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Abstract. Analysing properties of ground state of a quantum systems, is an im-
portant problem with applications in various domains. Recently, Huang et al.
[2021] demonstrate how machine learning algorithms can be used to efficiently
solve this problem with formal guarantees. However this method requires an ex-
ponential amount of data to train. In this work we show a method with improved
efficiency for a wide class of energy operator. In particular, we show an ML-
based method for predicting ground state properties for structured Hamiltonian
with sub-exponential scaling in training data. The method relies on efficiently
learning low-degree approximation of the energy operator.

1 Introduction

The challenge of predicting the ground state of a quantum system is an important one
that has applications in a variety of fields, such as quantum machine learning[Arunachalam
and de Wolf, 2017, Biamonte et al., 2017, Schuld and Killoran, 2019], variational quan-
tum algorithms[Cerezo et al., 2021, Gibbs et al., 2022], experimental quantum physics
[Carleo and Troyer, 2017, Sharir et al., 2020] and quantum benchmarking[Scott, 2008,
Levy et al., 2021]. Huang et al. [2021] show that machine learning can be applied with
a classical-shadow [Huang et al., 2020] based representation of quantum states, to ef-
fectively handle this problem. Nevertheless, this approach has a sample complexity that
is exponential in the amount of training data. Specifically, their proposed algorithm has
a sample complexity of 𝒪(𝑛

𝑐
𝜖 ) for a prediction error 𝜖. As such, when the prediction

error 𝜖 is small, a significant amount of training data is required to achieve that error.
In this work, we propose a method that is more effective than previous approaches for
a diverse range of energy operators. The method relies upon low-degree approximation
to the energy. Our method uses a representation known as classical shadow, which is a
condensed classical description of a many-body quantum state [Flammia and Preskill,
2022]. This description can be created in quantum experiments and can be used to pre-
dict many of the attributes of the state. Our method improves over existing ML based
algorithms for predicting ground state features in terms of sample complexity. Specifi-
cally, for structured Hamiltonians with sub-exponential scaling of training data

Classical ML could be used to generalize from training data that are obtained from
either quantum experiments or classical simulations; the same rigorous performance
guarantees apply in either case. Even if the training data are generated classically, it
could be more efficient and more accurate to use ML to predict properties for new values
of the input 𝑥, rather than doing new simulations which could be computationally very
demanding and of unverified reliability. Promising insights into quantum many-body
physics are already being obtained using classical ML based on classical simulation
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data [Deng et al., 2017, Nomura et al., 2017, Zhang et al., 2017, Vargas-Hernández
et al., 2018, Schütt et al., 2019, Zhang et al., 2020, Kawai and Nakagawa, 2020].

2 Preliminaries and Related Work

2.1 Formulation

Consider an 𝑚-dimensional vector 𝑥 ∈ [−1, 1]𝑚 that parameterizes an 𝑛-qubit gapped
geometrically local Hamiltonian given as

𝐻(𝑥) =
∑︁
𝑗

ℎ𝑗(𝑥𝑗), (1)

𝑥1, . . . ,𝑥𝐿 are 𝒪(1) sized vectors parameterizing the few-body interaction ℎ𝑗(𝑥𝑗). For
example, 𝑥𝑗 might be the coupling coefficients between a node and its neighbours in
an Ising model. Let 𝜌(𝑥) be the ground state of 𝐻(𝑥) and 𝑂 be a sum of geometrically
local observables with ‖𝑂‖∞ ≤ 1.

The goal is to learn a function ℎ*(𝑥) that approximates the ground state property
tr(𝑂𝜌(𝑥)), (︀

𝑥ℓ, 𝑦ℓ
)︀
, ∀ℓ = 1, . . . , 𝑁, (2)

where 𝑦ℓ ≈ tr(𝑂𝜌(𝑥ℓ)) records the ground state property for 𝑥ℓ ∈ [−1, 1]𝑚 sampled
from an arbitrary unknown distribution 𝒟.

The setting considered in this work is very similar to that in Huang et al. [2021], but
we assume the geometry of the 𝑛-qubit system to be known.

Adiabatic quantum computation [Farhi et al., 2000, Aharonov et al., 2008, Wan
and Kim, 2020], focuses on finding ground states of special Hamiltonian to perform
computation. However, unlike these works we would not use any quantum memory,
or explicit description of the operator 𝑂 or any information about an adiabatic path to
hamiltonian 𝐻 .

We prove that given 𝜖 = 𝛩(1), the improved ML algorithm can use a dataset size of

𝑁 = 𝒪 (log (𝑛)) , (3)

to learn a function ℎ*(𝑥) with an average prediction error of at most 𝜖,

E
𝑥∼𝒟

|ℎ*(𝑥)− tr(𝑂𝜌(𝑥))|2 ≤ 𝜖, (4)

The correctness of the method relies upon results on optimizing 𝑘-local Hamiltoni-
ans Dinur et al. [2006], Barak et al. [2015], Harrow and Montanaro [2017], Anshu et al.
[2021], Flammia and Preskill [2022]. The efficiency of the method is based upon recent
results in quantum Bohnenblust-Hille inequalities Rouzé et al. [2022], Bohnenblust and
Hille [1931].
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2.2 Classical Shadows

Classical shadows are an efficient classical representations of quantum systems. The
fundamental idea of this representations is similar to random projections. We use the
terminology borrowed from earlier works van Enk and Beenakker [2012], Ohliger et al.
[2013], Paini and Kalev [2019], Huang et al. [2020]. An 𝑛-qubit quantum state 𝜌 can be
approximated by performing randomized single-qubit Pauli measurements on 𝑇 copies
of 𝜌. If we measure every qubit of the state 𝜌 in a random Pauli basis 𝑋,𝑌 or 𝑍, and
collect the observations, and repeat the procedure 𝑇 times, we are left with a set of
measurement

𝑆𝑇 (𝜌) =
{︀
|𝑠(𝑡)𝑖 ⟩ : 𝑖 ∈ {1, . . . , 𝑛}, 𝑡 ∈ {1, . . . , 𝑇}

}︀
where each |𝑠(𝑡)𝑖 ⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i+⟩ , |i−⟩} corresponds to an eigenstate of the
corresponding Pauli operator.

Each element is a highly structured single-qubit pure state, and there are 𝑛𝑇 of
them in total. So, 3𝑛𝑇 bits suffice to store the entire collection in classical memory. The
randomized measurements can be performed in actual physical experiments or through
classical simulations. Resulting data can then be used to approximate the underlying
𝑛-qubit state 𝜌:

𝜌 ≈ 𝜎𝑇 (𝜌) =
1

𝑇

𝑇∑︁
𝑡=1

𝜎
(𝑡)
1 ⊗ · · · ⊗ 𝜎(𝑡)

𝑛 where 𝜎
(𝑡)
𝑖 = 3|𝑠(𝑡)𝑖 ⟩⟨𝑠(𝑡)𝑖 | − I, (5)

and I denotes the 2 × 2 identity matrix. This classical shadow representation Huang
et al. [2020] asymptotically reproduces the global density matrix. By the Hoeffding-
Chernoff bound, one can also show that with 𝑇 = 𝒪(log(𝑛)/𝜖2) one can get an 𝜖-
accurate approximation of the density matrix as well. This, implies that with 𝑇 > 𝑇
experiments, we can use 𝜎𝑇 (𝜌) to predict local functions ( like expectation values ).

As detailed next, this classical shadow representation is utilized by Huang et al.
[2021] to build an ML algorithm for estimation of local properties of ground states 𝜌.

2.3 Predicting ground states of quantum many-body systems

Huang et al. [2021] consider the task of predicting ground state properties for finite
many-body systems. For this purpose they propose training an ML algorithm on a
dataset collected from quantum experiments over a parametric family of Hamiltonians
𝐻(𝑥). Before the training of the ML algorithm, many Hamiltonians 𝐻(𝑥) are sampled,
the classical shadow of the corresponding ground state 𝜌(𝑥) of 𝐻(𝑥) is obtained. The
full training data of size 𝑁 is given by

{︀
𝑥ℓ → 𝜎𝑇 (𝜌(𝑥ℓ))

}︀𝑁
ℓ=1

, where 𝑇 is the number
of measurements in the construction of the classical shadows at each value of 𝑥ℓ.

The ML models is trained on this size-𝑁 training data, such that when given the
input 𝑥ℓ, the ML predicts a vector representation 𝜎̂(𝑥) that approximates 𝜎𝑇 (𝜌(𝑥ℓ)).

In particular, they use a Nadaraya-Watson estimator [Nadaraya, 1964, Watson, 1964]
( a version of nearest-neighbour regression) with a kernel function [Bierens, 1988].

𝜎̂(𝑥) =
1

𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ)𝜎𝑇 (𝜌(𝑥ℓ)). (6)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_5

https://dx.doi.org/10.1007/978-3-031-36030-5_5
https://dx.doi.org/10.1007/978-3-031-36030-5_5


4 Lauren Preston and Shivashankar

where 𝜅(𝑥, 𝑥ℓ) is a kernel function [Bierens, 1988]. The ground state properties are then
estimated using these predicted classical representations 𝜎̂(𝑥). Specifically, 𝑓𝑂(𝑥) =
tr (𝑂𝜌(𝑥)) can be predicted efficiently whenever 𝑂 is a sum of few-body operators.
They provide guarantees by using a truncated Fourier (also known as Dirichlet kernel)
𝜅(𝑥, 𝑥ℓ) =

∑︀
𝑘∈Z𝑚,‖𝑘‖2≤𝛬 cos(𝜋𝑘 · (𝑥− 𝑥ℓ)) with cutoff 𝛬. Their method guarantees

that E𝑥 | tr(𝑂𝜎̂(𝑥))− 𝑓𝑂(𝑥)|2 ≤ 𝜖 for 𝑁 = 𝑚𝒪(1/𝜖) .

3 Proposed Method

3.1 Idea

Suppose that 𝑂 is an arbitrary and unknown 𝑛-qubit observable, and a distribution 𝒟 of
𝑛-qubit quantum states. 𝑂 will correspond to a local ground state property as described
earlier. The distribution 𝒟, in our case, would correspond to a shadow representation
of the ground state of Hamiltonians 𝐻(𝑥). More specifically for each 𝑥 ∈ [−1, 1]𝑚

we have 𝜎𝑇 (𝜌(𝑥)) in 𝒟. The probability over 𝒟 is the one naturally induced by this
transformation on the distribution over 𝑥. Our goal is to find a function ℎ(𝜌) which
predicts the expectation value tr(𝑂𝜌) of the observable 𝑂 on the state 𝜌 with a small
mean squared error:

E
𝜌∼𝒟

|ℎ(𝜌)− tr(𝑂𝜌)|2 ≤ 𝜖.

We will assume that we can access training data of the form

{𝜌ℓ, tr (𝑂𝜌ℓ)}𝑁ℓ=1 , (7)

where 𝜌ℓ is sampled from the distribution 𝒟. In practice, though, we cannot directly
access the exact value of the expectation value tr (𝑂𝜌ℓ); instead, we might measure 𝑂
multiple times in the state 𝜌ℓ to obtain an accurate estimate of the expectation value.

A critical aspect of the is that the distribution 𝒟, has a specific structure which
allows us to learn an efficient approximation to the entire process.

Specifically, the distribution of classical shadow representations 𝒟 is locally flat.
This means that the distribution is unmodified (i.e., the distribution appears flat) when
we locally rotate any one of the qubits by a Clifford gate. To see this, recall that the
Clifford group normalizes Pauli operators. Hence the composition of a Clifford gate 𝐶
with a Pauli gate 𝑃 is equivalent to composition with a different Clifford gate 𝐶 ′ and
Pauli gate 𝑃 ′. Since the classical shadow 𝜎𝑇 (𝜌) is obtained by applying Pauli operator
𝑃 to the state 𝜌, applying a Clifford gate𝐶 to 𝜎𝑇 (𝜌), is equivalent to applying a different
Clifford gate 𝐶 ′ with a different Pauli operator 𝑃 ′. However since the classical shadow
representation is obtained by applying a randomly chosen Pauli operator to the quantum
state, the distribution of classical shadow representations is invariant to applying any
Clifford gate, as applying a Clifford gate to the quantum state simply corresponds to
applying a different Clifford gate and a different Pauli operator to the classical shadow
representation.

An arbitrary observable 𝑂 can be expanded in terms of the Pauli operator basis:

𝑂 =
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝛼𝑃𝑃. (8)
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Though there are 4𝑛 Pauli operators, if the distribution 𝒟 is locally flat and 𝑂 has a
constant spectral norm, we can approximate the sum over 𝑃 by a truncated sum

𝑂(𝑘) =
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛:|𝑃 |≤𝑘

𝛼𝑃𝑃. (9)

including only the Pauli operators 𝑃 with weight |𝑃 | up to 𝑘, those acting nontrivially
on no more than 𝑘 qubits. The mean squared error incurred by this truncation decays
exponentially with 𝑘. Therefore, to learn𝑂 with mean squared error 𝜖 it suffices to learn
this truncated approximation to 𝑂, where 𝑘 = 𝒪(log(1/𝜖)).

Furthermore, using recent work on Bohnenblust-Hille Inequalities [Slote et al.,
2023, Volberg and Zhang, 2022] one can show that for 𝑂 with low norms, only a few
large coefficients 𝛼𝑃 are relevant. Hence, instead of the complexity of 𝑛𝒪(𝑘) in order
to learn 𝑂 one can get an efficient approximation with 𝒪(log 𝑛) samples.

To make predictions about the expectation value of an operator𝑂 for a new quantum
state 𝜌 drawn from a distribution 𝒟, we need to have some information about 𝜌. Both 𝜌
and 𝑂 can be represented using Pauli operators. When we only consider the truncated
part of𝑂, the prediction is based only on the corresponding part of 𝜌. If the reduced den-
sity matrices of the states in 𝒟 are known, the prediction can be calculated classically.
If the states in 𝒟 are unknown, the reduced density matrices can be learned efficiently
(for small 𝑘) using classical shadow tomography, after which the classical calculation
can be performed to make a prediction about the expectation value of tr(𝑂𝜌).

3.2 Algorithm Details

Suppose we have obtained a classical dataset by performing 𝑁 randomized experi-
ments. Recall that a randomized Pauli measurement measures each qubit of a state in a
random Pauli basis (𝑋 , 𝑌 or 𝑍) and produces a measurement outcome of |𝜓(out)⟩ =⨂︀𝑛

𝑖=1 |𝑠
(out)
𝑖 ⟩, where |𝑠(out)𝑖 ⟩ ∈ stab1 ≜ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |𝑦+⟩ , |𝑦−⟩}. We denote

the classical dataset of size 𝑁 to be

𝑆𝑁 ≜

{︃
|𝜓(in)

ℓ ⟩ =
𝑛⨂︁

𝑖=1

|𝑠(in)ℓ,𝑖 ⟩ , |𝜓(out)
ℓ ⟩ =

𝑛⨂︁
𝑖=1

|𝑠(out)ℓ,𝑖 ⟩

}︃𝑁

ℓ=1

, (10)

where |𝑠(in)ℓ,𝑖 ⟩ , |𝑠(out)ℓ,𝑖 ⟩ ∈ stab1. Each product state is represented classically with 𝒪(𝑛)
bits. Hence, the classical dataset 𝑆𝑁 is of size 𝒪(𝑛𝑁) bits.

Let 𝑂 be an observable with ‖𝑂‖ ≤ 1 that is written as a sum of few-body ob-
servables, where each qubit is acted by 𝒪(1) of the few-body observables. We denote
the Pauli representation of 𝑂 as

∑︀
𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛 𝑎𝑄𝑄. By definition of 𝑂, there are

𝒪(𝑛) nonzero Pauli coefficients 𝑎𝑄. We consider a hyperparameter 𝜖 > 0; roughly
speaking 𝜖 will scale inverse polynomially in the dataset size 𝑁 . For every Pauli ob-
servable 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 with |𝑃 | ≤ 𝑘 = 𝛩(log(1/𝜖)), the algorithm computes an
empirical estimate for the corresponding Pauli coefficient 𝛼𝑃 via

𝑥̂𝑃 (𝑂) =
1

𝑁

𝑁∑︁
ℓ=1

tr

(︃
𝑃

𝑛⨂︁
𝑖=1

|𝑠(in)ℓ,𝑖 ⟩⟨𝑠(in)ℓ,𝑖 |

)︃
tr

(︃
𝑂

𝑛⨂︁
𝑖=1

(︁
3|𝑠(out)ℓ,𝑖 ⟩⟨𝑠(out)ℓ,𝑖 | − 𝐼

)︁)︃
, (11)
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𝛼̂𝑃 (𝑂) =

{︃
3|𝑃 |𝑥̂𝑃 (𝑂),

(︀
1
3

)︀|𝑃 |
> 2𝜖 and |𝑥̂𝑃 (𝑂)| > 2 · 3|𝑃 |/2√𝜖

∑︀
𝑄:𝑎𝑄 ̸=0 |𝑎𝑄|,

0, otherwise.
(12)

The computation of 𝑥̂𝑃 (𝑂) and 𝛼̂𝑃 (𝑂) can both be done classically. The basic idea of
𝛼̂𝑃 (𝑂) is to set the coefficient 3|𝑃 |𝑥̂𝑃 (𝑂) to zero when the influence of Pauli observable
𝑃 is negligible. Given an 𝑛-qubit state 𝜌, the algorithm outputs

ℎ(𝜌,𝑂) =
1

𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ)
∑︁

𝑃 :|𝑃 |≤𝑘

𝛼̂𝑃 (𝑂) tr(𝑃𝜌(𝑥ℓ)). (13)

Note that, to make predictions, the ML algorithm only needs the 𝑘-body reduced
density matrices (𝑘-RDMs) of 𝜌. The 𝑘-RDMs of 𝜌 can be efficiently obtained by per-
forming randomized Pauli measurement on 𝜌 and using the classical shadow formalism
Huang et al. [2020].

Theorem 1 (Learning an unknown observable). Given 𝜖, 𝜖′, 𝛿 > 0, ‖𝑂‖ < 1 from a
training data {𝜌ℓ, tr (𝑂𝜌ℓ)}𝑁ℓ=1 of size

𝑁 = log(𝑛/𝛿)2𝒪(log( 1
𝜖 ) log(𝑛)), (14)

where 𝜌ℓ is sampled from 𝒟, we can learn a function ℎ(𝜌) such that

E
𝜌∼𝒟

|ℎ(𝜌)− tr(𝑂𝜌)|2 ≤ (𝜖+ 2𝜖′) (15)

with probability at least 1− 𝛿.

The proof the the theorem and the detailed description of the ML algorithm are given
in the longer version of the paper. To measure the prediction error of the ML model,
we consider the average-case prediction performance under an arbitrary 𝑛-qubit state
distribution 𝒟 invariant under single-qubit Clifford gates, which means that the proba-
bility distribution 𝑓𝒟(𝜌) of sampling a state 𝜌 is equal to 𝑓𝒟(𝑈𝜌𝑈†) of sampling 𝑈𝜌𝑈†

for any single-qubit Clifford gate 𝑈 .

4 Conclusion

Traditional machine learning (ML) offers a strategy that has the potential to be ex-
tremely effective in resolving difficult quantum many-body issues in the fields of physics
and chemistry. On the other hand, as these algorithms use an exponential amount of
training data[Huang et al., 2021], it is not clear whether there is any guaranteed ad-
vantage of using ML based methods. In this study, we show that for certain restricted
families ML algorithms do not need exponential amount of data. Our proposed method
cuts down the required sample complexity, at the cost of considering only local Hamil-
tonians. We have focused purely on a theoretical analysis, and experiments need to be
conducted to assess the efficiency of our approach against existing methods.
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