of
the element and the value is the measurement obtained. With these elements
defined, we obtain the design shown in Figure 5.

4.3 Experiments and results

At this point, we can experiment with the examples as follows: (1) define a
proper problem (an OpenQASM string or an inferential circuit), (2) call the
build methods to obtain the Circuit objects, (3) call the execute methods to
obtain the Result objects, and (4) analyse the obtained values to conclude.

Fig. 5. QRBS example’s design

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

Quantum Factory Method 7

Table 2. Results for OpenQASM example with the Bell State circuit

State probability
Platform |00⟩ |11⟩
Qiskit 0.511 0.489
Cirq 0.491 0.509

Table 3. Results for QRBS example with the proposed circuit

Element
Platform A B C D E F G H I

Qiskit 1.000 0.331 0.286 0.373 0.416 0.214 0.950 0.838 0.344
Cirq 1.000 0.342 0.295 0.381 0.423 0.232 0.944 0.823 0.341

We define a proper problem for each example (a Bell state quantum circuit
for OpenQASM and an inferential circuit with the rules of section 4.2 for QRBS),
and execute them with the default parameters of each platform (local simulators,
1024 shots), obtaining the results shown in Tables 2 and 3. The values are similar
but not identical, in part due to QC’s probabilistic nature, yet they show the
relevance of comparing the results obtained by different quantum platforms.

5 Discussion and conclusions

The design obtained, named Quantum Factory Method, is a robust and solid
product, as a result of using design patterns. Its simplicity resides on covering
the needs and modelling through the Factory Method and Adapter patterns.

The QRBS example illustrates the potential of our approach, as a single
definition of an inferential circuit is built in each platform, without having to
rebuild for each experiment. The abstraction allows to design the quantum in-
ferential circuits without dealing with the specifics of the platforms. In this case,
we could vary the certainty values of the elements without having to modify
their quantum implementation, speeding up experiments carried out.

This design focuses on the higher levels of QC, facilitating the work for
end users and delegating the specifics to software experts. Reviewing the initial
objectives, we can observe: (i) through the abstractions, a single definition is
passed onto the corresponding classes to carry on with the tasks, (ii) the output
for the execute method can be standardised, and (iii) new platforms can be
included into the design without modifying the ones contemplated.

The flexibility provided by the input to build the quantum circuits enables the
representation of complex data structures with ease. Its range is illustrated with
the examples of section 4, going from simple quantum circuits to complex cases
like quantum algorithms, where more information is needed. With this design,
one definition is enough for several quantum platforms. This workflow eases
development and maintenance, which is key to develop large software products.

Regarding future work, we intend to keep looking for this kind of synergies.
We believe that Software Engineering will be interesting for better develop Quan-

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

8 S. Magaz-Romero et al.

tum Computing algorithms. We hope the ideas presented in this paper conform
a step towards that direction.

Acknowledgements. This work has been supported by the European Union’s
Horizon 2020 under project NEASQC (grant agreement No 951821) and by the
Xunta de Galicia (grant ED431C 2022/44) with the European Union ERDF
funds and Centro de Investigación de Galicia “CITIC”, funded by Xunta de
Galicia and the European Union (European Regional Development Fund-Galicia
2014-2020 Program, grant ED431G 2019/01). DAE received funding from the
project ED431H 2020/10 of Xunta de Galicia.

References

1. Amazon Web Services: Amazon Braket. https://aws.amazon.com/braket/, ac-
cessed: 23-11-2022

2. Atos: myQLM. https://myqlm.github.io/, accessed: 23-11-2022
3. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Blank, C., McKiernan, K., et al.:

Pennylane: Automatic differentiation of hybrid quantum-classical computations
(2018). https://doi.org/10.48550/arxiv.1811.04968, accessed: 23-11-2022

4. Biondi, M., Heid, A., Henke, N., Mohr, N., Pautasso, L., Ostojic, I., Wester, L.,
Zemme, R.: Quantum computing: An emerging ecosystem and industry use cases.
McKinsey & Company (2021)

5. Cirq Developers: Cirq (Apr 2022). https://doi.org/10.5281/zenodo.6599601
6. Cross, A., Javadi-Abhari, A., Alexander, T., Beaudrap, N.D.: OpenQASM 3: A

broader and deeper quantum assembly language. ACM Transactions on Quantum
Computing 3(3), 1–50 (sep 2022). https://doi.org/10.1145/3505636

7. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language (2017). https://doi.org/10.48550/arxiv.1707.03429

8. Feynman, R.P.: Quantum mechanical computers. Foundations of Physics 16(6),
507–531 (Jun 1986). https://doi.org/10.1007/bf01886518

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

10. Gemeinhardt, F., Garmendia, A., Wimmer, M.: Towards model-driven quan-
tum software engineering. In: 2021 IEEE/ACM 2nd International Work-
shop on Quantum Software Engineering (Q-SE). pp. 13–15. IEEE (2021).
https://doi.org/10.1109/Q-SE52541.2021.00010

11. Grosan, C., Abraham, A.: Intelligent Systems: A Modern Approach. Springer
Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-21004-4

12. IBM: IBM Quantum. https://quantum-computing.ibm.com/, accessed: 26-10-2022
13. Magaz: samu-magaz/quantum-factory-method: Quantum Factory Method v1.0.0

(Jan 2023). https://doi.org/10.5281/zenodo.7544539
14. Moret-Bonillo, V., Magaz-Romero, S., Mosqueira-Rey, E.: Quantum computing for

dealing with inaccurate knowledge related to the certainty factors model. Mathe-
matics 10(2) (2022). https://doi.org/10.3390/math10020189

15. Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G., Hevia, J.L.: To-
ward a quantum software engineering. IT Professional 23(1), 62–66 (2021).
https://doi.org/10.1109/MITP.2020.3019522

16. Shvets, A.: Dive into Design Patterns. Refactoring.Guru (2021)
17. Zhao, J.: Quantum software engineering: Landscapes and horizons. arXiv preprint

arXiv:2007.07047 (2020). https://doi.org/10.48550/arxiv.2007.07047

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_6

https://aws.amazon.com/braket/
https://myqlm.github.io/
https://doi.org/10.48550/arxiv.1811.04968
https://doi.org/10.5281/zenodo.6599601
https://doi.org/10.1145/3505636
https://doi.org/10.48550/arxiv.1707.03429
https://doi.org/10.1007/bf01886518
https://doi.org/10.1109/Q-SE52541.2021.00010
https://doi.org/10.1007/978-3-642-21004-4
https://quantum-computing.ibm.com/
https://doi.org/10.5281/zenodo.7544539
https://doi.org/10.3390/math10020189
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.48550/arxiv.2007.07047
https://dx.doi.org/10.1007/978-3-031-36030-5_6
https://dx.doi.org/10.1007/978-3-031-36030-5_6

