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Abstract. We present the analysis of the topological graph descriptor
Local Degree Profile (LDP), which forms a widely used structural base-
line for graph classification. Our study focuses on model evaluation in
the context of the recently developed fair evaluation framework, which
defines rigorous routines for model selection and evaluation for graph
classification, ensuring reproducibility and comparability of the results.
Based on the obtained insights, we propose a new baseline algorithm
called Local Topological Profile (LTP), which extends LDP by using
additional centrality measures and local vertex descriptors. The new ap-
proach provides the results outperforming or very close to the latest
GNNs for all datasets used. Specifically, state-of-the-art results were ob-
tained for 4 out of 9 benchmark datasets. We also consider computational
aspects of LDP-based feature extraction and model construction to pro-
pose practical improvements affecting execution speed and scalability.
This allows for handling modern, large datasets and extends the portfo-
lio of benchmarks used in graph representation learning. As the outcome
of our work, we obtained LTP as a simple to understand, fast and scal-
able, still robust baseline, capable of outcompeting modern graph classi-
fication models such as Graph Isomorphism Network (GIN). We provide
open-source implementation at GitHub.

Keywords: Graph representation learning · Graph classification · Fair
evaluation · Graph descriptors · Baseline models.

1 Introduction

Graph classification is an essential variant of supervised learning problems, gain-
ing popularity in many scientific fields due to the growing volume of structured
datasets, which encode pairwise relations between modeled objects of different
types. The applications of graph classification algorithms range from chemin-
formatics [11], where high-level properties of molecules such as toxicity or mu-
tagenicity are predicted, to sociometry [29], biology [32] and technology [16],
tackling different classes of complex networks, whose non-trivial dynamics can
be explained by learning structural patterns.

Graph classification poses the inherent problem of measuring the dissimilarity
between objects which do not lie in metric space but have combinatorial nature.
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This challenge is typically addressed by extracting isomorphism-invariant rep-
resentations in the form of feature vectors [33] (also called graph embeddings,
descriptors, fingerprints) or by constructing explicit pairwise similarity mea-
sures known as graph kernels [13]. More recently, the graph embedding problem
was successfully reformulated within the framework of deep convolutional neural
networks. Adopting the concept of convolution to vertex neighborhoods by in-
troducing hierarchical iterative operators on multidimensional states of vertices
allowed for building task-specific, low-dimensional representations for vertices,
edges, and, after global pooling, the whole graph [27].

Baselines are the crucial elements of the fair comparison frameworks used in
machine learning. As deep learning methods become increasingly powerful, the
baseline algorithms used for their evaluation should also provide competitive re-
sults, forming good reference points for analyzing algorithms’ performance. The
recent development of Graph Neural Networks (GNNs), which automatically ex-
tract task-relevant features via deep learning, increased the number of attempts
to solve various graph classification tasks [31,34]. Nevertheless, fair evaluation
practices were frequently neglected in reported studies, and only recently the
need for more rigorous model evaluation was highlighted [4]. This increased the
demand for more powerful yet simple and fast baseline methods.

Motivated by recent findings regarding the discriminative power of Local
Degree Profile (LDP) [2], which, together with SVM as the classification model,
were proven to be competitive with the newest GNN models, we study the ro-
bustness and scalability of the new Local Topological Descriptor (LTP) built
using histograms of specific descriptors representing vertex and edge structural
features. We also use Random Forest classifier instead of SVM to reduce the
sensitivity of baseline to hyperparameter tuning [19]. All experiments are per-
formed in the regime of fair evaluation framework [4] to ensure replicability
and to correct inaccuracies present in some earlier works (such as reporting ac-
curacy on validation set). We also propose performance improvements in the
implementation of LDP and LTP, resulting in better scalability and enabling
the computation on large and dense social network benchmarks.

The key contributions of this work are the thorough analysis of the graph
classification baseline composed of LDP and SVM, reporting limitations of this
approach, the proposal of a new topological baseline utilizing Random Forest and
experimental evaluation showing its robustness compared to the state-of-the-art.
In addition, we present a modular software framework for LDP/LTP-based graph
classification together with the associated open-source Python code shared on
GitHub.

2 Related works

In the early works related to graph comparison, the concept of graph edit dis-
tance (GED) was introduced [1]. It was based on calculating the optimal sequence
of elementary operations (adding/removing vertex/edge) required to transform
one graph into another. Computational complexity prevented GED algorithms
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from being widely used for larger graphs (> 1000 vertices). Nevertheless, multi-
ple successful attempts at classifying attributed graphs were reported based on
benchmark dataset [21]. The IAM graph database [21] formed the first consistent
framework for comparing the efficiency of graph classification algorithms based
on GED or graph embedding methods.

Graph embedding forms the comprehensive field of methods and applications
aimed at the generation of multidimensional graph invariants/descriptors, which
can be recognized as graph feature extraction or feature engineering [33]. Graph
descriptors can be assigned to the vertex, the edge, or the graph itself. Represent-
ing a graph as a vector enables using a multitude of unsupervised and supervised
machine learning algorithms suitable for tabular data. The most popular graph
invariants come from the field of complex networks and spectral graph theory.
They are represented by several graph centrality measures, clustering coefficient,
efficiency and permutation invariants constructed from the eigenpairs of Laplace
matrix [26]. Generic-purpose vertex and edge descriptors can be aggregated to
form a high-dimensional graph representation such as B-matrix [3] or, after in-
cluding vertex attributes, even more expressive relation order histograms [15].
Graph descriptors can be also extracted by mining frequent patterns/subgraphs,
resulting in the topological fingerprint suitable for structural pattern recognition
but also querying graph databases [14]. This approach was further extended by
introducing domain-specific representations such as molecular fingerprints [22],
which are widely used in the prediction of biochemical properties. As graph em-
bedding algorithm can be adjusted to the domain, graph type (e.g. attributed
vs. non-attributed), or even available computing resources, the topological de-
scriptors still represent promising are for graph feature engineering and, as pre-
sented in [2], can compete with state-of-the-art graph representation learning
techniques.

The concept of graph substructure mining was generalized in the form of
graph kernels [13], which assess the structural similarity between two graphs
by pairwise comparison of their subcomponents. Most typically, the concept of
R-convolution [10] is applied as a generic purpose convolution framework for
discrete structures. One of the most interesting representatives of this group are
Weisfeiler-Lehman kernels designed for subtrees, edges, shortest paths, and whole
graphs [23]. They utilize the concept of Weisfeiler-Lehman test of isomorphism,
which was also used in the construction of Graph Isomorphism Networks (GIN).
Another family of graph kernels uses the concept of optimal assignment [6] to
reduce the number of pairwise sub-kernel computations required to obtain a
similarity value. In this work, we focus on explicit graph embedding and graph
representation learning, skipping graph kernels as a less feasible solution for
scalable graph classification.

In case of graph embedding and graph kernels, the domain-specific knowledge
can be incorporated by designing specific substructure descriptors with the help
of experts. Such an approach can be treated as an example of feature engineering.
The different method, providing automatic, task-specific graph feature extrac-
tion, is represented by Graph Representation Learning models exemplified by
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Graph Neural Networks (GNNs). They form a modern and extensively studied
framework for graph classification, with dozens of available models and specific
taxonomy [18]. Graph Isomorphism Networks (GIN) [28] were designed to be as
powerful as Weisfeiler-Lehman isomorphism test in discriminating graphs. They
were reported to achieve state-of-the-art results on graph classification bench-
marks; therefore, they will be used as the main reference point for evaluating our
method. GraphSAGE [9] is a general inductive framework for different convo-
lutional GNNs, providing a new neighborhood sampling method, which ensures
fixed-size aggregation sets to limit computational overhead related to processing
hubs, present, e.g., in social networks. The aggregation function for node states
can be treated as a hyperparameter and tuned on the validation set. The newer
DiffPool model [30] generates hierarchical graph representations using a differen-
tiable graph pooling layer. It assigns nodes to clusters to achieve coarse-graining
of input for the next layer, which reduces computation time. Edge-Conditioned
Convolution (ECC) model [24] introduces convolutions over local graph neigh-
borhoods using edge labels and custom coarsening procedure subsampling ver-
tices on pooling layers to reduce graph size. The high classification accuracy
was achieved by ECC on molecular datasets. Also, Deep Graph Convolutional
Neural Network (DGCNN) model [31] proposes custom localized graph convolu-
tion similar to spectral filters and related to Weisfeiler-Lehman subtree kernel.
Additionally, the new SortPooling layer is introduced, enabling standard neural
network training on graphs. All models mentioned in this paragraph will be used
in the evaluation of the new LTP baseline.

3 Methods

Graph classification tasks can be organized into well-defined pipeline. First, the
graph is typically represented as a sparse adjacency matrix. Optionally, ver-
tex and edge feature matrices can be used, if they are available. The matrices
provide the input to the feature extraction algorithm, which outputs a feature
vector representing a graph embedding in a metric space. Next, a tabular classi-
fication algorithm is used. For explicit feature extraction methods, such as LDP
or graph kernels, the graph invariants are calculated by an algorithm distinct
from the classifier. This allows using arbitrary algorithms for both parts. For
graph representation learning methods, such as GNNs, those representations are
typically learned end-to-end using a differentiable framework and gradient-based
optimization, with multilayer perceptron (MLP) as a classifier. This potentially
increases flexibility and makes embeddings more task-related, but requires vastly
more data and computational resources.

Local Degree Profile (LDP) [2] proposes a feature extraction based on
vertex degree statistics, which are calculated for each node in the graph and
then aggregated into the embedding vector. Following conventions from [2],
we denote the graph as G(V,E), where V is the set of vertices (or nodes)
v and E is the set of edges e. Degrees of neighboring nodes form a multiset
DN(v) = {degree(v)|(u, v) ∈ E}. For each node, we then calculate the following
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statistics: degree(v), min(DN), max(DN), mean(DN), std(DN). This way, for
each node, we obtain the summary statistics of itself and its 1-hop neighborhood.
They are then aggregated for the whole graph by calculating a histogram or em-
pirical distribution function (EDF) over each feature. They are concatenated
for all features, forming a final graph embedding. The number of bins used for
aggregation and the choice between histogram and EDF are hyperparameters.
There are also additional hyperparameters reflecting the method of preprocess-
ing the features before the aggregation. Normalization can be applied: separately
per graph, dividing the degrees by the highest value (this results in representing
the feature value relative to the rest of the graph), or for the whole dataset,
dividing by the highest degree in the dataset. Also, based on the observation
that node degrees follow a power law for social networks, one can use log scale
for aggregating features.

Any additional node- or edge-based structural descriptors can be included in
the LDP in the form of histograms. The authors experiment with multiple ones:
neighbors degree sum, lengths of shortest paths, closeness centrality, Fiedler vec-
tor and Ricci curvature. They remark that only shortest paths gave visible advan-
tage, but could only be calculated in reasonable time on bioinformatics datasets,
which have small molecular graphs. However, the gains using the shortest paths
are consistent, about 2%, indicating that incorporating edge-based information
can be beneficial. It should be noted that additional descriptors rapidly increase
the dimensionality of the resulting embedding, which may result in degraded
performance due to the curse of dimensionality, so only a limited number of
well-chosen descriptors should be used.

Over the years, a vast number of node and edge descriptors were proposed.
Among them, there are three commonly used groups, describing very different
structural properties of the graph: centrality measures, link prediction indexes,
and sparsification scores. Centrality indicates the importance or the influence of
the node in the graph. Different measures focus on, e.g., how much information
flows though a given node, or how many walks go through that node. They can
also be defined for edges, indicating importance of connections in the graph.
Link prediction indexes describe edges and are used to suggest the new edges to
be added to the graph. They analyze the neighborhoods of the nodes, assigning
high scores to the potential edges between nodes that share a large portion of
their neighbors, or which have neighborhoods leading to shorter paths between
them. Graph sparsification algorithms aim to eliminate edges, which are the least
important for keeping the overall structure of the graph, especially in relation
to hub nodes and communities. They aim to locally incorporate more global
information about graph topology, assigning higher scores to more important
edges.

During preliminary experiments, we surveyed descriptors representing each
of those groups and available in the Networkit [25] library. While almost all gave
promising results, we selected one from each group: edge betweenness centrality,
Jaccard Index and Local Degree Score. The selection was based on intuitions
that those particular descriptors will bring more edge-focused or more global
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information than only node degree statistics, enhancing the discriminative power
of the baseline.

Edge betweenness centrality (EBC) [7] is a centrality measure based on
shortest paths, which measures how much influence the edge has over the flow
of information in the network. It is defined as the fraction of the shortest paths
in the graph going through the edge e = (u, v):

EBC(e) =
∑

s,t;(s,t) ̸=(u,v)

σst(e)

σst
, (1)

where σst is the total number of shortest paths between nodes s and t, and
σst(e) is the number of those paths that go through e. This can be computed
using Floyd-Warshall algorithm, which will give infinity values for disconnected
graphs; we simply omit them in our implementation. We selected this descriptor,
since it is based on shortest paths, which gave the good results in [2], and also
takes into consideration the cyclic structure of the graph, e.g., it distinguishes
molecules with linear scaffolds vs those with more ring-like topology.

Jaccard Index (JI) [12] is a normalized overlap between node neighbor-
hoods N(u) and N(v):

JI(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

(2)

We calculate it for the existing edges e = (u, v) in the graph, obtaining a descrip-
tor of a 3-hop subgraph. This feature should better discriminate between graph
with visible community substructures and those without such node clusters.

Local Degree Score (LDS) [17] was proposed to detect edges between
hubs, i.e. nodes with locally high degree, and keep only those edges after graph
sparsification. For each node v, the rank of its neighbor u, rank(v, u) is the num-
ber of neighbors of v with degree lower than u. Note that this is asymmetrical,
i.e. rank(u, v) ̸= rank(v, u). For each edge, the Local Degree Score is defined as:

LDS(e) = max

(
1− ln rank(v, u)

ln degree(v)
, 1− ln rank(u, v)

ln degree(u)

)
, (3)

which is simply taking the higher value from perspective of u or v, since either
of them can be the hub node, giving a high LDS value. We selected this fea-
ture, since it can indicate the dispersion of nodes in the graph. If there are few
edges with high LDS, it indicates that there are a few well separated clusters
in the graph, centered around hub nodes, e.g., communities or well-connected
functional groups in chemistry.

We propose to use the LDP descriptors together with the additional features
described above, creating the Local Topological Profile. This method incor-
porates additional graph topology information in a local fashion, enhancing LDP
with more discriminative power. Of course, this increases the computational cost,
which we discuss below.
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LDP authors remark that shortest path lengths are not used for social net-
work datasets due to unreasonably long computing time. Their implementation,
however, uses NetworkX [8] for computing graph descriptors, which is a Python
library, performing sequential computations. Instead, we propose to use Net-
workit [25], a parallelized C++ library. This way, we are able to utilize modern
CPUs with multiple cores and compute descriptors in parallel. We do not per-
form a timing comparison, as we also could not finish computation with Net-
workX in any reasonable time. The experiments on subsets of datasets indicate
that Networkit is at least a one or two degrees of magnitude faster even on
much smaller, molecular graphs. For this reason, our whole implementation of
descriptors computation is based on Networkit.

Classification algorithm applied to feature vectors has a direct influence on
both accuracy and scalability. LDP used Support Vector Machine (SVM) with a
Gaussian kernel, which is a powerful classifier traditionally used with graph ker-
nels, since they work well with small datasets. However, they are not scalable,
since kernel calculation alone takes O(n2) for n graphs in the dataset. More-
over, they are sensitive to hyperparameter choice [19], hence requiring extensive
tuning to obtain good results. In addition, they are typically trained with the
Sequential Minimal Optimization (SMO) algorithm, which is inherently sequen-
tial, not utilizing modern CPUs with multiple cores. Linear SVMs, while faster
to compute, typically give worse results, which the authors of LDP also observe.

We propose to change SVM to a Random Forest (RF) classifier. It is bagging
ensemble of decision trees, which means that each tree can be trained indepen-
dently in parallel, increasing scalability. Decision tree induction is also very fast,
relying on a greedy top-down algorithm. They typically give good results with
default hyperparameters, requiring only a sufficiently high number of trees [20].
In preliminary study, we did not observe any significant effect of hyperparameter
tuning, even with large hyperparameter grids, hence we skipped this step.

More importantly, in contrast to LDP [2], we use a fair evaluation protocol
with test sets. We use the fair comparison procedure from [4], adapted in the
following way. The datasets and their statistics are summarized in Table 1. We
use the same test splits, and apply 10-fold CV for testing. However, since our
baseline is fast to compute, we can afford to perform inner 5-fold CV for vali-
dation and hyperparameter tuning, instead of holdout. Following [4], we report
mean and standard deviation of accuracy on test sets.

Table 1. Statistics of datasets used, following [4].

Dataset # Graphs Avg. # Nodes Avg. # Edges # Classes
DD 1178 284.32 715.66 2
NCI1 4110 29.87 32.30 2
PROTEINS 1113 39.06 72.82 2
ENZYMES 600 32.63 64.14 6
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2
REDDIT-5K 4999 508.82 594.87 5
COLLAB 5000 74.49 2457.78 3
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We tune the following hyperparameters for LDP (the same as the authors of [2]):

– number of bins: [30, 50, 70, 100]
– aggregation: [histogram, EDF]
– normalization: [none, graph, dataset]
– log scale: [false, true]

We tune the following hyperparameters for SVM (the same as authors of [2]):

– C (regularization): [10−3, 10−2, ..., 102, 103]
– γ (Gaussian kernel bandwidth): [10−2, 10−1, ..., 101, 102]

For RF, we do not perform tuning, instead setting the following parameters
(based on Scikit-learn defaults) for dataset with n samples and d features: 500
trees, minimizing Gini impurity, using

√
d features, sampling n samples with

replacement.
We use PyTorch Geometric [5] for data loading and computing node degree

features, Networkit [25] for computing EBC, JI and LDS descriptors, and Scikit-
learn to implement SVM and RF. We perform all experiments using 12th Gen
Intel Core i7-12700KF 3.61 GHz processor with 32 GB of RAM. Feature extrac-
tion processes graphs sequentially, while feature calculation is done in parallel,
using all available cores. We use all available cores for RF (n_jobs=-1) and for
grid search. We performed experiments to answer the following questions:

1. Can we improve training speed and prediction accuracy, using RF instead
of kernel SVM? If so, by how much?

2. Is tuning all LDP hyperparameters necessary? Can we eliminate some hy-
perparameters, or set reasonable defaults, in order to decrease tuning time?

3. Do additional descriptors increase prediction accuracy? Can we use all 3
additional descriptors to get the best average improvement?

4. What is the difference in training speed between the original LDP (using
SVM and with hyperparameter tuning) and our proposed LTP (using RF
and without tuning)?

5. How does LTP compare against baselines from [4] and GNNs?

4 Results and discussion

The first experiment concerned comparison of LDP prediction accuracy when
using RF (without tuning) instead of SVM (with tuning). We include both linear
and kernel SVM results. We used a reasonable default values based on LDP
paper [2]: 50 bins, histogram aggregation, normalization per graph, and linear
scale. As shown in Table 2, RF always gave better results than both linear and
kernel SVM. Interestingly, in some cases linear SVM outperformed kernel SVM,
contradicting findings in [2]. The average improvement of RF over SVMs across
all datasets is 3.4%, but can be as high as 7.3% on ENZYMES or 5.9% on DD.
Additionally, the timings presented in Figure 1 indicate that RF is about an order
of magnitude faster than SVM, being the result of both a more parallelizable
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Table 2. Classification accuracy on testing sets using LDP features and three analyzed
models. The best result for each dataset is marked in bold.

Dataset Linear SVM Kernel SVM RF
DD 68.2 ± 4.3 68.9 ± 4.0 74.9 ± 3.4
NCI1 65.8 ± 2.7 71.5 ± 2.8 73.8 ± 2.0
PROTEINS 66.6 ± 3.2 66.0 ± 3.3 71.1 ± 3.1
ENZYMES 25.7 ± 6.0 29.5 ± 5.2 36.8 ± 5.8
IMDB-B 60.2 ± 4.3 64.3 ± 3.6 65.9 ± 2.2
IMDB-M 39.6 ± 3.4 35.3 ± 2.6 43.9 ± 2.4
REDDIT-B 78.0 ± 2.7 88.1 ± 2.1 89.6 ± 1.5
REDDIT-5K 46.4 ± 2.0 52.3 ± 1.5 52.8 ± 1.4
COLLAB 68.0 ± 2.3 71.0 ± 2.1 73.5 ± 2.2

DD NCI1 PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB
0
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16
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Fig. 1. Training time using LDP features: SVM vs RF clasifier.

algorithm and no need for hyperparameter tuning. Based on this finding, we
only use RF in further experiments.

To verify the necessity of tuning LDP hyperparameters, we set the default values
and vary a single hyperparameter at a time. We used 50 bins, histogram aggre-
gation, normalization per graph, and linear scale. Due to space constraints, we
do not include the whole results tables, but they are available on GitHub. For
each hyperparameter, we calculate the number of times each value gave the best
result. Additionally, for each value, we also calculate the absolute average differ-
ence between its result and the best result for a given hyperparameter on each
dataset. The lower the absolute difference, the better, since it means that a given
hyperparameter value, on average, gives the best results among all its possible
values. results are presented in Table 3.

For the number of bins, we can clearly select 50 bins as the optimal value.
While 30 bins gave the best results the same number of times, on average they
performed worse compared to the optimal hyperparameter value. Similarly, for
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normalization it is evident that we do not need to perform any kind of normal-
ization, since using no normalization obtained the best results on majority of
datasets and on average. This is somewhat contrary to the results obtained in
LDP paper [2], but it is apparently an advantage of RF, since it considers each
feature separately, while calculating tree splits. For aggregation method, the re-
sults are very close, both for number of wins and average difference compared
to the best result. In this case, the choice does not matter that much, and we
choose the simpler histogram method. The linear scale obtained much better re-
sults on average than the log scale, so the choice is obvious. Overall, this means
that we can confidently recommend default values for all LDP hyperparame-
ters, and tuning them is not particularly helpful. This dramatically decreases
the computational cost, while having little effect on accuracy on average, which
is a desirable tradeoff in a baseline method.

Table 3. Number of wins and absolute average difference between the result for a given
hyperparameter value and the best result for any hyperparameter value. Higher number
of wins is better, lower absolute average difference is better. For each hyperparameter,
the value with the lowest absolute average difference has been marked in bold.

Hyperparameter Value # Wins
Abs. avg. difference
compared to best

Number of bins

30 4 0.69%
50 4 0.22%
70 1 0.70%
100 0 0.63%

Normalization
None 5 0.23%
Graph 2 2.03%
Dataset 2 0.39%

Aggregation
Histogram 5 0.71%
EDF 4 0.69%

Scale
Linear 4 0.35%
Log 5 0.64%

To assess whether additional descriptors increase accuracy of this method, we
performed another set of experiments. We start with basic LDP, and add one
additional descriptor at a time: lengths of shortest paths (SP), edge betweenness
centrality (EBC), Jaccard Index (JI) and Local Degree Score (LDS). Finally, we
check our proposed Local Topological Profile (LTP) method, combining LDP
with EBC, JI and LDS descriptors. In all experiments, we keep the same hyper-
parameters: 50 bins, histogram aggregation, no normalization, and linear scale.
As shown in Table 4, in every case the additional descriptors achieved the best
result, while LTP was the best on 6 out of 9 datasets. On PROTEINS and
IMDB-M it was the second best, being worse than the best by just 0.1% on
the latter. It was also the third best on NCI1. Therefore, we can conclude that
adding selected descriptors definitely increases the discriminatory power of this
method. LTP is a robust method, performing the best on average, and using it
eliminates the need to tune descriptor selection.

For performance analysis, we compare the original method from [2], i.e., LDP
+ SVM + hyperparameter tuning, with the proposed method, i.e. LTP + RF,
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without any tuning. For the former, we tune feature extraction hyperparameter
and SVM hyperparameters separately, since grid search on combined parame-
ters grids would result in approximately 20 times larger number of models to
be trained for a single test fold, which is infeasible. We measure the time for
the whole experimental procedure, i.e. feature extraction and classifier training
and tuning for all 10 test folds. This way, we take all characteristics of both ap-
proaches into consideration: LDP taking more time due to tuning, and LTP due
to extracting more features. As shown in Figure 2, our proposed LTP approach
is vastly superior to LDP in terms of speed, being 1–3 orders of magnitude faster
on all datasets. It should be noted that our LDP implementation is nevertheless
much faster than the original one, since we use PyTorch Geometric to compute
LDP features in parallel with optimized C++ subroutines. The original Python-
based, sequential implementation in NetworkX would be additionally 1–2 orders
of magnitude slower, based on preliminary experiments. Our method was also
very fast on datasets with large number of large graphs (REDDIT datasets and
COLLAB), which indicates good scalability. This is especially important con-
sidering that graph datasets are getting larger and baselines also have to scale
well.

Lastly, we compare accuracy of LTP to GNNs from [4], based on the same
fair evaluation framework (compatible settings for model selection and model
evaluation). For social networks, we compare against stronger models, using node
degree. The outcome is summarized in Table 5. For easier comparison, in Table 6
we also present the average rank of the model across all datasets, i.e. on average
which place, from 1st to 8th, it took. Our LTP approach achieves state-of-the-art
results on IMDB-B, IMDB-M, REDDIT-B and COLLAB, achieving as much as
3.8% higher accuracy on COLLAB than the previous best method, GIN. Note
that our method makes use of graph topology exclusively, ignoring node and edge
features. This explains why on bioinformatics datasets we did not get as good
results. In fact, on DD, PROTEINS and ENZYMES the best result is achieved
by exclusively feature-based baseline from [4], which does not use graph topology
at all. On average, LTP obtained the best rank among all models, beating even
a theoretically very powerful GIN architecture. Additionally, all GNNs require
GPUs and many hours of computation, while our method gives results in mere
seconds.

5 Conclusions

We presented the new structural baseline for graph classification called Local
Topological Profile (LTP). The research questions addressing its efficiency and
scalability in comparison to related LDP method and competitive GNN meth-
ods were studied in the experimental section, where we conclude that using the
Random Forest classifier instead of SVM improved the accuracy and the speed
of computation by a large margin and this observation applies to all datasets
used. We note that tuning of feature extraction hyperparameters is not necessary
therefore, we can use default values for all datasets, decreasing tuning time sig-
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Table 4. Classification accuracy of LDP with additional descriptors and LTP. The
best result for each dataset is marked in bold.

Dataset LDP
LDP
+ SP

LDP
+ EBC

LDP
+ JI

LDP
+ LDS

LTP

DD 76.0 ± 3.0 76.3 ± 2.8 77.0 ± 3.6 76.0 ± 3.4 75.8 ± 2.6 77.1 ± 3.7
NCI1 77.2 ± 1.5 76.1 ± 1.6 76.8 ± 1.7 76.6 ± 1.4 77.4 ± 1.6 77.0 ± 1.9
PROTEINS 70.6 ± 1.7 71.9 ± 2.2 73.0 ± 3.2 72.6 ± 3.2 71.4 ± 3.0 72.7 ± 4.2
ENZYMES 37.4 ± 4.0 37.2 ± 5.4 40.2 ± 6.5 40.0 ± 6.6 38.7 ± 5.6 42.5 ± 4.1
IMDB-B 71.3 ± 3.3 72.2 ± 4.0 72.9 ± 4.6 73.0 ± 4.3 74.2 ± 4.2 74.5 ± 4.3
IMDB-M 49.0 ± 4.4 49.2 ± 4.1 49.2 ± 5.0 49.3 ± 4.5 50.1 ± 4.8 50.0 ± 4.6
REDDIT-B 89.6 ± 1.2 90.5 ± 2.1 90.1 ± 1.7 89.6 ± 1.3 91.1 ± 1.1 91.1 ± 1.0
REDDIT-5K 51.9 ± 1.6 51.9 ± 1.9 51.7 ± 1.8 52.7 ± 2.0 53.1 ± 1.9 53.3 ± 1.5
COLLAB 75.7 ± 2.0 76.5 ± 2.2 76.8 ± 1.9 76.8 ± 1.8 78.7 ± 2.4 79.4 ± 2.5

DD NCI1 PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB
0

500

1000

1500

2000

2500
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LDP + SVM + tuning
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e 
[s

]

Fig. 2. Experiment time using LDP and LTP approaches.

nificantly. More importantly, we observe that introducing additional topological
descriptors increases predictive accuracy in LTP method significantly. Using all
three proposed descriptors (Edge Betweenness Centrality, Jaccard Index, Local
Degree Score) gives very good prediction results across nine benchmark datasets,
at the same time LTP is 2–3 orders of magnitude faster than the original LDP
approach. Finally, we achieve state-of-the-art results on 4 out of 9 benchmark
datasets, and in other cases get very strong accuracy, comparable to or even out-
competing modern GNNs, while using exclusively the graph topology. We share
the software package with the research community, hoping that it can be useful
in comparing results achieved by state-of-the-art graph classification models.

In our future work, we plan to extend the number of vertex/edge descriptors
and enrich the expressive power of LTP towards more global features such as
eccentricity. We also plan to merge LTP feature extraction and baselines from
[4], to strengthen performance on more feature-focused bioinformatics datasets.
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Table 5. Comparison of accuracy with fair comparison results from [4]. Higher is
better. Best result for each dataset has been marked in bold.

Dataset Baseline [4] DGCNN DiffPool ECC GIN GraphSAGE LDP LTP

DD
78.4
±4.5

76.6
±4.3

75.0
±3.5

72.6
±4.1

75.3
±2.9

72.9
±2.0

76.0
±3.0

77.1
±3.7

NCI1
69.8
±2.2

76.4
±1.7

76.9
±1.9

76.2
±1.4

80.0
±1.4

76.0
±1.8

77.2
±1.5

77.0
± 1.9

PROTEINS
75.8
±3.7

72.9
±3.5

73.7
±3.5

72.3
±3.4

73.3
±4.0

73.0
±4.5

70.6
±1.7

72.7
±4.2

ENZYMES
65.2
±6.4

38.9
±5.7

59.5
±5.6

29.5
±8.2

59.6
±4.5

58.2
±6.0

37.4
±4.0

42.5
±4.1

IMDB-B
70.8
±5.0

69.2
±3.0

68.4
±3.3

67.7
±2.8

71.2
±3.9

68.8
±4.5

71.3
±3.3

74.5
±4.3

IMDB-M
49.1
±3.5

45.6
±3.4

45.6
±3.4

43.5
±3.1

48.5
±3.3

47.6
±3.5

49.0
±4.4

50.0
±4.6

REDDIT-B
82.2
±3.0

87.8
±2.5

89.1
±1.6

OOR
89.9
±1.9

84.3
±1.9

89.6
±1.2

91.1
±1.0

REDDIT-5K
52.2
±1.5

49.2
±1.2

53.8
±1.4

OOR
56.1
±1.7

50.0
±1.3

51.9
±1.6

53.3
±1.5

COLLAB
70.2
±1.5

71.2
±1.9

68.9
±2.0

OOR
75.6
±2.3

73.9
±1.7

75.7
±2.0

79.4
±2.5

Table 6. Comparison of average model ranks. The best result is marked in bold.

Baseline [4] DGCNN DiffPool ECC GIN GraphSAGE LDP LTP
Average

rank
3.8 5.2 4.6 7.6 2.7 5.4 4 2.6
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