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Abstract. Network community detection is a complex problem that
has to utilize heuristic approaches. It often relies on optimizing parti-
tion quality functions, such as modularity, description length, stochastic
block-model likelihood etc. However, direct application of the traditional
optimization methods has limited efficiency in finding the global maxima
in such tasks. This paper proposes a novel bi-partite attention graph neu-
ral network model for supervised and unsupervised network community
detection, suitable for unsupervised optimization of arbitrary partition
quality functions, as well as for minimization of a loss function against the
provided partition in a supervised setting. The model is demonstrated
to be helpful in the unsupervised improvement of suboptimal partitions
previously obtained by other known methods like Louvain algorithm for
some of the classic and synthetic networks. It is also shown to be effi-
cient in supervised learning of the provided community structure for a
set of classic and synthetic networks. Furthermore, the paper serves as
a proof-of-concept for the broader application of graph neural network
models to unsupervised network optimization.
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1 Introduction

The network community detection saw a wide range of applications, including
social science [36], biology[21], and economics [35]. In particular, partitioning
the networks of human mobility and interactions is broadly applied to regional
delineation [37], [7], [44], [1], [24], [43], [3], [20], and urban zoning [42], [28], [27].

Community detection is a complex problem, and multiple algorithms have
been proposed to address it. Some of them are straightforward, such as hierarchi-
cal clustering [23] or the Girvan-Newman [16] algorithm, while the majority rely
on optimization techniques for various objective functions. The most well-known
partition quality function is modularity [34, 33] assessing the relative strength of
edges and quantifying the cumulative strength of the intra-community links. A
large number of modularity optimization strategies have been suggested over the
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last two decades [31], [12], [34], [33], [45], [8], [22], [19], [13], [29], [41]. Compre-
hensive overviews are presented in [14], [15] and later surveys [26], [25].

As the problem is known to be NP-hard [9]), there is no efficient algorithm
that could guarantee finding the optimal partition. Therefore, optimization has
to rely on heuristic algorithms, which often fail to reach the optimal partition,
and, therefore, may require further fine-tuning. Although in some cases, an al-
gorithmic optimality proof of the partition is possible [40], [5], [6], [4].

Fig. 1. A deep learning framework for net-
work community detection.

The rise of deep learning and
graph neural networks in particu-
lar, offer new opportunities. Recently
graph neural networks (GNNs) have
become increasingly popular for su-
pervised classifications and unsuper-
vised embedding of the graph nodes
with diverse applications in text clas-
sification, recommendation systems,
traffic prediction, computer vision etc
[47]. And GNNs were already at-
tempted to be applied for community
detection, including supervised learn-
ing of the ground-truth community
structure [11] as well as some unsuper-
vised learning of the node features en-
abling representation modeling of the
network, including stochastic block-
model [10] and other probabilistic
models with overlapping communities
[38] or more complex self-expressive
representation [2]. However, existing
GNN applications for unsupervised
community detection has been limited
so far, and largely overlook unsuper-
vised modularity optimization.

This work proposes a suitable network augmentation with an additional layer
of community meta-nodes, and a novel deep learning model over such a network
for supervised and unsupervised community detection, capable of optimizing ar-
bitrary quality functions for the network partition, including modularity.

2 Methodology

In our recent paper [39], we proposed a simple recurrent GNN-inspired algo-
rithm to serve as a proof-of-concept for unsupervised modularity optimization.
The algorithm tunes node community attachment through an iteration of the
GNN-style transformations. It reached the best-known partitions for some of the
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classical networks, and provided a scheme for fine-tuning the network community
structure with a flexible trade-off between quality and speed.

Table 1. Performance on the proposed deep learning algorithm improving partition
modularity from Louvain algorithm for some classic and synthetic network examples

Network Louvain Improvement

Word adjacency network in David Copperfield [32] 0.305052 0.309279
Amazon co-purchases of political books, orgnet.com 0.527082 0.527236
LFR 500 nodes 0.837450 0.837501
LFR 1000 nodes 0.888029 0.888615
LFR 2000 nodes 0.901624 0.902277

In order to further improve the efficiency of the approach, we propose a
new model which consists of a two-layer bi-partite convolutional graph neu-
ral network stacked with a fully connected attention vanilla neural network 1.
The model takes certain initial network node embedding as the input, such as
the personalized Pagerank probability vectors (for each source node defining
the stationary probability distribution of a Markov chain that, with probabil-
ity α = 0.15, randomly transitions following the link structure of the network,
and with a probability 1 − α teleports to a source node [17]), further reduced
in dimensionality using a linear principal component method. The edges be-
tween the network nodes and community meta-nodes are initially defined with
respect to a certain initial node community attachment (either a known one to
be improved if used for partition fine-tuning, or based on clustering initial node
embedding), and can be further updated as the model updates the node commu-
nity attachment. The two layers of a graph neural network propagating the initial
node embedding over such a bi-partite network generates the final embedding for
both - the original network nodes as well as the community meta-nodes. Finally,
the vanilla neural network (in the experiments below, the configuration with five
hidden layers and batch normalization has been evaluated) for each pair of the
original network node and the community meta-node takes the stacked vectors
of those node embedding, generated by the graph neural network, and computes
the relative attention score between the two nodes. The resulting node commu-
nity attachment (a "fuzzy" probabilistic one rather than discrete) is redefined
proportional to those attention scores. The weights of both - the final vanilla
neural network as well as the graph neural network layers are trained together,
within the backpropagation framework, aiming to optimize the final objective
function - either the quality function of the resulting network partition in the
unsupervised setting (like modularity or stochastic block-model likelihood) or
the loss function between this resulting partition and the known partition in
the supervised setting (like categorical cross-entropy). In order to improve the
convergence stability and final performance of the model in the unsupervised set-
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ting, it can be initially pre-trained to reconstruct a previously known community
structure prior to the final unsupervised fine-tuning phase.

3 Results

The approach turned out to be efficient in fine-tuning the results of other algo-
rithms, e.g. a popular Louvain algorithm [8]. The table 1 provides examples of
such improvement reached by the Python 3.7 implementation of the proposed
model for several classic and Lancichinetti-Fortunato-Radicchi (LFR) synthetic
networks (table 2). And while for the two classic networks - Amazon political
books and Word Adjacency network in David Copperfield - other known effi-
cient algorithms like Combo were also capable of improving the partition, for
the three provided cases of LFR networks, the fine-tuned partition, provided by
the proposed deep learning algorithm, is the best partition known to us.

Table 2. Out-of-sample performance on the proposed deep learning algorithm in super-
vised learning of the best-known or given partition for some classic network examples
(community reconstruction accuracy for the 40% randomly masked nodes) in compar-
ison with the label propagation baseline

Network Accuracy Baseline

Amazon.com co-purchases of political books,
www.orgnet.com

97.22% 94.44%

Dolphins’ Social Network [30] 95.00% 95.00%
Network of Jazz Musicians [18] 93.10% 88.51%
Neural network of C. Elegans [46] 86.96% 75.65%
Metabolic network of C. Elegans [13] 64.33% 57.31%

The proposed approach can also be applied to other quality functions, such
as a block-model likelihood or description length.

Furthermore, the model can perform supervised community detection, ex-
trapolating the community structure provided for a certain part of the network
nodes to the rest of them. The out-of-sample reconstruction accuracy for the
best-known partition often ranges within 90-99% for a number of classic (table
2) and LFR synthetic networks (table 3).

For comparison, the out-of-sample accuracy of the label propagation baseline
algorithm (nodes with unknown community attachments get attached according
to the majority of their neighbors with known attachments) for most of the
provided networks falls noticeably short of the accuracy achieved by the proposed
deep learning approach.

Those cases represent initial proof-of-concept results, while fine-tuning of the
model’s configuration could further help improve the performance. Also, evalu-
ation of the approach on a broader range of examples and comparison against
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known state-of-the-art/baseline supervised community detection approaches re-
mains the subject of future work.

Table 3. Out-of-sample performance on the proposed deep learning algorithm in su-
pervised learning of the best-known or given partition for LFR synthetic networks
(community reconstruction accuracy for the 40% randomly masked nodes) in compar-
ison with the label propagation baseline

Network Size Accuracy Baseline

1 500 93.65% 91.53%
2 500 99.47% 93.65%
3 500 94.18% 91.53%
4 500 95.24% 89.42%
5 500 98.94% 96.30%
6 1000 98.61% 93.98%
7 1000 96.99% 91.67%
8 1000 95.83% 89.35%
Average 96.61± 2.23% 92.18± 2.36%

Finally, as the deep learning model configuration does not depend on the di-
mensionality of the network or the number of network communities but only on
the selected dimensionality of the node embedding, it makes it possible to con-
sider transferring the pre-trained model architectures and parameters between
the networks. And similarly to [39], iterating an ensemble of partition fine-tuning
models (pre-trained over select sample networks) over the target network parti-
tion may provide the best practical results.

4 Conclusions

To summarize, the novel bi-partite attention graph neural network has been
proposed for supervised and unsupervised network community detection. The
model augments the original network with the meta-nodes representing the net-
work communities and learns the node embedding as well as the relevance links
between the two types of network nodes.

It was proven useful for the supervised reconstruction of the network commu-
nity structure for both - classic and synthetic networks, consistently outperform-
ing a baseline label propagation algorithm. In an unsupervised setting, we found
the model helpful in fine-tuning the suboptimal network partitions obtained for
some of the classic and synthetic networks by other known community detection
algorithms, like Louvain.

While the presented results serve as a proof of concept of the proposed deep
learning model’s utility for supervised and unsupervised community detection,
its further fine-tuning and extensive evaluation, as well as exploring the potential
of transfer learning between the networks, is the subject of our future research.
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