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Abstract. Triangles and squares count are widely-used graph analytic
metrics providing insights into the connectivity of a graph. While the lit-
erature has focused on algorithms for global counts in simple graphs, this
paper presents parallel algorithms for global and per-node triangle and
square counts in large multigraphs. The algorithms have linear improve-
ments in computational complexity as the number of cores increases. The
triangle count algorithm has the same complexity as the best-known al-
gorithm in the literature. The squares count algorithm has a lower execu-
tion time than previous methods. The proposed algorithms are evaluated
on six real-world graphs and multigraphs, including protein-protein in-
teraction graphs, knowledge graphs and large web graphs.
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1 Introduction

The study of complex networks and their properties has been an active area
of research in recent years. One of a network’s most fundamental and well-
studied properties is its clustering coefficient [13], which measures the fraction
of triangles in a network, where a triangle is defined as three nodes that are all
connected. The computation of the clustering coefficient [7] is a crucial step in
many graph analytics tasks, including community detection and link prediction.

The original vertex-cover-based algorithms for counting triangles and squares,
as described in [4], used vertex covers to reduce the number of set intersections
and avoid unnecessary element comparisons. While these algorithms were shown
to be much more efficient than traditional baselines, there are still several areas
for improvement.

Self-loops or multiple edges between nodes, i.e., when the graph is a multi-
graph, are common in real-world and knowledge graphs. Both original algorithms
assume that these features were either removed or not present. Other algorithms
in the literature that handle multigraphs are approximated and implicitly re-
move the multi-edges instead of considering them [11, 6]. All these algorithms
only provide the global counts of triangles and squares, respectively, but in many
use cases, the per-node count would be more valuable.
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2 Cappelletti et al.

This paper presents an updated parallel version of the algorithms presented
in [4], addressing the above-mentioned shortcomings. Specifically, our algorithms
support graphs containing self-loops and multigraphs and provide the number
of triangles and squares per node. The updated algorithms’ asymptotic worst-
case computational complexities are equal to or lower than the original algo-
rithms in real-world sparse graphs. All algorithms are implemented as part of
the GRAPE [1] library, and the experiments are provided as library tutorials.3

2 Notation

A graph 𝐺 = (𝑉, 𝐸) is composed of a set of nodes 𝑉 and a set of edges 𝐸 . A
node 𝑣 ∈ 𝑉 has neighbours N(𝑣) and has degree 𝑑 (𝑣) equal to the cardinality of
its neighbours, |N (𝑣) |. When we sequentially iterate over a node’s neighbors, we
assume that they are sorted, as is common in several graph data structures.

In a multigraph, the neighbors of a node 𝑣 ∈ 𝑉 , N(𝑣) may be a multiset,
i.e., a set with repeated elements. Given a node 𝑤 ∈ 𝑉 and a multiset N(𝑣), we
denote the multiplicity function 𝑚N(𝑣) (𝑤) : 𝑉 → N of as the number of times a
node 𝑤 appears in the neighbourhood N(𝑣).

In the per-node version of the algorithms, we use atomic instructions [5].
Atomic instructions are low-level hardware operations guaranteed to complete
without affecting other memory operations. They are helpful in multi-threaded
and concurrent programming, allowing multiple threads to access and modify
shared memory locations without the risk of race conditions and data corruption.
An atomic fetch add is a specific type of atomic operation that retrieves the
current value stored in a memory location and adds a specified value to it,
returning the original value. This operation is used to increment the value of
a shared memory location in a thread-safe manner without the risk of two or
more threads interfering with each other. In real-world sparse graphs, the risk
of multiple write attempts using atomic fetch add is very low, as the graph is
sparse, and thus there are fewer interactions between nodes. We will denote
atomic fetch-add operations as +=𝐴.

3 Computation of vertex covers

A vertex cover 𝑉 ⊆ 𝑉 is a subset of vertices in a graph such that each edge has
at least one endpoint in the vertex cover. The algorithms use vertex covers to
minimize the number of required set intersections. Any vertex cover suffices for
the purpose, and there are different heuristics to obtain them. Three heuristics
were explored based on different node sorting methods and whether to add one
or both nodes of an edge to the vertex cover. Obtaining a vertex cover has a
complexity of 𝑂 ( |𝐸 |), which is negligible compared to the algorithms’ complexity.

The paper explores three vertex cover schemas: Natural, Decreasing node
degree, and Increasing node degree. The natural schema uses the order of nodes

3 https://github.com/AnacletoLAB/grape/tree/main/tutorials
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as they are loaded into the graph and adds both the edge source and destina-
tion. The Decreasing node degree schema sorts the nodes by decreasing node
degree, prioritizing nodes with more edges, and only inserts the source nodes.
The Increasing node degree schema sorts the nodes by increasing node degree,
prioritizing nodes with fewer edges, and only inserts the source nodes.

4 Counting triangles

We start by describing the global triangle count (algorithm 1), which takes as
input a graph 𝐺 = (𝑉, 𝐸) and a vertex cover 𝑉 ⊆ 𝑉 .

The counter 𝑡 is initialized to zero, representing the number of triangles times
three. It loops in parallel over all vertices in the cover 𝑣1 ∈ 𝑉 (Line 2). The key
insight is that, by definition, every triangle has at least two nodes in the vertex
cover [4]. Requiring the first two nodes to be in cover allows us to reduce the
total necessary comparisons in the inner loops. For each vertex 𝑣1, it loops over
all of its neighbors in the vertex cover 𝑣2 ∈ N (𝑣1) ∩𝑉 (Line 3). Since we assume
the neighbors are sorted if 𝑣2 is greater than or equal to 𝑣1 (in the case of self-
loops), the loop is stopped early (Line 4), and thus halves the computational
requirements. For 𝑣2, the algorithm loops over all common neighbors of 𝑣1 and
𝑣2, 𝑣3 ∈ N (𝑣1) ∩N (𝑣2), which are the nodes that close the triangle (Line 6). To
avoid self-loops, the iteration is skipped if 𝑣3 equals 𝑣1 or 𝑣2, which are excluded
from the set. To account for triangles composed by multigraph edges, we compute
the multiplicities product of the 𝑣3 node in the neighborhoods of the other two
nodes, i.e., 𝑐 = 𝑚N(𝑣1 ) (𝑣3)𝑚N(𝑣2 ) (𝑣3) (Line 7). If 𝑣3 is in the cover, the counter 𝑡
is incremented by 𝑐 (Line 9) because it will be re-encountered two other times.
Conversely, if 𝑣3 is not in the vertex cover 𝑉 , the counter 𝑡 is incremented by 3𝑐
(Line 11) because the node will not be visited again. The algorithm concludes
by returning the number of triangles, i.e., the counter divided by three 𝑡/3. Since
the computation of each outer loop are independent, distributed approaches such
as map-reduce are possible.

Time Complexities The computation of the algorithm can be distributed up
to 𝑝 = |𝑉 | cores. The two inner loops require 𝑂 (𝑑2cover) to iterate over all the
in-cover neighbors of 𝑣1, which requires at most 𝑑cover to compute. The 𝑣3 loop
iterates the intersection of the neighbors of 𝑣1 and 𝑣2, which requires at most
𝑑cover. The time complexity of the algorithm is 𝑂 ( |𝑉 |𝑑2

cover/𝑝).
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Algorithm 1: Triangle counts

Input : 𝐺 = (𝑉, 𝐸 ), cover 𝑉 ⊆ 𝑉

Output: Graph-wide triangles 𝑡

1 𝑡 ← 0;

2 for 𝑣1 ∈ 𝑉 do in parallel

3 for 𝑣2 ∈ N(𝑣1 ) ∩ 𝑉
4 if 𝑣2 ≥ 𝑣1 then
5 break;

6 for 𝑣3 ∈ N(𝑣1 ) ∩ N(𝑣2 ) \ {𝑣1 , 𝑣2 }
7 𝑐=𝑚N(𝑣1 ) (𝑣3 ) · 𝑚N(𝑣2 ) (𝑣3 );
8 if 𝑣3 ∈ 𝑉 then
9 𝑡+=𝑐;

10 else
11 𝑡+=3𝑐;

12 return 𝑡 / 3;

4.1 Per node triangle count

In the per-node count (algorithm 2) we have a vector of atomic counters t, one
for each node. The triangle count for 𝑣1 is always incremented by the multiplicity
factor 𝑐 (Line 8). If 𝑣3 is not in the cover 𝑉 , the triangle count for 𝑣2 and 𝑣3 is also
incremented by 𝑐. Using atomic additions ensures that each node’s triangle count
is updated safely, even with concurrent access from multiple threads. Finally, the
algorithm returns the vector t of triangle counts per node.

The time complexity of the per-node algorithm remains 𝑂 ( |𝑉 |𝑑2
cover/𝑝). How-

ever, to achieve perfect parallelization using atomic instructions, the processes
should simultaneously modify the same counters as little as possible. This is
possible in sparse real-world graphs. Still, the algorithm will behave worse than
sequentially in degenerate cases, such as cliques, as simultaneous modification
will result in the eviction of cache lines and CPU stalls, adding time overhead.

Algorithm 2: Per node count

Input : 𝐺 = (𝑉, 𝐸 ), cover 𝑉 ⊆ 𝑉

Output: Vector of triangles t per node
1 t← vector with |𝑉 | atomic zeros;

2 for 𝑣1 ∈ 𝑉 do in parallel

3 for 𝑣2 ∈ N(𝑣1 ) ∩ 𝑉
4 if 𝑣2 ≥ 𝑣1 then
5 break;
6 for 𝑣3 ∈ N(𝑣1 ) ∩ N(𝑣2 ) \ {𝑣1 , 𝑣2 }
7 𝑐=𝑚N(𝑣1 ) (𝑣3 ) · 𝑚N(𝑣2 ) (𝑣3 );
8 t[𝑣1 ]+=𝐴𝑐;
9 if 𝑣3 ∉ 𝑉 then

10 t[𝑣2 ]+=𝐴𝑐;
11 t[𝑣3 ]+=𝐴𝑐;
12 return t;

5 Counting squares

We describe the global square count (algorithm 3), for a graph 𝐺 = (𝑉, 𝐸) and
a vertex cover 𝑉 ⊆ 𝑉 .
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The algorithm from [4] employed a double iteration on the vertex cover to
check all the pairs of nodes in the cover and the intersection of their neighbors.
We can speed up the square counts on sparse graphs by skipping the pairs of
nodes that would produce empty intersections. In our approach, we iterate once
𝑣1 ∈ 𝑉 on the vertex cover and on the second-order neighbors of 𝑣1 in the vertex
cover, i.e., 𝑣3 ∈ 𝑉𝑣1 where 𝑉𝑣1 =

⋃
𝑣2∈N(𝑣1 ) N(𝑣2) ∩ 𝑉 . By definition, we will

only iterate on a pair of nodes in the cover with at least one common neighbor.
We want to efficiently iterate on the set of unique second-order neighbors in the
cover 𝑉𝑣1 ; to do so, we need to keep track of the visited nodes 𝑉 to avoid counting
squares multiple times. In our implementation to represent 𝑉 , we used a bitmap
with |𝑉 | bits for each thread which is cleared at the start of each new root node
𝑣1. The algorithm initializes the counter 𝑠 to zero, representing the number of
squares times two. It loops in parallel over all vertices in the vertex cover 𝑣1 ∈ 𝑉
(Line 2). For each vertex 𝑣1, it loops over all of its neighbors 𝑣2 ∈ N (𝑣1) (Line 3).
If 𝑣2 equals 𝑣1, we skip to the next neighbor to avoid self-loops. For each 𝑣2, we
iterate on all its neighbor in the vertex cover 𝑣3 ∈ N (𝑣2)∩𝑉 . Since we assume the
neighbors are sorted if 𝑣3 is greater than 𝑣1, the loop is stopped early (Line 6),
which is done to avoid checking twice the same node and roughly halves the time
requirements. We have to skip self-loops 𝑣3 = 𝑣2, backward edges 𝑣3 = 𝑣1, and
already visited nodes 𝑣3 ∈ 𝑉 . Then, we add 𝑣3 to the visited nodes 𝑉 (Line 8).

We initialize the multiplicity counters of neighbors of 𝑣1 in cover 𝑣in, out of
cover 𝑣out, and the sums of the squared multiplicities 𝑣in2 , 𝑣out2 . We iterate over
each common neighbour of 𝑣1 and 𝑣3 excluding the nodes 𝑣1, 𝑣3 themselves. We
compute the product of multiplicities of 𝑣4 in 𝑣1 and 𝑣2. If the node 𝑣4 is in
cover 𝑣4 ∈ 𝑉 , this multiplicity and its square are added to the counters 𝑣in and
𝑣in2 , conversely, they are added to 𝑣out and 𝑣out2 .

We add to the 𝑠 counter the four counters to obtain the number of squares
involving 𝑣1, 𝑣3, 𝑣4, 𝑣2 is counted as part of 𝑣4 nodes. Since we will not encounter
multiple times the nodes outside of the cover forming squares with 𝑣1 and 𝑣3, we
need to account for the squares they form with themselves 𝑣2out−𝑣out2 , which are
all pairs of distinct nodes, the squares they form with the in cover nodes 2𝑣out𝑣in,
and the squares formed by nodes in cover (𝑣2in − 𝑣

in2
)/2, which will be encountered

twice. The algorithm concludes by returning the number of squares, 𝑠/2.

Time Complexity The algorithm’s three inner loops require 𝑂 (𝑑2cover𝑑graph)
because the algorithm will iterate over all the in-cover neighbors of 𝑣1, which
requires at most 𝑑cover to compute. The 𝑣3 loop has to compute the neighbors
of 𝑣2, which takes at most 𝑑graph. The 𝑣4 loop computes the intersection of the
neighbors of 𝑣1 and 𝑣2, which will require at most 𝑑cover. Therefore, the time
complexity of the algorithm is 𝑂 ( |𝑉 |𝑑2

cover𝑑graph/𝑝), for 𝑝 ≤ |𝑉 |. This analysis ignored
the costs relative to the set 𝑉 due to its strict dependency on the implementation
details and because it was negligible in our experiments. This analysis ignored
the costs relative to the set 𝑉 due to its strict dependency on the implemen-
tation details. A sensible choice may be to use a bitmap paired with a vector,
the bitmap for fast reading and updating, and the vector to keep track of the
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words of memory to reset. These require 𝑂 (1) time for reading and updating
it. The time needed to reset it is proportional to the number of elements in it.
This would add a multiplicative factor to the complexity, which in the worst
case is 𝑂 (𝑑cover𝑑graph). In practice, this operation is bottle-necked by the mem-
ory bandwidth of RAM, so even for large bitmaps, the resetting is practically
negligible compared to loops.

Algorithm 3: Square counts

Input : 𝐺 = (𝑉, 𝐸 ), cover 𝑉 ⊆ 𝑉

Output: Number of squares 𝑠

1 𝑠 ← 0;

2 for 𝑣1 ∈ 𝑉 do in parallel
3 𝑉 ← ∅;
4 for 𝑣2 ∈ N(𝑣1 ) \ {𝑣1 }
5 for 𝑣3 ∈ N(𝑣2 ) ∩ 𝑉 \ {𝑣1 , 𝑣2 } \ 𝑉
6 if 𝑣3 > 𝑣1 then
7 break;

8 𝑉 ← {𝑣3 } ∪ 𝑉;
9 𝑣in , 𝑣out , 𝑣in2 , 𝑣out2 ← 0;

10 for 𝑣4 ∈ N(𝑣1 ) ∩ N(𝑣3 ) \ {𝑣1 , 𝑣3 }
11 𝑐=𝑚N(𝑣1 ) (𝑣4 ) · 𝑚N(𝑣3 ) (𝑣4 );
12 if 𝑣4 ∈ 𝑉 then
13 𝑣in+=𝑐;

14 𝑣in2+=𝑐
2;

15 else
16 𝑣out+=𝑐;

17 𝑣out2+=𝑐
2;

18 𝑠+=𝑣2out-𝑣out2 + (𝑣2in − 𝑣
in2

)/2 + 2𝑣out𝑣in;
19 return 𝑠/2;

5.1 Per node version

We have a vector of atomic counters s, one for each node. Since the number of
squares contributed by 𝑣1, 𝑣3 and all 𝑣4 ∈ N (𝑣1) ∩ N (𝑣3) is obtained from the
factor of multiplicities of each 𝑣4 ∈ N (𝑣1) ∩N (𝑣3), we need first to compute the
counters of the nodes in cover 𝑣in and the nodes out of cover 𝑣out), and afterward
dispense the number of squares among the nodes properly. The necessity to
iterate twice on the neighbors 𝑣4 ∈ N (𝑣1) ∩ N (𝑣3) effectively duplicates the
time requirements of the per-node algorithm. The counts of the node 𝑣1 and
𝑣3, which are the root vertex cover nodes, are incremented by the number of
squares they form with the in-vertex and out-of-vertex nodes, 𝑣out ·𝑣in. Each node
𝑣4 ∈ N (𝑣1) ∩ N (𝑣3) count is incremented depending on the multiplicity factor
𝑐 and whether it is in cover or not. Nodes in the cover will be re-encountered,
while nodes outside will be only encountered once alongside the root nodes 𝑣1
and 𝑣3. We double the number of squares deriving from other out-of-cover nodes
to account for the latter nodes encountered once. Since in the number of out-of-
cover nodes 𝑣out, we also count the node’s multiplicity factor 𝑐, we must subtract
that twice. We observe that by summing the obtained square, the total will
be four times the total number of squares obtained from the global algorithm.
Analogously to the global version, the per-node algorithm is distributable. The
time complexity of the per-node algorithm remains 𝑂 ( |𝑉 |𝑑2

cover𝑑graph/𝑝).
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Algorithm 4: Per node count

Input : 𝐺 = (𝑉, 𝐸 ), cover 𝑉 ⊆ 𝑉

Output: Number of squares s per node
1 s← vector with |𝑉 | atomic zeros;

2 for 𝑣1 ∈ 𝑉 do in parallel
3 𝑉 ← ∅;
4 for 𝑣2 ∈ N(𝑣1 ) \ {𝑣1 }
5 for 𝑣3 ∈ N(𝑣2 ) ∩ 𝑉 \ {𝑣1 , 𝑣2 } \ 𝑉
6 if 𝑣3 > 𝑣1 then
7 break;

8 𝑉 ← {𝑣3 } ∪ 𝑉;
9 𝑣in , 𝑣out ← 0;

10 for 𝑣4 ∈ N(𝑣1 ) ∩ N(𝑣3 ) \ {𝑣1 , 𝑣3 }
11 𝑐=𝑚N(𝑣1 ) (𝑣4 ) · 𝑚N(𝑣3 ) (𝑣4 );
12 if 𝑣4 ∈ 𝑉 then
13 𝑣in+=𝑐;
14 else
15 𝑣out+=𝑐;

16 s[𝑣1 ]+=𝐴𝑣out𝑣in;
17 s[𝑣3 ]+=𝐴𝑣out𝑣in;
18 for 𝑣4 ∈ N(𝑣1 ) ∩ N(𝑣3 ) \ {𝑣1 , 𝑣3 }
19 𝑐=𝑚N(𝑣1 ) (𝑣4 )𝑚N(𝑣3 ) (𝑣4 );
20 if 𝑣4 ∈ 𝑉 then
21 s[𝑣4 ]+=𝐴𝑐 (𝑣out + 𝑣in − 𝑐);
22 else
23 s[𝑣4 ]+=𝐴𝑐 (2(𝑣out − 𝑐) + 𝑣in );
24 return s;
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6 Experiments

Experiments were conducted on a computer with an AMD Ryzen 9 3900x CPU
(12 cores, 24 threads) and 128GB RAM using six real-world graphs, including
protein-protein interaction graphs, knowledge graphs, and web graphs. Table 1
summarizes the datasets, including the graph ID used in all result tables.

Table 1. Summary of the datasets’ main characteristics

Graph id Graph name Nodes Edges 𝑑graph

1 Saccharomyces Cerevisiae [12] 7𝐾 1𝑀 2.7𝐾
2 Homo Sapiens [12] 20𝐾 6𝑀 7.5𝐾
3 Mus Musculus [12] 22𝐾 7𝑀 7.6𝐾
4 KGCOVID19 [9] 570𝐾 18𝑀 122𝐾
5 Friendster [10] 65𝑀 1.8𝐺 5𝐾
6 ClueWeb09 [10, 2] 1.6𝐺 7.8𝐺 6.4𝑀

6.1 Impact of vertex cover schema

In this section, we present the results of our evaluation of the performance of
the triangle and square counting algorithms for various vertex covers. Table 2
provides information on the vertex cover size and time requirements of six differ-
ent graphs using the three vertex cover schemas described in section 3: natural,
decreasing, and increasing. The size of the vertex cover for each graph using each
schema is given in the |𝑉 | column and the maximum degree of each vertex in the
graph is given in the 𝑑cover column, the percentage of vertices covered by the
vertex cover is given in the % column. Finally, the time it took to compute the
vertex cover using the given schema is in the Time column. The table indicates
that the vertex cover size can vary depending on the schema. The decreasing
schema typically produces the smallest vertex cover, and the increasing schema
produces the largest. The time it takes to compute the vertex cover also varies
depending on the schema used, with the decreasing schema typically being the
slowest and the increasing schema typically being the fastest, beating even the
natural approach, which does not involve any sorting procedures, contrarily to
the other two schemas. The table also shows that as the size of the graph in-
creases, the time it takes to compute the vertex cover generally increases as well.
Nevertheless, it remains a fraction of the time necessary to compute the same
graph’s triangles or squares counts.
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Table 2. Vertex cover size by vertex cover schema

Natural Decreasing Increasing

Id |𝑉 | 𝑑cover % Time |𝑉 | 𝑑cover % Time |𝑉 | 𝑑cover % Time

1 6240 2729 93% 77𝑚𝑠 5720 2729 85% 90𝑚𝑠 6393 2092 95% 70𝑚𝑠
2 19200 7507 98% 2𝑚𝑠 18475 7507 94% 2𝑚𝑠 19384 6940 99% 1𝑚𝑠
3 20756 7669 94% 3𝑚𝑠 19524 7669 88% 3𝑚𝑠 21300 7296 96% 1𝑚𝑠
4 217𝐾 122𝐾 38% 12𝑚𝑠 180𝐾 122𝐾 31% 50𝑚𝑠 540𝐾 22𝐾 94% 22𝑚𝑠
5 37𝑀 5214 57% 6𝑠 31𝑀 5214 48% 15𝑠 65𝑀 3507 99% 6𝑠
6 456𝑀 6444𝐾 27% 52𝑠 277𝑀 6444𝐾 16% 171𝑠 1672𝑀 2𝑀 99% 106𝑠

Our experiments revealed that the choice of vertex cover has a significant
impact on the performance of the triangle counting algorithm. Table 3 shows
the execution time and the number of counted triangles for each vertex cover,
both in the global and per-node versions. Notably, the algorithm achieved the
fastest performance when using the increasing vertex cover, followed by the nat-
ural and decreasing vertex covers. This can be attributed to the fact that the
increasing vertex cover, while being the least efficient in terms of the number
of nodes covered, effectively excludes the nodes with higher degrees, which can
substantially reduce the algorithm’s time requirements by a quadratic factor.
The choice of vertex cover should therefore be carefully considered when apply-
ing our algorithm to real-world graphs, especially those with a high degree of
heterogeneity in their node degrees.

Table 3. Triangle counts time by vertex cover

Natural Decreasing Increasing
Id Number of Triangles Global Per node Global Per node Global Per node

1 48834553 231𝑚𝑠 208𝑚𝑠 228𝑚𝑠 207𝑚𝑠 226𝑚𝑠 291𝑚𝑠
2 399408889 2442𝑚𝑠 2313𝑚𝑠 2431𝑚𝑠 2434𝑚𝑠 2424𝑚𝑠 2317𝑚𝑠
3 713495427 3752𝑚𝑠 3518𝑚𝑠 3822𝑚𝑠 3693𝑚𝑠 3720𝑚𝑠 3549𝑚𝑠
4 402950936 3290𝑚𝑠 3081𝑚𝑠 3575𝑚𝑠 3807𝑚𝑠 2812𝑚𝑠 2669𝑚𝑠
5 4173724142 248𝑠 248𝑠 250𝑠 259𝑠 250𝑠 244𝑠
6 31013019123 293𝑚 301𝑚 296𝑚 305𝑚 43𝑚 43𝑚

In Table 4, we present the results of the square counting algorithm using
three different vertex covers. The table shows the time taken and the number of
squares counted for each strategy. Interestingly, our results suggest that there is
no clear optimal vertex cover strategy for this algorithm. This implies that the
algorithm’s performance is not highly dependent on the choice of vertex cover.
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Table 4. Square counts time by vertex cover

Natural Decreasing Increasing
Id Number of Squares Global Per node Global Per node Global Per node

1 17223337716 2𝑠 6𝑠 2𝑠 6𝑠 2𝑠 6𝑠
2 250013165364 40𝑠 101𝑠 40𝑠 99𝑠 40𝑠 102
3 659991475347 48𝑠 126𝑠 48𝑠 124𝑠 49𝑠 129𝑠
4 709420799404 104𝑠 248𝑠 216𝑠 516𝑠 415𝑠 1058𝑠
5 465803364346 38.5ℎ 76ℎ 37.5ℎ 35ℎ 39ℎ 77ℎ

6.2 Scalability

To evaluate the scalability of our algorithms, we conducted a series of experi-
ments with varying numbers of threads, including 1, 6, 12 (utilizing all cores),
and 24 (using hyper-threading). As shown in Table 5, our algorithms demon-
strated linear scaling with the number of cores, confirming their effectiveness in
exploiting parallel processing resources. However, we observed some sub-linear
scaling when hyper-threading was utilized. Nonetheless, our results demonstrate
that our algorithms are highly scalable and capable of achieving significant per-
formance improvements when executed on multi-core systems.

Table 5. Square and triangle count times with natural vertex cover per thread number

Triangles Squares
Global Per node Global Per node

Id 1 6 12 24 1 6 12 24 1 6 12 24 1 6 12 24

1 4𝑠 0.7𝑠 0.35𝑠 0.2𝑠 4𝑠 0.6𝑠 0.3𝑠 0.2𝑚𝑠 36𝑠 6𝑠 3𝑠 2𝑠 80𝑠 16𝑠 8𝑠 6𝑠
2 46𝑠 8𝑠 4𝑠 2𝑠 42𝑠 7𝑠 3.5𝑠 2𝑠 12𝑚 113𝑠 47𝑠 40𝑠 26𝑚 5𝑚 147𝑠 101𝑠
3 68𝑠 11𝑠 6𝑠 4𝑠 63𝑠 10𝑠 5𝑠 4𝑠 14𝑚 2𝑚 68𝑠 48𝑠 30𝑚 6𝑚 3𝑚 126𝑠
4 55𝑠 9𝑠 5𝑠 3𝑠 52𝑠 9𝑠 4𝑠 4𝑠 27𝑚 5𝑚 134𝑠 104𝑠 57𝑚 10𝑚 5𝑚 248𝑠

7 Future works

In this paper, we presented parallel algorithms for global and per-node triangle
and square counts in large multigraphs. While our proposed algorithms have
shown improvements in computational complexity, there is still room for future
work to further optimize and improve the efficiency of the algorithms.

Firstly, we have identified that the current time complexity of the square
count algorithm is 𝑂 ( |𝑉 |𝑑2

cover𝑑graph/𝑝), and we have not yet found ways to exploit
the vertex cover to reduce the number of checks on 2 of the four vertices of
the graph. Future research could explore the design of better algorithms that
leverage these two nodes to reduce the computational requirements further.

Secondly, while we focused on developing efficient algorithms for triangle
and square counts, we have not explored other algorithms for larger circuits
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using vertex cover-based acceleration. It is possible that by searching for efficient
algorithms for larger circuits, solutions with lower computational requirements
could be discovered that also apply to the count of squares and possibly even
triangles.

Thirdly, while our proposed triangle count algorithm can process ClueWeb09
in 40 minutes, the square count algorithm still cannot process graphs with bil-
lions of nodes in reasonable wall times. Future work could investigate the use of
GPU-accelerated implementations to close this gap and enable faster execution
of the square count on large instances.

In addition to the optimization and improvement of the algorithms, another
important avenue for future work is the exploration of the use of these tools in
the context of real-world applications, such as graph clustering [8]. While our
algorithms provide a fast and efficient way to count triangles and squares and,
therefore, to calculate clustering coefficients, we have not yet fully investigated
their potential in the analysis of biological graphs such as protein-protein inter-
action graphs. These graphs are of significant interest in bioinformatics and have
important applications in drug discovery and disease diagnosis [14, 3]. Future
research could explore the application of our proposed algorithms to these types
of graphs, and investigate how the resulting triangle and square counts and clus-
tering coefficients could be used to gain insights into the structure and function
of large dynamic biological systems. By leveraging the power and efficiency of
our algorithms, we believe that our tools could have important implications for
the analysis of real-world graphs and the discovery of new insights in a variety
of fields.

8 Conclusions

We have presented a set of parallel algorithms for counting triangles and squares
in large multigraphs, which have demonstrated significant improvements in com-
putational complexity compared to the best-known algorithms in the literature.
Our algorithms achieve linear scaling with the number of available cores and
have been evaluated on a range of real-world graphs and multigraphs, including
protein-protein interaction graphs, knowledge graphs, and large web graphs. We
have also shown that different vertex covers for square counts, both in the global
and per-node versions, show no dominant option, while the increasing vertex
covers heuristic is clearly dominant in the triangle counts. These findings could
have important implications for the optimization and design of future algorithms
for counting triangles and squares in large multigraphs.

While our proposed algorithms have demonstrated significant improvements
in computational complexity and efficiency, the limited scalability of the squares
count algorithm on large instances highlights the need for future studies in high-
performance computing settings. These could include exploring the use of GPUs
and computing clusters to further optimize the efficiency of the algorithm and
enable the processing of larger graphs in reasonable wall times.
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Overall, our work contributes to the growing body of research on graph an-
alytics and provides a valuable tool for researchers and practitioners working in
a range of fields. By enabling fast and efficient counting of triangles and squares
in large multigraphs, our algorithms have the potential to facilitate new insights
and discoveries in areas such as bioinformatics, social network analysis, and web
mining, among others. We hope that our work will inspire further research in
this area and lead to new developments in the field of graph analytics.
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