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Abstract. Black-box optimization (BBO) can be used to optimize func-
tions whose analytic form is unknown. A common approach to realising
BBO is to learn a surrogate model which approximates the target black-
box function which can then be solved via white-box optimization meth-
ods. In this paper, we present our approach BOX-QUBO, where the
surrogate model is a QUBO matrix. However, unlike in previous state-
of-the-art approaches, this matrix is not trained entirely by regression,
but mostly by classification between “good” and “bad” solutions. This
better accounts for the low capacity of the QUBO matrix, resulting in
significantly better solutions overall. We tested our approach against the
state-of-the-art on four domains and in all of them BOX-QUBO showed
better results. A second contribution of this paper is the idea to also solve
white-box problems, i.e. problems which could be directly formulated as
QUBO, by means of black-box optimization in order to reduce the size
of the QUBOs to the information-theoretic minimum. Experiments show
that this significantly improves the results for MAX-k-SAT.
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1 Introduction

The goal of black-box optimization is to minimize a function E(x), where this
function is not known analytically. Like an oracle, this function can only be
queried for a given z: y = F(z). A commonly used solution for this problem is
to create a surrogate model E’(x). This surrogate model is trained to provide
the same outputs as F(x). Since, unlike F(z), E'(z) is a white-box model, it
is easier to search for the best solution x* = argmin, E’(z). Black-box opti-
mization then iterates between searching the best solution z* for the surrogate
model E'(x), asking the oracle for the actual value y = E(z*) and re-training
the surrogate model E’ to output y for the input z* using the mean squared
error as the loss function: loss = (E'(z*) — y)?. We use the terms “oracle” and
“black-box function” interchangeably in this paper.
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Following the tradition of machine learning, we use the term ‘capacity’ to refer
to the amount of information a model can memorize. In black-box optimization,
there is a trade-off between the capacity of the surrogate model (the higher the
capacity of surrogate model F’(x), the better it can approximate the actual
values y) and the difficulty of the optimization (the higher the capacity of surro-
gate model E’(z), the more difficult the optimization z* = argmin, E'(z)). A
frequent choice for the model E’(z) recently fell |2,|13] on the Quadratic Uncon-
strained Binary Optimization (QUBO) matrix @ [4], which seems like a good
trade-off for the capacity.

2 Background

2.1 MAX-SAT

Satisfiability (SAT) is a canonical NP-complete problem [11]. Let V' = {vy, ..., v, }
be a set of Boolean variables and let f be a Boolean formula represented in con-
junctive normal form: f = ‘Zﬂl VleCi l; with [ being a literal and C; being the
i-th clause. The task is to find an assignment V for V such that f(V) = 1.
MAX-SAT is a variant of SAT, where not all clauses have to be satisfied, but
only as many as possible. In k-SAT, each clause consists of exactly k literals.

2.2 Feedback Vertex Set (FVS)

Feedback Vertex Set is an NP-complete problem [11]. Let G = (V,E) be a
directed graph with vertex set V' and edge set E which contains cycles. A cycle
is a path (following the edges of F) in the graph starting from any vertex vg such
that one ends up back at vertex vg. The path can contain any number of edges.
The task in Feedback Vertex Set is to select the smallest subset V' C V such that
graph G = (V\V', E') is cycle-free, where E' = {(v;,v;) € E :v; ¢ V' Av; ¢ V'}.

2.3 MaxClique

Maximum Clique is another NP-complete problem [11]. Let G = (V, E) be an
undirected graph with vertex set V' and edge set E. A clique in graph G is a
subset V' C V of the vertices, so all pairs of vertices from V' are connected with
an edge. That is, V(v;,v;) € V/ x V' : (v;,v;) € E. The task in MaxClique is to
find the largest clique of the graph. The size of a clique is the cardinality of the
set V1 |[V'|.

2.4 Quadratic Unconstrained Binary Optimization (QUBO)

Let @ be an upper-triangular (nxn)-matrix @ and = be a binary vector of length
n. The task of Quadratic Unconstrained Binary Optimization [16] is to solve the
following optimization problem: z* = argmin, (7 Qx). QUBO is NP-hard |3
and has been of particular interest recently as special machines, such as the
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Quantum Annealer [4,8] or the Digital Annealer |1, have been developed to
solve these problems. Therefore, in order to solve other problems with these
special machines, they must be formulated as QUBO. Numerous problems such
as MAX-E-SAT [5/61/19}20], MaxClique |17}/18], and FVS |18] have already been
formulated as QUBO.

2.5 Cross-Entropy Method

The cross-entropy method 7] is a general iterative optimization method to opti-
mize an oracle g(z) using a parameterized probability distribution f(z;v). The
method iterates between sampling p solutions: X ~ f(x;v), sorting them by
their values g(X) in increasing order and adjusting the parameters v such that
better solutions x get a higher probability f(x;v). This makes it more likely to
sample better solutions in the next iteration, starting again with sampling from
the probability distribution: X ~ f(z;v), with the new values v.

3 Related Work

The main Related Work to our approach is Factorization Machine Quantum An-
nealing (FMQA) [10,13]. FMQA, like our approach, is based on an iteration of
three phases: 1) sample from the surrogate model (a QUBO matrix); 2) retrieve
the value from the oracle (either via experiments or simulation); 3) update the
QUBO matrix. This is in fact a cross-entropy approach with f being the sur-
rogate model (the QUBO matrix). The main difference to our approach is that
FMQA solely uses regression to train the model, while we use simultaneous re-
gression and classification. The authors subsequently use FMQ@A in their paper
to design metamaterials with special properties. A similar approach to FMQA is
Bayesian Optimization of Combinatorial Structures (BOCS) [2] which also uses a
quadratic model as a surrogate model. BOCS additionally uses a sparse prior to
facilitating optimization. However, BOCS also only uses regression to optimize
the model. In the original paper [2|, BOCS was solved using only non-quantum
methods (including Simulated Annealing |12]), Koshikawa et al. [14], however,
also tested BOCS for optimization with a quantum annealer. In [15] Koshikawa
et al. used BOCS for a vehicle design problem and found that it performed
slightly better than a random search. In our experiments, we use the white box
QUBO formulations for MAX-k-SAT [6], FVS |18] and MaxClique |18] as base-
lines. In [9], surrogate QUBO solvers were trained to simplify the optimization of
hyperparameters arising in the relaxation of constrained optimization problems.
Roch et al.

4 Black Box Optimization with Cross Entropy and
QUBO (BOX-QUBO)

Main idea: The QUBO matrix is a surrogate model with relatively low capacity
since it has only n(n + 1)/2 trainable parameters for a matrix of size (n x
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n). Previous approaches to black-box optimization with QUBO always attempt
full regression on all training data. However, the loss becomes larger the more
training data is available for the same size of the QUBO matrix due to the
limited number of trainable parameters. The main idea behind our approach is
to perform a regression only on a small part of the training data and classification
on the remaining data since classification requires less capacity of the model than
regression. For this purpose, the training vectors = are sorted according to their
solution quality (also called energy) E(z) and divided into two sets: the set of
vectors with higher energies H and the set of vectors with lower energies L.
There is now a threshold 7 such that:

Vee H: E(x) >
VeeL:E(x)<T

Note that the goal is to find vector * with minimum energy: Vz : E(x) > E(x*).
The goal of the classification is to classify whether a vector x is in set H or L.
The regression is performed exclusively on L. The size of L is determined by
a hyperparameter k. For example, using k¥ = 0.03, L contains 3% of all data:
|L| = 0.03-|D|, thus a more precise regression is possible. BOX-QUBO requires
as input the oracle (black-box function) E(x) and an initial training set D. The
output will be the vector * with minimum energy y* = E(z*). First, the QUBO
matrix @ is randomly initialized. After that, the following three phases alternate:

1. Search the p best solution vectors X* for the current QUBO matrix @ (e.g.
using simulated or quantum annealing)

2. Query the oracle for actual values E(X™*)

3. Append (X*, E(X™*)) to the training set D and retrain  on D

The training of ) using the training set D proceeds as follows. First, D is sorted
by the energies E(x) and then subdivided into the two non-overlapping sets H
and L. After splitting, @ is trained for nCycles iterations. In each cycle, the
temporary training set T is created dynamically: all vectors © € L are always
part of T', vectors x € H, however, are only part of T if their current prediction
Ypredict = 2TQz is smaller than 7 and thus would violate the classification.
The loss function on this temporary training set is now the mean squared error
between Ypredict = 2T Qx and Ytarget- Ytarget, fOr a vector z, is equal to E(x) if
x € L and it is equal to 7 if x € H:

Q* = arg(rgnin Z(ypredict - ytm“get)

zeT

We optimize @) using gradient descent with respect to this loss function. The
complete algorithm is listed in Algorithm 1.
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Algorithm 1: BOX-QUBO
Data: Set of initial training data D = {z, F(x)}; Oracle E(.)
Result: Best solution (z*,y*) of the oracle

Q@ < init QUBO matrix
Q « train(Q, D)

for trainingLength do
X + sample best k solutions from @ (e.g. using quantum annealing)

Y = E(X) // query oracle Vr € X
D.add(X,Y)
Q + train(Q, D)

end

return (z*,y*) € D // Return best y and corresponding x

Function train(Q, D):

H,L,7 < sort and split D // see chapter Splitting H and L
for nC'ycles do
T,Yiarget = L, E(L) // ensure regression Vz € L
for x € H do
Ypredict = 2T Qux // ensure classification Vax € H
if Ypredict < T then
T+ x
Y;arget ~T
end
end
L(z, Yrarget) = (27 Qx — yrarget)? // the loss function
optimize @) via gradient descent w.r.t. VoL(T, Yiarget)
end
return Q

Splitting H and L: We divide the training data D into the ‘good’ solutions
L and the ‘bad’ solutions H based on their energies E(x). For this, we use a
hyperparameter k (a percentage): BOX-QUBO(k%). k% of the training data are
inserted into the set L and the remaining data are inserted into H. In addition,
we use the notation BOX-QUBO(k%\ invalids) to state that all invalid solutions
are inserted into the set H. To solve a problem (e.g., MaxClique) with QUBO,
the problem must be formulated as QUBO and then the QUBO solution x must
be translated back into a problem solution (for example, the set of vertices form-
ing the clique). We call a QUBO solution z ‘invalid’ if it does not correspond to
a valid problem solution (for example, if the QUBO solution z corresponds to a
set of vertices V'’ which is not a clique).
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5 Experiments

In the experiments, we tested whether the approaches BOX-QUBO and FMQA
are able to solve the domains MAX-k-SAT, FVS and MaxClique when these do-
mains are solely accessible as black-box functions. That is, the concrete Boolean
formula (for MAX-k-SAT) or the concrete graph (for FVS and MaxClique) are
unknown. The oracles return an indirectly proportional value to the solution
quality and the value 1 if the QUBO solution x does not translate into a valid
problem solution. The goal of BOX-QUBO and FMQA was then to minimize
the black-box functions (oracles). We have chosen as oracles:

SAToracie(x) = —(# satisfied clauses with variable assignment x)
FV Soracie(x) = if G\z still has cycles then 1 else (X;x; — |V])
MazCliqueoracie(x) = if x is a valid clique then (—X;x;) else 1

where G is a graph. In MAX-k-SAT, V is the number of boolean variables and
C' is the number of clauses. In FVS and MaxClique, V is the number of vertices
of the graph and FE is the number of edges. (X;z;) calculates the number of 1s in
the vector x, which represents in MaxClique the size of the clique and in FVS the
number of deleted vertices. For each of the four domains, 15 random instances
(with different seeds) were created. That is, for Max-4-SAT 15 random formulas
were created and for FVS and MaxClique 15 different graphs were generated
each. Then, the BOX-QUBO and FM@A approaches were applied to each of the
15 instances (i.e. on the corresponding oracle functions). Both algorithms used
the same initial training set. The best solution from this initial set served as the
baseline base. In addition, specialized white-box methods were used to determine
the true optimal solution to each instance, which we refer to as optimum. To
better compare performance between domains, we normalized the best solution
found for each of the BOX-QUBO and FMQ@A approaches, using the formula:
fy*) = (y* — base)/(optimum — base). This gives f(y*) = 1 if y* = optimum
and f(y*) = 0if y* = base, where y* is the value of the best solution (z*) found
so far. The results are shown in Figure 1.

The first result is that black-box optimization (both BOX-QUBO and FMQA)
found significantly better solutions than Choi’s white-box solution for Max-4-
SAT. Using the black-box optimization, we have reduced the size of the QUBO
matrix to the information-theoretic minimum. For example, in the first experi-
ment, we considered formulas with V' = 30 variables and C' = 400 clauses. Here,
Choi’s QUBO matrix had size n = 4 - 400 = 1600, while the QUBO matrices for
BOX-QUBO and FMQ@A corresponded to the information-theoretic minimum
(n =V = 30). However, solving with black-box methods is not always better
than solving with white-box methods, as can be seen in the results for F'VS. The
second result is that BOX-QUBO was always more successful than FMQA. In
FVS, for example, BOX-QUBO(10%\invalids) reached a mean performance of
roughly 0.87 after 15 iterations while FMQA only reached roughly 0.03. A sim-
ilar picture emerged for MaxClique, with all BOX-QUBO variants reaching the
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oo 0.0 +4——

Iteration

Fig. 1. Normalized performance of BOX-QUBO, FMQA [13] and the white-box so-
lutions of Choi [6] and Lucas [18]. The x-axes describe the iteration number and
the y-axes describe the (normalized) mean performance over 15 instances. In Max-
Clique, the graphs of BOX-QUBO(100%\invalids), BOX-QUBO(10%\invalids) and
BOX-QUBO(3%\invalids) overlap.

optimum already after the first iteration. The code for BOX-QUBO is available
on GitHub |[https://github.com/JonasNuesslein/B0OX-QUBO|

6 Conclusion and Future Work

In this paper, we studied black-box optimization using QUBOs as surrogate
models. We presented the BOX-QUBO approach, which is characterized by the
idea to use a simultaneous classification and regression, instead of regression
alone. We have tested our approach on the MAX-k-SAT, FVS, and MaxClique
domains, and the experiments showed that BOX-QUBO consistently outper-
formed FMQA. Besides introducing BOX-QUBO, we also presented the idea of
solving white-box problems using black-box optimization to reduce the size of
the QUBO matrices to the information-theoretic minimum. The experiments on
MAX-4-S AT showed that the solutions found using black-box optimization were
significantly better than those found using the white-box QUBO formulation.
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funding program, supported by the German Federal Ministry of Education and
Research.
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