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Abstract. Community detection is a tool to understand how networks
are organised. Ranging from social, technological, information or biologi-
cal networks, many real-world networks exhibit a community structure.
Consensual community detection fixes some of the issues of classical
community detection like non-determinism. This is often done through
what is called a consensus matrix. We show that this consensus matrix is
not filled with relevant information only, it is noisy. We then show how to
filter out some of the noise and how it could benefit existing algorithms.

Keywords: Consensual Community Detection, Noise, Complex Net-
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1 Introduction

Biological, social, technological and information networks can be represented by
graphs [1]. Thus, graph analysis has become an important tool to understand
such networks. Graphs representing real-world data exhibit particular features
that make them far from regular. Few nodes tend to have a lot of neighbours
while many nodes tend to have few neighbours. The distribution of edges is
not homogeneous: parts of the graph are densely connected, while between such
dense parts, there tend to be only a few edges. Such feature of real-world graphs
is called community structure [2] and finding such densely connected parts of
a graph is called community detection. In a network of purchase relationship
between customers and products, community detection can identify communities
of customers with similar interests, thus improve recommendation systems. In
social graphs, it could help identify group of people: families, friends or co-workers.

Many community detection algorithms exists like Walktrap [3], Infomap [4]
or Louvain [5]. Some are non-deterministic like Louvain, in which the result
is determined by the order in which the nodes are visited. Since the nodes
may be visited in any order, such algorithm may produce different partitions of
communities. Therefore, we need a way to pick a “good” partition. In order to
do so, we would need a criterion to sort the partitions and pick the one that is
the most representative of the actual community structure of the network.

⋆ The authors would like to sincerely thank Bivas Mitra (from IIT Kharagpur, India)
for the insightful discussions in the early stages of the article. This work has been
partially funded by the ANR MITIK project, French National Research Agency
(ANR), PRC AAPG2019.
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In the absence of such criterion, we combine the information of different
partitions of communities into consensual communities [6] (also known in the
literature as community cores or constant communities). Such communities allow
working with dynamic graphs as it becomes easier to follow communities in a
timestamped network when the computation is deterministic [7].

Our contribution is twofold: we show that the information from the different
partitions of communities is noisy. Then when combining the partitions into
consensual communities, we show that some of the noise can be avoided.

This article is organised as follows: Section 2 formally defines general graphs
concepts needed in Section 3, which gives an overview of related works in the area
of consensual community detection. Then, Section 4 shows that the computation
carries noise, and 5 shows a way to filter out some of the noise. Section 6 shows
how our ideas can improve some state of the art algorithms, on some synthetic
and real data. The last section concludes the article.

2 Definitions

A graph G = (V,E) is made of a set of nodes V and a set of edges E ∈ V × V ,
where |V | = n and |E| = m. Within a graph, communities are defined as a
partition of the nodes. That is, each node belongs to exactly one community.

To evaluate the quality of a set of communities, the Modularity [8] compares
the number of intra-community edges to the expected number of intra-community
edges in a random graph with the same number of nodes, same number of edges
and same degree distribution as the starting graph. It is defined as

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj),

where i and j are nodes of the graph, and Aij is 1 if there is an edge between
i and j, 0 otherwise. m is the number of edges of the graph, ki is the degree of i,
and δ(ci, cj) is 1 if nodes i and j are in the same community, 0 otherwise.

If we have ground-truth communities, we can directly compare a partition
given by any community detection algorithm to this ground-truth. In this case we
can use the Normalised Mutual Information (NMI ) [9]. It is based on a confusion
matrix N where Nij is the number of nodes of the ground-truth community i
that also belong to the computed community j. It if formally defined as

I(A,B) =
−2

∑cA
i=1

∑cB
j=1 Nij log

(
NijN
Ni.N.j

)
∑cA

i=1 Ni. log
(
Ni.

N

)
+

∑cB
j=1 N.j log

(
N.j

N

) ,
where cA (resp. cB) is the number of ground-truth (resp. computed) commu-

nities. The sum over row i (resp. column j) of N is denoted Ni. (resp. N.j). The
NMI takes values from 0 (independent partitions) to 1 (same partitions).

Finally it is also possible to use synthetic graphs generated using the Lanci-
chinetti, Fortunato and Radicchi (LFR) model [10]. This model creates synthetic
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graphs with a known community structure. They are generated with a mixing
parameter µ that ranges from 0 to 1, and denotes the fraction of edges that
a node shares with other communities of the graph. Thus, the smaller µ, the
stronger the communities are and the easier it will be to detect them.

3 Related Work

Most community detection algorithms are non-deterministic. Thus, running any
such algorithm A multiple times on the same graph G may result in different
partitions. Moreover, these partitions cannot be discriminated on the basis of
their modularity alone, as it has been shown that there are significantly different
partitions with similar modularity [11]. To address this issue, a solution is to
search similarities between different partitions to obtain consensual communities.

These similarities has also been studied for random graphs. It has been
shown that random graphs contain good communities (or at least partitions of
high modularity) which is very unnatural. However, different partitions are very
dissimilar from each other. The absence of similarities might therefore indicate
that the communities are not meaningful [12]. Peixoto et al. showed that when
there is too much diversity in several partitions, it is in general not possible to
obtain a consistent answer. Therefore, consensual communities are expected to
yield good results only when there is a community structure in the graph.

3.1 The consensus matrix

To record similarities between partitions, most algorithms rely, in one way or
another, on a consensus matrix P . First, a (classical) community detection
algorithm A is ran np times on a graph G. Since A is non-deterministic, the
np results will most likely be different. Then, the consensus matrix P is built as
follows: the consensus coefficient Pij is the number of times that nodes i and j
were placed in the same community by A during the np executions. Pij is thus
between 0 and np. Then, the weighted consensus graph GP whose adjacency
matrix is P is built: nodes i and j are linked in GP by an edge whose weight is
Pij . If Pij = 0, then nodes i and j are not connected [6,7].

Rather than using A multiple times, some authors obtain diversity by using
different algorithms to generate the first np. The Azar method [13] picks np

different algorithms and each of them is run only once on G. Then the information
from the np partitions is aggregated in a consensus matrix as described before,
from which they build the associated consensus graph.

Liu et al. [14] chose to avoid local optimum of modularity by applying
perturbations to the initial graph, then used a modified version of Louvain [5]
that may explores a wider range of possible solutions. Finally, they aggregate
the result in a consensus matrix. Burgess et al. [15] focuses on adding intra-
community edges to the starting graph G, hoping to increase the efficiency of
community detection algorithm. They do so by computing the similarity between
pairs of nodes, based on metrics such as Jaccard [16] or the number of common
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neighbours. The edges are then added in a non-deterministic way to G, and they
execute A on G. The process is repeated np times to obtain a consensus matrix.

Rasero et al. [17] use another version of consensus matrix that is not obtained
through community detection but from the original data. They study brain
connectivity graphs from different persons and aggregate the different graphs
into a consensus matrix.

3.2 From consensus matrix to consensual communities

The first type of approach developed by Seifi et al. [7] does not require additional
community detection. It considers that low values of Pij are not significant and
therefore keep only the values Pij higher than a given threshold τ and set all the
others to 0. This gives a thresholded matrix Pτ and the associated graph GPτ

.
The connected components of GPτ

are then directly the consensual communities.
Work has been done to get rid of τ and decide whether the Pij entry is statistically
significant before keeping it or not [18]. In the same vein, Chakraborty et al. [19]
consider that constant communities are groups of nodes that are always in the
same community in several executions (i.e., Pij = 1).

Another approach consists in executing one final community detection al-
gorithm on the consensus graph. Liang et al. [20] use the Label Propagation
algorithm (LPA) [21] np times to build the consensus matrix, then perform a final
single execution of a weighted version of LPA on the consensus graph. This has
been generalized for instance in the LF procedure [6] that runs A np times again
on GP . At this point, if the np partition just computed are all the same, they
are considered consensual and the algorithm stops. Otherwise, a new consensus
matrix is built, and the process is repeated until all np partitions are the same.

Wang and Fleury developed an algorithm for overlapping communities that
builds a consensus graph, merges nodes when their consensus coefficient is greater
than a threshold α and repeat the process [22]. A similar idea using a consensus
matrix has been developed by Yang and Leskovec [23].

3.3 Complexity issues

The consensus matrix P is an n × n matrix. The computation and storage of
such a matrix quickly becomes infeasible on large graphs. This is unfortunately
regularly the case with complex networks with up to several billions of nodes [1].
Several studies have therefore worked on improving the computation of the
consensus matrix, as in the algorithms of Tandon [24] and ECG [25] where they
only compute the entries Pij for the edges {i, j} of G. Instead of having n2 entries
in P , they only have m, the number of edges in the graph and all other entries
are 0. Tandon chooses to construct a consensus graph GP on which A is run np

times until convergence. ECG, on the other hand, runs A one last time on the
consensus graph GP and considers the result as final.

The presence of edges between communities limits the efficiency of community
detection algorithms. If there were only intra-community edges, the communities
would be the connected components of the graph and identifying them would
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be trivial. Therefore, adding all the entries that correspond to the edges of the
graph into the consensus matrix adds noise. The two main contributions of this
article are to highlight the presence of noise and to find another criterion that
would decrease further the number of entries, hence limit this noise. In addition,
decreasing the number of entries in P could also reduce the temporal and spatial
complexity of the consensus matrix computation.

4 Information is noisy

This section shows that the consensus matrix P is noisy. We do this by showing
that the quality of the community is maximal when the consensus matrix is only
partially filled. This means that there is some noise in P when it is full.

First, we generate a synthetic LFR graph G (along with its ground-truth
communities). We use a distance dist between nodes that will be described in
more details in the following subsections. Next, we execute np times a community
detection algorithm A on G. Finally, we build a consensus matrix P , but we
fill it one entry Pij at a time in increasing order of dist(i, j). In case of a tie,
we break it by selecting an arbitrary pair of nodes among the tie. After each
addition in the incomplete consensus matrix P , we build the associated partial
consensus graph GP and execute A on GP . We then compute the NMI between
the LFR ground-truth communities and the communities we just computed. We
iterate this way until P is completely filled. This method allows us to study how
the NMI varies based on the number of entries in P .

Our methodology (see Algorithm 1) uses several parameters: the LFR graph
and its mixing parameter µ that defines the proportion of links between commu-
nities; the community detection algorithm A , the number np of executions of A
and the distance dist. In the rest of the paper we use A = Louvain as it is very
fast, np = 12 as it has been shown that the consensus matrix rapidly converges
as np grows [25] and we will vary µ and use several dist.

Algorithm 1 Ordering (an LFR graph G, A , np, dist)

1: Build an ordered list L of the pairs of nodes (i, j), following the order given by dist
2: Execute np times algorithm A on G
3: while L is not empty do
4: Pick the pair (i, j) whose dist(i, j) is the smallest among L
5: Compute the consensus coefficient Pij and add it to P
6: Execute A (GP )
7: Compute the NMI between the ground truth communities, and those found at

the previous step
8: end while
9: return The plot with the NMI as a function of the number of entries in P
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4.1 Graph distance

First we consider the graph distance (smallest number of consecutive edges)
between two nodes as dist, and apply Algorithm 1 for different values of µ. We
use the graph distance since in Tandon [24] and ECG [25] the authors restrict
themselves to connected pairs of nodes, i.e., nodes at distance 1.

Figure 1 shows the NMI as a function of the number of entries in P , for LFR
graphs with 10 000 nodes and 3 different values of the mixing parameter µ. The
graphs were generated with the implementation available online. The parameters
used for LFR are: number of nodes n = 10.000, average degree k = 20, maximum
degree maxk = 50, degree sequence exponent t1 = 2, community size distribution
exponent t2 = 3, minimum community size minc = 10, maximum community
size maxc = 50, weight mixing parameter µw = 0.6.
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Fig. 1: NMI vs number of entries of P filled using the graph distance ordering.
LFR graphs with 10.000 nodes, values of the mixing parameter µ from .5 to .7.
The vertical bars represent change of distance: entries that are added before the
blue bar correspond to pairs of nodes at distance 1 (using a random order as a
tie-breaker). Between the blue and orange bars are pairs at distance 2. . .

Figures 1 provide us with three main information. First of all, higher values
of µ correspond to lower values of NMI. Since higher values of µ creates less
pronounced communities, they are harder to find. The maximum values obtained
are respectively .93, .904 and .874 respectively for µ from .5 to .7.

Then, the shape of the curves indicates that entries need to be filled. Indeed,
after a certain number of entries, the NMI decreases. Intuitively, community
detection algorithms would work better if there were no inter-community edges,
and if all intra-community edges were present. The non-determinism of A
makes the np partitions potentially different and thus, some non-zero consensus
coefficients correspond to pairs of nodes that are in different communities in the
ground-truth. The more we add such values, the harder it is for the algorithm to
find the real communities, even though these values are very close to 0.

Finally, we can observe that, using the graph distance, the NMI is maximised
when all entries corresponding to pairs of nodes at distance 1 are present in the
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consensus matrix, plus some of the entries at distance 2 (the peak is located a
little after the vertical blue bar). Even if Tandon [24] and EGC [25] do not use
exactly the same method as we do, it might be possible to do a little better than
these algorithms by adding a few more entries in the consensus matrix.

To improve these algorithms we would therefore need to select some at
distance 2. However, since the graph distance can only take integer values, we
are limited by its precision and we therefore need another criterion that would
help discriminate such entries.

4.2 Edge Clustering Coefficient

Intuitively we want to use a distance that will first add entries corresponding to
intra-community pairs of nodes. Several criteria have been used to identify such
pairs and they are often used to find communities. We can cite, among others,
the Jaccard coefficient [16], the Cosine similarity, the Hamming distance [26] or
the Edge Clustering Coefficient (ECC ) [27] that measures the similarity between
nodes i and j, and is defined as

ECC(i, j) =
nb common neigh

min(deg(i),deg(j))
,

where nb common neigh is the number of neighbours that nodes i and j have
in common, while deg() is the degree of a node.

Most of these similarities give good results, even though we ruled out Cosine
because of its higher computing time. We present here the results for the ECC.

We proceed as before: we generate an LFR graph G, but time we use the
ECC as dist. We compute the ECC of all pairs of nodes that are at distance
one or two. Nodes at distance three or higher cannot have any neighbour in
common, thus their ECC will be zero. They should be avoided to maximise the
NMI anyway, as shown in figures 1. Finally, we use algorithm 1 but insert values
in decreasing order of the ECC.

Figure 2 shows the NMI as a function of the number of entries in P , for 3
different values of µ of LFR graphs with 10 000 nodes. The graphs were generated
with the same implementation and the same parameters as figure 1. The ECC
value being a real number, we can now precisely choose which entry to add in
the consensus matrix, based on their ECC. We also notice that the maximum
NMI is much greater for the ECC than graph distance. They are respectively
.9994, .9910 and .8864 for µ from .5 to .7 (compared to .93, .904 and .874).

In real scenarios, we do not know the ground truth communities, so we cannot
compute the NMI. We therefore need to decide beforehand how many entries
need to be inserted in P to get as close as possible to the maximum NMI. The
next section focuses on finding such an optimum number of entries.
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Fig. 2: NMI vs number of entries of P using the ECC in decreasing order. LFR
graphs with 10.000 nodes and different values of µ.

5 Finding an optimum number of entries – Filtering out
the noise

This subsection is devoted to showing how, based on some correlations, we can
estimate the number of entries to insert in the consensus matrix.

Figure 3a shows that the average modularity obtained across multiple execu-
tions of A is linearly correlated with the mixing parameters µ on LFR graphs.
We use the correlation:

Q = 1− µ

Kaminski et al studied such phenomenon on the ABCD graph model, which
is very close to LFR [28]. They shown that the modularity of the ground truth
partition of an ABCD graph with a mixing parameter µ asymptotically reaches
1− µ as the number of nodes n grows. They also observe that the modularity is
smaller for smaller graphs, and converges as n grows.

Figure 3b shows that the mixing parameter µ is correlated to the ECC value τ
above which pairs of nodes should be added to the consensus matrix to maximise
the NMI. That is, all the pairs of nodes {i, j} whose ECC is greater than τ should
have their consensus coefficient put in the consensus matrix.

τ = −1.414µ+ 0.991

Combining these two correlations it is therefore possible to deduce the opti-
mum number of entries in the consensus matrix from the first np executions of
A . We compute several partitions (which is anyway the first step to compute
the consensus matrix), we compute the average modularity and deduce the value
of µ from which we deduce the lower limit on ECC. These correlations are made
on LFR synthetic graphs and may not be valid for real graphs. However, we will
see in Section 6 that they give good results even in these situations.

Another potential limitation to these correlations is that the average modu-
larity over several executions increases with the size of the graph and stabilizes
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Fig. 3: Average modularity as a function of µ (top left). Threshold τ as a function
of µ (top right). Q vs the number of nodes n (bottom left). τ vs µ at max NMI,
computed with our filter and measured (bottom right)

once the number of nodes of a graph reaches 20 000 (see Figure 3c). A solution
would be to artificially increase the average modularity for graphs with less than
20 000 nodes. Figure 3c shows the modularity Q as a function of n, for LFR
graphs with µ = 0.4. We repeat the operation for different values of µ. We get a
fit in the general case Qmax×n

(K+n) , where Qmax is the modularity for a sufficiently

large graph, and K = 71.21. Therefore:

Qmax =
KQ

n
+Q

The threshold τ should therefore be deduced from Qmax if the graph has less
than 20 000 nodes.

Finally, figure 3d shows the computed threshold τ along with the measured
threshold, with which the NMI would have been maximised, for different values
of µ.
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5.1 Improving existing algorithms

In this subsection, we show how our observations can be included into current
algorithms. To do so, we pick an existing algorithm that is representative of
existing consensual community detection algorithms and modify it. We also build
a generic algorithm that uses our filtering method.

Consider algorithm 2, a generic algorithm implementing our filter. It filters
an input graph G based on the ECC and our correlation (that depends on the
modularity of np executions of A (G)). It outputs a filtered graph GL.

Algorithm 2 Filter (G, A , np)

1: Execute np times algorithm A on G
2: Compute the average modularity Q of the np partitions
3: Deduce a threshold τ from Q
4: Compute the ECC of the pairs of nodes (i, j) whose distance is ≤ 2
5: Build a list L of pairs (i, j) whose ECC(i, j) > τ
6: Build a graph GL whose edges set is L. The weight of each edge is its corresponding

consensus coefficient
7: return GL

This filtered graph GL can be used as input for other consensual community
detection algorithms. We call the Generic Filter approach, which consists in
running A (GL), where the edges of GL are weighted by their consensus coefficient.
Consider also the ECG Filter algorithm which improves on ECG [25]. After
applying the filter algorithm on G, we feed GL into ECG, then return the
consensual communities found by ECG. We also study the Tandon Filter
algorithm, which builds GL in the same way, then feeds it to Tandon. Note that
since Tandon end ECG work on unweighted graphs, we don’t bother weighting
them. The next section focuses on studying the performance of both algorithms.

6 Experiments

First we run our algorithm on several LFR graphs and compare the NMI along
with the running time compared to other state of the art algorithms, then we
repeat the experiment on real-world graphs. In this section, we chose A =
Louvain and np = 64 as we chose to parallelize the executions of A and our
machine has got 64 cores.

Implementation details with correlations and correction for small graphs can be found
on Software Heritage. The ordering criteria (based on the ECC) along with such corre-
lations allows to improve on some current consensual community detection algorithms.
The implementation behind figures 1 and 2 is available on Software Heritage
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6.1 Synthetic Graphs

First, we generate LFR graphs with 10 000 nodes, using the parameters from
Section 4.1 and µ varies from 0.4 to 0.7. Figure 4a shows the NMI as a function
of µ, and figure 4b shows the running time as a function of the number of nodes.
We compare the filtered version of Tandon and ECG against their regular version.
We also display our generic filter, and Louvain and Infomap as baselines. For low
values of µ, the filtered version of ECG provides a higher NMI, at the cost of a
higher running time compared the regular ECG algorithm. For high values of
µ, the NMI rapidly decreases, providing an NMI of 0.42 and 0.30 for µ = 0.7
and 0.75 respectively, which is a lot lower than the regular ECG. Our generic
filter algorithm gives a higher NMI compared to ECG, but is outperformed by
Tandon’s algorithm. However, it uses a lot less time and memory, allowing it
to work on bigger graphs. We also observe a sharp decrease in NMI for high
values of µ. For Tandon’s algorithm, the filtered version provides a slim NMI
improvement at the cost of a slightly higher running time.

Note that since a fair amount of the running time is spent filling the consensus
matrix, the memory consumption grows with the running time.
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Fig. 4: NMI as a function of µ, LFR graphs with 10 000 nodes, with different
algorithms (left). Running time as a function of n, LFR graphs, µ = 0.6 (right)

Even though classical community detection algorithms suffer from the limits
described before, we also applied this protocol to Louvain and Infomap. The
NMI is naturraly much lower with these two algorithms: Louvain (resp. Infomap)
goes from 0.84 to 0.76 (resp. from 0.81 to 0.78) for µ from 0.4 to 0.7.

6.2 Limitations

Overall, figure 4a shows that the filtered algorithms tend to perform better than
their non-filtered counterparts for low values of µ, and perform worse on high
values of µ. We believe that this is due to a combination of several effects.
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As µ grows, the number of edges inside communities decreases, while the
number of inter-community edges increases. This means that the ECC of pairs
of nodes located in different communities will also tend to increase and our
filter is more likely to add noise in the consensus matrix, which will amplify
the problem, if µ is sufficiently large. Second, as µ grows, the modularity of the
ground-truth partition tends to decrease. Therefore, as observed by Aynaud et
al. [29] a community detection algorithm that focuses on modularity maximisation
may find a partition with a higher modularity than the ground-truth. In this
case it might be interesting to use non-modularity based algorithms.

Last, figure 5a shows the NMI as a function of the number of entries added
in the consensus matrix, along with the value of the ECC pair added to the
matrix. For low values of µ, we observe a sharp decrease in the ECC values,
which corresponds to the maximum NMI value. This allows some imprecision in
our threshold on the ECC value. As long as the threshold falls within the sharp
decrease, we should be close to the maximum NMI possible. However, as µ grows,
the sharp decrease tends to happen after the maximum NMI (see figure 5b). The
decrease tends to be less sharp, thus requiring the threshold to be more precise.
This makes the ECC threshold harder to set as a small imprecision might make
a big change in the number of entries added to the consensus matrix. All in all,
communities are harder to find and the threshold needs to be more precise.
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Fig. 5: NMI and ECC threshold as a function of the number of entries in the
consensus matrix, for µ = 0.4 (left). NMI and ECC threshold as a function of
the number of entries in the consensus matrix, for µ = 0.7 (right)

According to Orman et al [30], in LFR graphs, when µ is greater than 0.5,
the communities are less well defined, and as µ increases we are left with a
scale-free network with little to no community structure. At one extreme, if µ
is very low, the partition is very easy to find. At the other extreme, there is no
more community structure in the graph. Therefore, the consensus methods are
particularly useful in intermediate ranges of µ.
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6.3 Real Graphs

Football Dataset In the football dataset [2], nodes represent US football teams,
and the edges represent games played between the teams. The communities
are the conference in which the team play. There are 115 nodes, 613 games
and 12 communities in this dataset. The results are summarized in table 1. We
see that our generic filter algorithm provides the highest NMI along with the
lowest running time, while our filtered version of ECG provides a higher NMI,
but a higher running time than the classical ECG algorithm. We compare the
performance against two classical community detection algorithms: the Louvain
method [5], which gives a lower NMI than the other algorithms we tested, and
the Infomap algorithm [3], which gives the second highest NMI on this dataset.

DBLP Dataset The Digital Bibliography & Library Project (DBLP) dataset [31]
is a co-authorship network where nodes are authors and two authors are linked
by an edge if they co-published a paper. It is a larger graph than football, with
317 thousands nodes and about 1 million edges. The ground truth communities
are the publication venues. Results are summarized in table 1. First, we note a
big difference in running time between the different algorithms, ranging from
12 seconds to 35 minutes. The filtered algorithms are the longest because of the
computation of the ECC and the generation of the consensus graph. The highest
NMI is provided by Infomap, at the cost of a high running time. The filtered
version of the ECG algorithm provides the second highest NMI, but also has a
high running time. Our generic filter algorithm performs poorly on this dataset,
while Louvain gives the lowest NMI but is the fastest by far. We could not run
Tandon’s algorithm because the running time was too high.

Football DBLP

Algorithm NMI Running Time NMI Running Time

ECG 0.9079 1.10 s 0.6030 171 s
Tandon 0.8976 1.29 s – –
Tandon Filter 0.8981 2.54 s – –
Generic Filter 0.6823 1.21 s 0.4613 2236 s
ECG Filter 0.9349 1.99 s 0.6288 1278 s
Louvain 0.8879 1.02 s 0,4769 12 s
Infomap 0.9242 1.12 s 0.7738 1305 s

Table 1: NMI and running time of several algorithms for football and DBLP

7 Conclusion

Most community detection algorithms are non-deterministic and it is often
necessary to aggregate the results of multiple runs to find a consensus, summarized
in a consensus matrix. However, in real data, community are not perfectly defined.
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There are inter-community edges that carry noise. We have shown that the
information in the consensus matrix is therefore noisy but that it is possible to
filter out some of this noise. We then used these observations to improve existing
algorithms, and verified the effectiveness of our approach on synthetic and real
graphs. ECG Filter tends to yield a higher NMI than ECG at the cost of a
higher running time. Our generic filter, Generic filter, also provides a high
NMI in most of our tests, while being more scalable than Tandon’s algorithm.

A closer look at existing consensus community detection algorithms would
also be relevant. Indeed, we believe that our general observations would be useful
for most algorithms that use a consensus matrix and that could therefore benefit
from noise filtering. Moreover, some algorithms like the LF procedure perform
community detection in several steps, it could be worthwhile to filter the graph
at each step. Finally, the correlations of figure 3 would be worth proving, the
same way it was done for figure 3a [28].
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