
Searching B-smooth numbers using quantum
annealing: applications to factorization and

discrete logarithm problem⋆

Olgierd Żołnierczyk1[0000−0002−5196−3494] and Michał
Wroński1[0000−0002−8679−9399]

Military University of Technology, Kaliskiego Str. 2, Warsaw, Poland
{olgierd.zolnierczyk, michal.wronski}@wat.edu.pl

Abstract. Integer factorization and discrete logarithm problem, two
problems of classical public-key cryptography, are vulnerable to quan-
tum attacks, especially polynomial-time Shor’s algorithm, which has to
be run on the general-purpose quantum computer. On the other hand,
one can make quantum computations using quantum annealing, where
every problem has to be transformed into an optimization problem, for
example, the QUBO problem. Currently, the biggest available quantum
annealer, D-Wave advantage, has almost 6,000 physical qubits, and there-
fore it can solve bigger problems than using general-purpose quantum
computers. Even though it is impossible to run Shor’s algorithm on a
quantum annealer, several methods allow one to transform factoriza-
tion or discrete logarithm problems into the QUBO problem. Using a
D-Wave quantum annealer, the biggest factored integer had 20 bits, and
the biggest field, on which it was possible to compute a discrete loga-
rithm problem using any quantum method, had 6 bits. This paper shows
how to transform searching for B-smooth numbers, an important part of
the quadratic sieve method for factorization and index calculus for solv-
ing discrete logarithm problems, to the QUBO problem and then solve
it using D-Wave Advantage quantum solver. The linear algebra step for
integer factorization and index calculus methods has been solved using
classical computations. Using our method, we factorized the 26-bit inte-
ger and computed the discrete logarithm problem over the 18-bit prime
field. Therefore we broke the current records in factorization using quan-
tum annealing by 6 bits and in discrete logarithm problem, using any
quantum method, by 12 bits.

Keywords: Integer factorization · discrete logarithm problem · D-Wave
· quantum annealing · cryptanalysis.
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1 Introduction

The integer factorization problem (IFP) and discrete logarithm problem (DLP)
over finite fields are some of the most widespread problems in modern classical
public-key cryptography. Let us recall these notions, denoting the set of prime
numbers as P.

Definition 1 (Integer factorisation problem). The task of finding
p1, p2, ..., pk ∈ P, such that

∏k
i=1 pi = n, being given n only; is called the in-

teger factorisation problem.

Definition 2 (Discrete logarithm problem over finite field). Let q =
pe, p ∈ P, e ∈ N>0 and ⟨g⟩ = G ≤ F∗

q . The task of finding y ∈ {0, 1, . . . , ord(g)−
1}, being given an element from multiplicative subgroup h ∈ G, such that gy = h;
is called discrete logarithm problem over a finite field.

In general, the most efficient, non-quantum method to solve the integer fac-
torization problem is the general number field sieve (GNFS) method (but in this
work, we use a simpler version - the quadratic sieve method). The improved
method – number field sieve for discrete logarithm is used to solve DLP.

Since 1994 it has been known, according to Shor [13], that there exists a
quantum algorithm that can solve integer factorization and discrete logarithm
problem over finite fields in polynomial time. Moreover, in 2003, Proos and Za-
lka [12] presented how to apply polynomial-time Shor’s algorithm to solve the
discrete logarithm problem on elliptic curves. Since then, there have been many
efforts to implement Shor’s algorithm practically on existing quantum comput-
ers. Unfortunately, till now, the record of the integer factorization problem, com-
puted using Shor’s algorithm, is number 21 [9]. Applications of Shor’s algorithm
for DLP over finite fields and elliptic curves have not been reported.

On the other hand, many more methods solve these problems. One such
method is transforming the given problem into the Ising or QUBO problem.
Such problems may be solved using adiabatic quantum computers. Using such
a method, it was possible to make factorization of 40-bit length number N =
1, 099, 551, 473, 989 using superconducting quantum computer [3], 20-bit integer
N = 1, 028, 171 using quantum annealing [14]. Using quantum annealing, it was
also possible to compute DLP over a 6-bits prime field F59. Secondly, the latest
research shows [16] it is possible to solve the integer factorization problem by
disposing of approximately (logn)2

4 logical qubits and DLP over Fp, disposing
of 2(log p)2 logical qubits. These methods, however, do not outperform Shor’s
algorithm. In the case of ECDLP, using a hybrid quantum solver, searching for
relations in the index calculus method also has been computed quantumly for
8-bit prime p = 251 [15]. The second step of this method, the linear algebra step,
has been computed using a classical computer.

It should be noted that a proposal for solving the IFP using the Schnorr
method and QAOA has also emerged [17]. However, determining its effectiveness
(similarly to the aforementioned examples) requires a deeper analysis.
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Let us define the problem whose solution we can obtain using the quantum
annealing machine. The problem can be presented as a multivariate binary poly-
nomial f(xi, . . . xn) of degree less or equal to 2 with real coefficients. The task is
to find the values of variables for which the polynomial takes the minimal value
(in particular, one of such vectors).

Having constrained the degree of the polynomial, we could denote coefficients
as follows: ai –terms of degree one, bi,j – terms of degree two. Such a problem is
called the QUBO problem – Quadratic Unconstrained Binary Optimization and
can be expressed as follows:

f(x1, . . . , xn) =
∑
i

aixi +
∑
i<j

bi,jxixj . (1)

In this paper, we use the modified factorization procedure, presented by [5],
as a subroutine to check if an integer, randomly chosen in a quadratic sieve or
index calculus method, has all factors less than or equal to the given bound B.

It is worth noting that quadratic sieve and index calculus methods have
limited applications. The complexities of these methods in the classical case are
subexponential. In the quantum case, it is also clear that the quadratic sieve
and index calculus method for finite fields will not outperform Shor’s algorithm.
Nevertheless, the methods presented below may show some promise compared to
classical methods, depending on a more thorough investigation of the complexity
of quantum annealing.

Even if the presented by us method has some limits in its applications, we
factorized the 26-bits integer and computed the DLP over the 18-bits prime field
using this method. Therefore we broke the current records in IFP using quantum
annealing by 6 bits and in DLP, using any quantum method, by 12 bits. As
reported later, a hybrid classical-quantum application of a general number field
sieve for both IFP and DLP should allow finding solutions in about 50-bit cases
without increasing the number of logic variables in given QUBO problems. These
researches require, however, much more effort.

2 Classical methods for integer factorization and discrete
logarithm

2.1 Quadratic sieve method

One of the most crucial integer factorization method is the quadratic sieve
method, proposed by Carl Pomerance in 1981. Up to an approximately 340-
bit length of factored number, the QS is the most efficient method since, for
larger inputs, the general number field sieve method is more efficient.

An observation underlying this method is the following fact. For a given
factorization problem (as defined by Definition 1), having a pair of numbers for
which holds:

a2 ≡ b2 (mod n) (2)
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and
a ̸≡ ±b (mod n), (3)

implies the possibility of computing d |n, (it is because a2 − b2 ≡ 0 (mod n) ⊢
n | (a + b)(a − b) ⊢ gcd(a ± b, n) – non-trivial divisor of n, where ⊢ denotes a
conditional assertion, so P ⊢ Q means that from P, we know that Q.

The naive way of searching the above relation (a, b) is replaced by splitting
this task into more steps. Namely, we explore many weakened relations of the
form a2i ≡ bi, where all prime factors of bi are less or equal a bound B – it
means bi is B-smooth. Finally, we multiply the congruences corresponding to
the selected pair (a, b), creating primary relation (Equation 2), which we need.
We choose the base of prime factors for this purpose:

B =
{
− 1, p2, p3, . . . , pk | P ∋ pi < B

}
, (4)

fixing a well adjusted bound B and next, denoting #B = k.
Using the following polynomial:

T (c) = (m+ c)2 − n ≡ (m+ c)2 (mod n), (5)

where m = ⌊
√
n⌋, we can generate the set of weakened relations: T (c) = bc ≡ a2c .

We select only these, where bc is B-smooth, and we vary −M < c < M , to
obtain suitable cardinality of set A ∋ bi. If we establish each prime factorization
A ∋ bi =

∏k
j=1 p

ej
j , we are able to obtain a non-trivial solution of the following

system of equations:
e11x11 + e21x21 + · · ·+ ek1xk1 = 0,

e12x12 + e22x22 + · · ·+ ek2xk2 = 0,
...
e1Ax1A + e2Ax2A + · · ·+ ekAxkA = 0,

(6)

over a prime field F2. The simplest way for this linear algebra step is Gauss
elimination, based on transforming the matrix to row echelon form by adding
multiplication (in the general case over Fp) of a row to picked rows. Although
the cost of the Gauss algorithm is too high (O(B3)), in practice, we exploit the
fact that we work with a sparse matrix in the quadratic sieve method. As a
result, the application of an efficient general procedure as Lanczos’s and Wiede-
mann’s algorithms [4], achieve complexity O

(
B2+o(1)

)
, equaling the time bound

for sieving.
Thus, the solution will indicate the set of indices S, such that

∏
i∈S

bi = b2.

Additionally, due to the form of the polynomial, we have
∏
i∈S

ai = a2 and a2 ≡

b2 (mod n). Eventually, we obtain primary relation (Equation 2). It is worth
noting, because of the preceding, that we neglect the condition from Equation 3;
however, the possibility of gaining a non-trivial divisor is relatively high (> 0.5).
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The quadratic sieve method has a few vital improvements: one big prime (two
big primes), a multi-polynomial variant, and self-initialization. The complexity
of the method, according to [2], is O

(
exp

(√
lnn ln lnn

))
.

2.2 Index calculus method

An analogous method for DLP, corresponding to QS, is the index calculus
method, proposed by Leonard Adleman in 1979. It has similar proprieties, the
same main idea based on searching B-smooth number, and the same complexity.
This is the simplest variant of the method, presented in two stages.

First stage. Let ⟨g⟩ = F∗
p for some prime p and our goal is to find y : gy ≡ h

(mod p). The factor base

B =
{
p1, p2, . . . , pk | P ∋ pi < B

}
(7)

consists of k small primes. For random x ∈ {1, 2, . . . , p − 2} we try to obtain
relations of the form:

F∗
p ∋ gx = pe11 pe22 . . . pekk , (8)

by finding gx smooth over B. Each relation obtained implies, that for certain
indexes ipj

: Fp ∋ gipj = pj , holds

e1ip1
+ e2ip2

. . . ekipk
≡ x (mod p− 1). (9)

Collecting enough relations (coefficient matrix to be of full column rank), we will
be able to set and solve the system of equations modulo p− 1:

e11ip1
+ e12ip2

+ · · ·+ e1kipk
≡ x1 (mod p− 1)

e21ip1 + e22ip2 + · · ·+ e2kipk
≡ x2 (mod p− 1)

...
ea1ip1 + ea2ip2 + · · ·+ eakipk

≡ xa (mod p− 1).

(10)

If so, we uniquely get the indices ipj
. Detailed computation involves factoring

p − 1, solving the system modulo each prime power separately, and combining
all solutions using the Chinese Remainder Theory to obtain the unique one. We
use the same techniques announced in subsection 2.1. This fulfills the first stage.

Second stage. The second stage is possible due to collected values ip1
, ip2

, . . . , ipk
.

Namely, we keep picking z ∈ {1, 2, . . . , p− 1} randomly to find one such that:

F∗
p ∋ hgz = pa1

1 pa2
2 . . . pak

k , (11)

so until hgz will be B-smooth. As a result, we can compute searched y, indeed

y ≡ a1ip1 + a2ip2 + · · ·+ akipk
− z (mod p− 1). (12)

Therefore the goal has been achieved.
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3 Hybrid methods

It is well known that the relation-collection phase determines the running time
of the methods above and all algorithms based on searching B-smooth numbers.
Given the quantum factorization technique with limited input, one can apply it
to check smoothness in one of these methods, making them a hybrid with the
quantum smoothness searching stage.

3.1 Known results and previous work

In 2017 Daniel Bernstein et al. proposed a low-resource quantum factoring al-
gorithm [1]. This algorithm uses improved Shor’s [13] procedure for integer fac-
torization as a search criterion function in Grover’s searching algorithm [6] to
create a quantum circuit for detecting B-smooth numbers. Eventually, this cir-
cuit is a subroutine in the general number field sieve. Due to some improvements,
Shor’s algorithm can take as an input superposition of many sieved numbers.
Thus, Bernstein’s method is a trade-off between quantum and classical resources.
As a result, this very efficient approach has classical complexity O(L

3
√

3
8+o(1)),

where L = exp
(
(lnn

1
3 (ln lnn)

2
3 )
)

(n is a number to be factored) and uses

O
(
log n

2
3

)
qubits. In terms of quantum computing development, this method

can be used with fewer quantum resources than Shors’s algorithm to factorize
numbers greater than using the general number field sieve method.

Similar hybrid ideas exist for quantum annealing. Michele Mosca et al.
presented a significant conceptual result in 2019 [10]. Mosca’s method also
uses GNFS and assumes searching of smoothness quantumly. However, in this
method, the quantum stage consists of the transformation elliptic curve method
for factorization (ECM) to the QUBO problem (in the original paper, more
general to the SAT problem). ECM complexity depends on the least divisor of
factorized number. Thus, the algorithm is useful for splitting probably B-smooth
number. The QUBO problem, equivalent to the smoothness problem, is made
from a sequence of ECM blocks connected input-output. This way is realized
by extracting all smooth divisors. Mosca’s method achieves better complexity
than classical GNFS if only quantum annealing reaches non-trivial speedup com-
pared to classical solvers. Under maximal optimistic conditions, this method has
computational complexity asymptotically equal to Bernstein’s method.

We present a similar concept below, using QS and index calculus method.

3.2 Our result – factorization by quantum annealing as a subroutine

We present two hybrid methods based on the quadratic sieve and the index
calculus algorithm. We use the modified quantum annealing factorization tech-
nique in both to detect B-smooth numbers. The complexity of these methods
cannot be better than subexponential (due to the number of quantum subrou-
tines required), so they do not significantly outperform known results. However,
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the proposed methods allow for examining the efficiency of one of the quantum-
classical solutions in practice and break factorization and discrete logarithm
records with quantum annealing. Furthermore, their more detailed comparison
is currently unknown due to the lack of a deeper analysis of the complexity of
quantum annealing.

The difference between the direct and presented quantum annealing factor-
ization method is the following. Based on the idea of [11], we try to find a lot
of small factors instead of finding the factorization of semiprime. Therefore, we
introduce a different definition of the input problem. The second biggest differ-
ence is the nested way we apply the factorization using quantum annealing. So
presented quantum annealing factorization technique below is a subroutine of
both hybrid methods. As a result, even though the direct method has better
complexity, applying the sieve methods allows solving bigger instances of IFP
and DLP than direct methods (with quantum annealing power available today).
Our idea is also some intermediate step between classical sieve methods and the
propositions of Bernstein et al. [1] and Moska et al. [10].

Checking smoothness in presented hybrid methods is performed by splitting
the candidate to be smooth until all the divisors are less or equal to B, or factor-
ization will return a false divisor (not smooth). In the factorization subroutine,
we try to find a divisor of the factorized number less or equal to some bound B.
We achieve this by setting suitable bit lengths of both searched divisors, so the
smaller one is ≤ B. However, if factorization fails, we treat obtained outputs as
primes greater than B. The essential idea of the quantum annealing factorization
technique is to present the factorization problem as a QUBO problem. It will be
done in the following main steps.

Establishing multiplication table. Let n be the number to be factored (the can-
didate for being smooth). First, the procedure requires constant bit lengths of
factors b, d, where d < b, denoted as ld, lb (we will generally indicate the bit
length in this way). The expected maximal length depends on the least and the
largest primes in the base: lb = l⌊n/p1⌋, ld = lpt .

(assuming p1 is the smallest prime in the base and pt is the biggest one). In
practice, the base used in quantum annealing can also be reduced by applying
initial naive division on a classic machine.

Then we follow the steps discussed in [11], so division into column blocks
should be established in the multiplication table. The width of each column
block, denoted by the Wi for an i-th block, can be 2 or 3 (except the first block
width, which always equals 1). We consider bits di, bi, ni of, respectively: d, b,
n and carry bits ci. Preceding the quantum annealing phase by splitting powers
of 2 from the input number, we get the following variables and column blocks,
represented on Table 1.

Counting carry bits. We aim to express the factorization problem as a cost func-
tion. We split the problem into smaller parts by treating each block separately.
This technique reduces the values of bias coefficients and the number of logical
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dld . . . d3 d2 1

blb . . . b3 b2 1

c1 dld . . . d3 d2 1
c2 dldb1 . . . d3b2 d2b2 b2

. dldb3 . . . d3b3 d2b3 b3
. . .

. . .
ck . .

dldblb . . . d3blb d2blb blb

nln . . . n3 n2 1︸ ︷︷ ︸ . . . ︸ ︷︷ ︸ ︸ ︷︷ ︸
s-th block 2. block 1. block

Table 1: Multiplication table.

qubits needed to solve this problem. Thus, we sum terms with reduced column
weights: from 20 to 2Wi−1. The notation is the following:

– Ni – the number read from bits of n narrowed to an i-th block with shifted
weights
20 – 2Wi−1 (called target value),

– Fi(d2, . . . dld , b2 . . . , blb) – multiplication result polynomial for an i-th block,
– Ci(c1, . . . ck) – carry variables polynomial for an i-th block, the sum of vari-

ables c from i-th block with shifted weights 20 – 2Wi−1.

Eventually, we formulate the following expressions from the multiplication table:

fi = Fi(d2, . . . dld , b2 . . . , blb) + Ci(c1, . . . ck)− 2WiCi+1(c1, . . . ck)−Ni

f = f2
2 + f2

3 . . . f2
s

(13)

(we assume Cs+1 = 0), receiving the formula
f(d2, . . . , dld , b2, . . . , blb , c1, . . . ck)→ 0 as an equivalent to IFP.

While numbers ld, lb, ln are known, we need to determine the number of
carry bits k, especially the number of carry bits in i-th block Ki (surely, there
is no gap between ci within one block). Let us express the maximal value
of the i-th block Fi(d2, . . . dld , b2 . . . , blb) as Maxi. Obviously, a congruence
Fi(d2, . . . dld , b2 . . . , blb) ≡ Ni (mod 2Wi) must hold. So, we define Maxi as:

Maxi = max{Fi(d2, . . . dld , b2 . . . , blb)|Fi(d2, . . . dld , b2 . . . , blb) ≡ Ni (mod 2Wi)}.
(14)

Therefore we want to know if Fi(d2, . . . dld , b2 . . . , blb) takes any value between
minimum and maximum. The blocks with the exact position of columns signed
by dld , blb , d2, within this block, and exact width, turn out to have the same
properties - similarly to common properties shown in [11]. For example, all blocks
in type {left, 1, right} with width 3 have the same properties. Thus, the set of
taken values for Fi could be precomputed for all types of blocks in practice, and
the exact value of Ki can be computed taking into consideration Ci, which can
take any values between minimum and maximum.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_1

https://dx.doi.org/10.1007/978-3-031-36030-5_1
https://dx.doi.org/10.1007/978-3-031-36030-5_1


Title Suppressed Due to Excessive Length 9

Linearisation. We must reduce the polynomial to quadratic form to transform
the cost function to the QUBO. Therefore, if in the polynomial fi there are
monomials of degree ≥ 2, then we need to linearise them so that they will be
quadratic after the polynomial is squared.

Let us consider the monomial of binary variables γx1x2x3 with real coefficient
γ. We aim to reduce the degree of this monomial by one (finally, to degree equals
1). We create an auxiliary variable a ∈ {0, 1} to replace x1x2. Adding a new
expression, the so-called penalty

Pa = 2(x1x2 − 2a(x1 + x2) + 3a), (15)

to monomial, we get the equivalence of the following transformation

γx1x2x3 −→ γax3 + Pa. (16)

To be more precise, the minimal value of both expressions is the same, and the
set of point for which the left expression take minimal value is equal to the set
of point for which the right expression take minimal value.

We can prove this by considering all possible values of these expressions.

x1 x2 x3 γx1x2x3 a γax3 + Pa

0 0 0 0 0 0
x
1
x
2
=

a
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 0 1 0
1 1 1 γ 1 γ

0 0 0 0 1 6

x
1
x
2
̸=

a

0 0 1 0 1 γ + 6
0 1 0 0 1 2
0 1 1 0 1 γ + 2
1 0 0 0 1 2
1 0 1 0 1 γ + 2
1 1 0 0 0 2
1 1 1 γ 0 2

Table 2: Table of all values taken by considered expression γax2 + Pa. The
minimal values are taken only when x1x2 = a, so Pa = 0.

It is worth noting that our expression takes minimal value only when Pa = 0.
However, since we are interested in minimal values of a squared polynomial, we
should consider the absolute value of the sum of such monomials. We observe
that the absolute value of the sum of many of these monomials has a minimum
equal to zero and is minimal only when Pa = 0 also. Moreover, excluding Pa

from the absolute value brackets x3 = 1 does not change these properties. So, in
particular, in the cases when x3 = 1. In other words, we obtain equivalence in
the following transformation f2 → f2

lin + P , where flin is the linear form of the
polynomial f , obtained from many substitutions xixj → al performed on f .

The conclusions for the linearisation procedure follow. We can transform a
cost function fi to the QUBO form by keeping on substitution xixj → al and
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summing up all penalties separately, as long as f has a degree greater than 1.
Finally, we square flin, add the sum of penalties, and deg(f2

lin + P ) = 2.

Formulating QUBO problem. To summarise, formulating QUBO to find divisors
of n consists of the following steps, preceded by precomputation of lists of values
taken by the function Fi from each type of block. One can also assume that n is
nondivisible by a few small primes, for example, {2, 3, 5, 7}.

1. Establish the multiplication table (see Table 1) by initializing an array of
subsequent indices of the first columns of each block.

2. Initialize f = 0, P = 0.
3. For second block fix C2 = 0
4. For each non-empty, subsequent block, do:

– Fix the carry bits number Ki+1, exiting i-th block, knowing target value
Ni and list of values taken by function Fi (see section 3.2). Initialise
corresponding polynomial Ci+1 (knowing Ki+1).

– Substitute d2 by n2 ⊕ b2 in Fi.
– Linearise polynomial Fi, saving all triples (x1, x2, a) and adding penalties

to P (see section 3.2).
– Fix the polynomial f2

i =
(
Fi + Ci −Ni − 2WiCi+1

)2 for this block.
– Add f ← f + f2

i

5. Add f ← f + Pen

For simplicity, we do not stand out the last step, which one can reduce to
the substitution of d1, linearisation, fixing f2

i and adding f + f2.

Requesting quantum computer. The Quantum annealing sampler can be used
now to find the solution to the QUBO problem, determining divisors d, b due to
returned low-energy states of the objective function.

3.3 Quantum annealing stage – summary

With suitably adjusted ld and B, we no longer have to split d to check smooth-
ness, but it is generally sufficient to compare d to B. The nested applications
of the factorization subroutine above lead us to examine if all prime factors of
n belong to B or not. Potentially failure is simply detected by verifying if d | n
is considered as a negative response in checking smoothness. Thus we obtain
smoothness checking by the quantum annealing stage.

4 Experiments

The experiments investigated the maximal size of solvable factorization and dis-
crete logarithm problems by applying the above method on the most potent
quantum annealing computer available today, D-Wave. We have established cur-
rent size records of solved discrete logarithm problem: 18-bits, using any quantum
method, integer factorization problem: 26-bits, using quantum annealing.
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All quantum computations have been made involving direct QPU solver
Advantage_system4.1 from D-Wave. The quantum computer was requested us-
ing Ocean SDK and D-Wave.system library. Sampling has been carried out with
the number of reads equaling 10,000, and requested problems were formulated
as QUBO problems, as described above. Coefficients in QUBO were autoscaled
by solver API to hardware ranges to meet the requirements of the QPU. The
used quantum machine has the following main properties: the number of work-
ing qubits: 5627, weight (qubits coefficients) range: [−4, 4], strengths (couplers
coefficients) range: [−1, 1], annealing time range: [0.5µs, 2ms], default annealing
time: 20 µs.

4.1 Results for integer factorization

We apply our hybrid method for integer factorization based on the variant of the
quadratic sieve method described in subsection 2.1. As shown above, the hybrid
method involved modified factoring by annealing procedure used as a subroutine
in the sieving stage from the quadratic sieve.

We have adopted the following methodology to select sample input data
for each input size. Firstly, we used a parameter β in bounding arguments for
generating polynomial from subsection 2.2. Secondly, trying different β,B, n
values, each complete performance of the method was initially realized on the
classical computer as many times as needed to find an instance with sieved
numbers size according to asymptotic constrain. Then, for fixed β, the candidates
for being smooth were generated via this polynomial with random arguments
from range [0, β] as far as a full rank matrix of relations has been completed.
In some cases, the procedure was repeated several times. We have excluded the
possibility of simultaneously finding the whole relation of two squares. The best
approach is to use the official RSA challenge numbers, but it is impossible due
to the current state of development of quantum annealing computers available
today.

The final results are presented in two tables. In table 3 are listed specifications
of problems, so the quantities from the classical part of the method, while in table
4 are listed values describing the usage of quantum machine for every problem.

n problem size [bit] β sieved numbers size [bit] matrix dimensions base
874219 = 1013× 863 20 4 4-14 2 x 5 [−1, 2, 3, 5, 11]

3812491 = 2029× 1879 22 4 5-15 2 x 6 [−1, 2, 3, 5, 7, 11]
8732021 = 2953× 2957 24 5 8-15 2 x 6 [−1, 2, 3, 5, 7, 11]
42273409 = 6709× 6301 26 4 7-16 3 x 6 [−1, 2, 3, 5, 13, 17]

Table 3: Results of experiments with solving integer factorization problem by hybrid
quadratic sieve: classical part.

Columns of table 3 contain the following values, respectively, from left: 1. input
number n, to be factored, 2. the bit length of input number n, 3. parameter β fixed dur-
ing selecting examples used for bound random range for candidates to being smooths,
4. ranges of bit length of numbers, from every nested factorization subroutine step,
sieved in smoothness checking stage, 5. dimension of the matrix of coefficients from the
system of congruences, 6. base B used to sieving.
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The above values show that with currently available quantum annealing resources,
we can factor up to 26-bit semiprime by the procedure of quantumly splitting many
16-bit numbers, applied in a nested way in the quadratic sieve.

problem size [bit] number of logical qubits number of physical qubits QPU total time [ms]
20 9-45 14-261 182
22 9-49 14-326 796
24 29-41 60-367 678
26 22-77 67-772 8705

Table 4: Results of experiments with solving integer factorization problem by hybrid
quadratic sieve: quantum part.

Columns of table 4 contain the following values, respectively, from left: 1. the bit
length of input number n denoting the same problem from Table 3, 2. number of
variables from the QUBO problem, from every nested factorization subroutine step,
3. number of qubits used by QPU to make embedding of the requested problem from
every nested factorization subroutine step, 4. total working time of QPU in milliseconds.
Table 4 shows that for 26-bit semiprime, 772 qubits of quantum resources have been
used. Despite the total working qubits numbers being much greater, attempts to solve
bigger problems have failed because of chain lengths (the number of physical qubits
required to represent one logical qubit).

4.2 Results for discrete logarithm problem over prime field

The second application of quantum annealing smoothness checking was the discrete
logarithm problem over a prime field. In this case, we have used the basic index calculus
method (see subsection 2.2). As in the case of IFP, modified factoring by annealing
procedure was used as a subroutine in the sieving stage from the index calculus method.

The whole method was performed on the classical computer many times, and, unlike
in the case of the integer factorization, all randomly picked candidates to be B-smooth
were saved from each trial. We established the maximum number of trials: 150, and we
have chosen the shortest one from these tries and have realized them on the quantum
computer, in some cases, several times to succeed.

Each problem has been solved in the whole multiplication subgroup of the prime
field (it means ⟨g⟩ = F∗

p), and each of p is cryptographic prime (p− 1 = 2q, q ∈ P).
The final results were divided into two tables also. In Table 5, the problems are

characterized, while in Table 6 are listed similar to previous problem values, presenting
performing of quantum computation for every problem.

p problem size [bit] p− 1 gx = y sieved numbers size [bit] base
8543 14 2× 4271 186x = 7986 4-14 [2, 3, 5, 7, 11]
23399 15 2× 11699 17856x = 2525 4-15 [2, 3, 5, 7, 11]
33623 16 2× 16811 25065x = 25932 4-15 [2, 3, 5, 7]
79943 17 2× 39971 16657x = 9503 4-17 [2, 3, 5, 7, 11, 13]
147047 18 2× 73523 8962x = 38492 3-18 [2, 3, 5, 7, 11, 13]

Table 5: Problems chosen for experiments with solving discrete logarithm problem
over a prime field by hybrid index calculus.

Columns of table Table 5 contain the following values, respectively, from left:
1. characteristic p of prime field Fp, 2. the bit length of characteristic p, 3. factorization
of multiplicative subgroup order p − 1, 4. the value of discrete logarithm, 5. ranges
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of bit length of numbers, from every nested factorization subroutine step, sieved in
smoothness checking stage, 6. the base used in sieving.

These values mean that with currently available quantum annealing resources, we
can solve DLP up to an 18-bit prime field by the procedure of quantumly splitting
many 18-bit numbers, applied in a nested way in the index calculus method.

problem size [bit] number of logical qubits number of physical qubits QPU total time [ms]
14 10-54 12-203 903
15 10-58 14-229 1427
16 6-48 8-172 2292
17 10-68 12-273 6297
18 9-71 11-292 17331

Table 6: Results of experiments with solving discrete logarithm problem by hybrid
quadratic sieve: quantum part.

Columns of table Table 6 contain the following values, respectively, from left: 1. the
bit length of input number n denoting the same problem from Table 5, 2. number of
variables from the QUBO problem, from every nested factorization subroutine step,
3. number of qubits used by QPU to make embedding of the requested problem from
every nested factorization subroutine step, 4. total working time of QPU in milliseconds.

Table 6 shows that for 18-bit DLP, 292 qubits of quantum resources were used. It is
much less than in the case of IFP because of the size of the sieving numbers. Similarly,
the length of the chains did not allow to solve a bigger problem.

5 Summary

This paper aimed to show how one can apply classical integer factorization meth-
ods and discrete logarithm problem computation using quantum annealing. Both
for quadratic sieve and index calculus methods, searching for B-smooth num-
bers has been performed using quantum annealing and modified factorization
method presented by [5] [8], applied as a subroutine. The second part of both
algorithms, the linear algebra step, has been computed using classical methods.
It is worth noting that the linear algebra step could also be implemented using
quantum annealing, especially in the case of quadratic sieve, where we operate
on the matrix defined over F2.

Using our method, we factorized the 26-bits integer and computed the dis-
crete logarithm problem over the 18-bits prime field. Therefore we broke the cur-
rent records in factorization using quantum annealing by 6 bits and in discrete
logarithm problem, using any quantum method, by 12 bits. One can easily esti-
mate the number of qubits needed to run presented methods for larger-scale con-
sideration. Our modified factorization subroutine uses the same number ( log

2 n
4 )

of qubits, as in [8]. Thus, sieving numbers ∼
√
n in IFP and ∼ p in DLP, we

need, respectively, log2 n
16 and log2 p

4 logical qubits.
Further works should include the general number field sieve algorithm ap-

plications for integer factorization and discrete logarithm problem computation.
Our estimations show that it should be possible to factorize a 50-bit integer or
compute a discrete logarithm problem over a 50-bit prime field in such a case.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_1

https://dx.doi.org/10.1007/978-3-031-36030-5_1
https://dx.doi.org/10.1007/978-3-031-36030-5_1


14 O. Żołnierczyk, M. Wroński

For this achievement, we do not need more resources. The needed memory is
about 700-800 physical qubits. Moreover, the number of logical qubits needed to

solve IFP and DLP by hybrid methods with GNFS is about
3
√

log5 n log logn

4 , this

is also because of the size of sieved numbers: ∼ n
1
d , where d ∼ 3

√
3 logn
log logn (see

[7]). For example, a 400-bit problem (both IFP and DLP) requires 1.500 logical
qubits versus 40.000 logical qubits in the case of the direct method.

It is an open question if applying quadratic sieve, index calculus method, or
general number field sieve may give better performance on quantum comput-
ers than on the classical one using for B-smooth numbers searching different
algorithm than Shor’s.
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