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Abstract. The paper presents the use of reinforcement learning in edge
coloring of a complete graph, and more speci�cally in the problem of
determining Ramsey numbers. To the best of our knowledge, no one has
so far dealt with the use of RL techniques for graph edge coloring.
The paper contains an adaptation of the method of Zhou et al. to the
problem of �nding speci�c Ramsey colorings. The proposed algorithm
was tested by successfully �nding critical colorings for selected known
Ramsey numbers. The results of proposed algorithm are so promising
that we may have a chance to �nd unknown Ramsey numbers.

Keywords: Reinforcement learning · Ramsey numbers · Learning-based
optimization.

1 Introduction

One of the popular ways looking at Ramsey's theory is in the context of graph
theory, and more speci�cally edge coloring of graphs. To put it quite simply,
we want to answer the following question: If we have a complete graph Kn on
n vertices where every edge is arbitrarily colored either blue or red, what is
the smallest value of n that guarantees the existence of either a subgraph G1

which is blue, or a subgraph G2 which is red? This smallest search n is called
a 2-color Ramsey number R(G1, G2). Initially, only the case when subgraphs
G1 and G2 are complete subgraphs was considered. Greenwood and Gleason [8]
established the initial values R(K3,K4) = 9, R(K3,K5) = 14 and R(K4,K4) =
18 in 1955. Unfortunately, in the case of exact values, there has been very little
progress for many years, and for many Ramsey numbers. For example, note
that the most recent exact result for a 2-color Ramsey number for two complete
graphs is R(K4,K5) = 25 and was obtained by McKay and Radziszowski in
1995 [9]. Therefore, Ramsey numbers for subgraphs other than complete became
popular very quickly. Many interesting applications of Ramsey theory arose in
the �eld of mathematics and computer science, these include results in number
theory, algebra, geometry, topology, set theory, logic, information theory and
theoretical computer science. The theory is especially useful in building and
analyzing communication nets of various types. Ramsey theory has been applied
by Frederickson and Lynch to a problem in distributed computations [7], and by
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Snir [13] to search sorted tables in di�erent parallel computation models. The
reader will �nd more applications in Rosta's summary titled �Ramsey Theory
Applications� [11].

In recent years, the use of Machine learning (ML) techniques in solving combi-
natorial problems has signi�cantly increased. Bengio et al. [1] noted that models
that are formed by combining ML techniques and combinatorial optimisation
strengthen the training procedures. ML is useful especially in discovering or
creating certain desirable patterns in graphs, which will be shown later in this
article. In 2022, Kai Siong Yow and Siqiang Luo gave a very interesting survey
[14]. They reviewed classic graph problems that have been addressed by using
learning-based algorithms, particularly those employ ML techniques.

Common approach that is gaining popularity is reinforcement learning (RL),
where an agent interacts with its environment in discrete time steps, and learns
an (nearly) optimal policy to maximise the reward over a course of actions. There
are three key elements in a RL agent, i.e., states, actions and rewards. At each
instant a RL agent observes the current state, and takes an action from the set
of its available actions for the current state. Once an action is performed, the RL
agent changes to a new state, based on transition probabilities. Correspondingly,
a feedback signal is returned to the RL agent to inform it about the quality of
its performed action [16].

Grouping problems aim to partition a set of items into a collection of mutually
disjoint subsets according to some speci�c criterion and constraints. Grouping
problems naturally arise in numerous domains, including, of course, the problem
of graph coloring. Zhou, Hao and Duval in [16] presented the reinforcement learn-
ing based local search (RLS) approach for grouping problems, which combines
reinforcement learning techniques with a descent-based local search procedure.
To evaluate the viability of the proposed RLS method, the authors used the
well-known graph vertex coloring problem (GCP) as a case study. To the best of
our knowledge, no one has so far dealt with the use of RL techniques for graph
edge coloring. All the more, there are no known attempts to use these techniques
in estimating the value of Ramsey numbers. The most commonly used heuristics
are local search, simulated annealing or tabu search. In this paper, we present
how the reinforcement learning based local search (RLS) approach presented in
[16] can be used to �nd lower bounds of some Ramsey numbers. Our proposed
application of RLS approach belongs to the category of learning generative mod-
els of solutions. This method was used, among others, in [4] for the solution of
the �ow-shop scheduling problem.

To sum up the introduction, the main method used in the article is an adap-
tation of the RLS aproach presented in [16] and the rest of this paper is organized
as follows. Section 2 provides useful notation and de�nitions. Section 3 describes
the application of the RLS method in Ramsey's theory. In Section 4, we dis-
cussed the results obtained from the computer simulations and present possible
improvements. The article ends with a short summary and an indication of the
direction of further research.
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2 Notation and de�nitions related to graphs and Ramsey

numbers

Let G = (V (G), E(G)) be an undirected graph. Km denotes the complete graph
on m vertices, Cm - the cycle of length m, Pm - the path on m vertices and
K1,m - the star of order m+ 1. An edge k-coloring of a graph G is any function
f : E(G) → {1, 2, 3, ..., k}. In this paper we only consider edge 2-colorings. Since
colorings involve only two colors (blue and red) futher on will be re�ered to
as colorings (instead of edge 2-colorings). For graphs G1, G2 a coloring f is a
(G1, G2;n)− coloring if and only if f is a 2-coloring of the complete graph Kn

and f contains neither a G1 colored with color 1 nor a G2 colored with color 2.

De�nition 1. The Ramsey number R(G1, G2) for graphs G1 and G2 is the

smallest positive integer n such that there is no (G1, G2;n)− coloring.

De�nition 2. A coloring (G1, G2;n) is said to be critical if n = R(G1, G2)− 1.

The following theorem is a well-known result on Ramsey number for two
cycles, which was established independently in [6] and [12].

Theorem 1 ([6], [12]). Let m,n be integers, where 3 ≤ m ≤ n.

R(Cm, Cn) =


6 (m,n) = (3, 3), (4, 4),
2n− 1 m is odd and (m,n) ̸= (3, 3),
n− 1 + m

2 m and n are even and (m,n) ̸= (4, 4),
max{n− 1 + m

2 , 2m− 1} m is even and n is odd.

As we have seen, in the case of two cycles we know everything, however only
partial results for Cm versus stars K1,n are known. The most known general
exact result for even cycles is:

Theorem 2 ([15]).

R(Cm,K1n) =

{
2n for even m with n < m ≤ 2n,
2m− 1 for even m with 3n/4 + 1 ≤ m ≤ n.

Besides the exact values many lower and upper bounds for various kinds of
graphs have appeared in the literature. Radziszowski in his regularly updated
dynamic survey �Small Ramsey Numbers� [10] lists all known nontrivial values
and bounds for Ramsey numbers. Lower bounds on Ramsey numbers are mostly
proved by giving a witness that doesn't have the desired Ramsey property. Such
a witness (called a critical coloring) could be part of a general construction,
or found `at random' by a heuristic algorithm. While lower bounds on Ramsey
numbers can be established by giving one coloring which does not have the de-
sired property, to prove an upper bound one must give an argument implying
that all colorings of a certain order complete graph have the desired property.
Mostly, this is done by using general or speci�c theorems to vastly reduce the
number of possible counter-example colorings. The remaining colorings some-
times must then be enumerated by a computer to verify that none of them is a
critical coloring.
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3 RLS applied to determining critical colorings for some

Ramsey numbers

In the problem of determining the exact value of the Ramsey number, it is
often the case that we can �nd it for large n, but we do not know the value for
small cases. The algorithm presented below can successfully �ll this gap. This
algorithm can be adapted to various types of graphs, but for the purposes of the
article, we will only present a case of applying it to two cycles and to the case
of a cycle and a star.

We already know everything about Ramsey numbers of the type R(Ck, Cm)
(see Theorem 1), so we will be able to easily verify the obtained results. Let us
assume that we are looking for the critical (Ck, Cm;n)− coloring, where k ≤ m.
To apply the proposed RLS approach to this purpose, we need to specify the
search space Ω, the neighborhood, the evaluation function f(S), �nal acceptance
criterium and method of choosing initial state.

First, for a given partition of complete graph Kn into 2 graphs: G1 and G2,
where V (G1) = V (G2) = V (Kn), E(Kn) = E(G1)∪E(G2) and E(G1)∩E(G2) =
∅, we de�ne spaceΩ to be the family of all possible edge 2-colorings S = {G1, G2}
such that the subgraph Gi is colored with the color i, where i ∈ {1, 2}. The
neighborhood of a given coloring is constructed by changing the color of an edge
belonging to at least one forbidden cycle.

The objective function and the �nal acceptance criterium are de�ned intu-
itively: f(S) is simply equal to the number of edges that are in at least one
forbidden cycle in S. Accordingly, a candidate solution S is the desired critical
coloring if f(S) = 0.

As the initial state a complete graph Kn is taken. Originally, the RLS pro-
cedure starts with a random solution taken from the search space Ω. In order
to increase the size and speed up �nding the desired critical Ramsey coloring,
we can use various known graph-type-speci�c properties. They can reduce the
number of remaining edges to be colored or narrow down the number of edges
of a given color. The use of this type of methods requires specialist knowledge of
Ramsey properties for a given type of graphs, here we will focus only on possible
examples for the studied two-cycle problem.

The length of a shortest cycle and the length of a longest cycle in G are
denoted by g(G) and c(G), respectively. A graph G is weakly pancyclic if it
contains cycles of every length between g(G) and c(G). G∪H stands for vertex
disjoint union of graphs, and the join G + H is obtained by adding all of the
edges between vertices of G and H to G∪H. The following interesting properties
are known.

Theorem 3 ([5]). Let G be a graph of order n ≥ 6. Then max{c(G), c(G)} ≥
⌈2n/3⌉, where G is the complement of G.

Theorem 4 ([2]). Every nonbipartite graph G of order n with |E(G)| > (n−1)2

4 +
1 is weakly pancyclic with g(G) = 3.
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Theorem 5 ([3]). Let G be a graph on n vertices and m edges with m ≥ n and

c(G) = k. Then

m ≤ w(n, k) =
1

2
(n− 1)k − 1

2
r(k − r − 1), where r = (n− 1) mod (k − 1),

and this result is the best possible.

For example, consider the numberR(C8, C8). Theorem 1 leads toR(C8, C8) =
11. That means we are looking for critical (C8, C8; 10)− coloring. On the other
hand, we know that R(B2, B2) = 10, where B2 = K2 + K2. By combining the
value of this number and Theorem 3, we get the property that the remaining
number of edges to be colored by adapting the RLS algorithm is at least 9 less
(where B2 and C7 have the greatest possible intersection). Looking at it from
another angle, if the number of edges of one color exceeds 27 (combining The-
orems 4 and 5, where w(10, 7) = 27), in this color we have cycle C8, which we
avoid. This means that the number of edges of K10 in each color belongs to the
set {18, ..., 27}.

We de�ne a probability matrix P of size n × 2 (n is the number of edges
and 2 is the number of colors). An element pij denotes the probability that
the i-th edge e ∈ E(G) is colored with the j-th color. Therefore, the i-th row
of the probability matrix de�nes the probability vector of the i-th edge and is
denoted by pi. At the beginning, all the probability values in the probability
matrix are set as 1

2 . It means that all edges are colored with one of the two
available colors with equal probability. To achieve a local optimum, the current
solution (coloring) St at instant t is then enhanced by DB-LS, a descent-based
local search algorithm which iteratively improves this solution by a neighboring
solution of better quality according to the evaluation function. In our case, we
simply change the color of each edge belonging to any cycle to the opposite color,
and calculate the objective function. This process stops either when a critical
coloring is found (i.e., a solution with f(S) = 0), or no better solution exists
among the neighboring solutions (in this later case, a local optimum is reached).
It means that for current solution St the locally best solution St is generated
(of course, if it exists). Next, for each edge ei, we compare its colors in St and
St. If the edge does not change its color (say ci), we reward the selected color ci
(called correct color) and update its probability vector pi according to:

pij(t+ 1) =

{
α+ (1− α)pij(t) if j = u
1− (α+ (1− α)pij(t)) otherwise.

where α (0 < α < 1) is a reward factor. When edge e changes its color to the
opposite color (say cv, v ̸= u), we penalize the discarded color cv (called incorrect
color) and update its probability vector pi according to:

pij(t+ 1) =

{
(1− β)pij(t) if j = v
1− ((1− β)pij(t)) otherwise.

where β (0 < β < 1) is a penalization factor. In the next step, a smoothing
technique is applied on the probability vector of each edge ei ∈ E(G). For this
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we �rst calculate the value piw = max{pi1, pi2}. Then we check if piw > p0
is true, where p0 is a smoothing probability. If so, then we update probability
vector pi according to:

pij(t) =

{
ρ · pij(t) if j = w
1− ρ · pij(t) otherwise.

Once the probability of a color in a probability vector achieves a given threshold
(i.e., p0), it is reduced by multiplying a smoothing coe�cient (i.e., ρ < 1) to
forget some earlier decisions.

At each iteration of RLS, each edge ei needs to select a color cj from two
available colors according to its probability vector pi. As in [16], we adopted
the hybrid selection strategy which combines randomness and greediness and
is controlled by the noise probability ω. With a noise probability ω, random
selection is applied; with probability 1 − ω, greedy selection is applied. The
purpose of selecting a color with maximum probability (greedy selection) is to
make an attempt to correctly select the color for an edge that is most often
falsi�ed at a local optimum. Selecting such a color for this edge may help the
search to escape from the current trap. On the other hand, using the noise
probability has the advantage of �exibility by switching back and forth between
greediness and randomness. Also, this allows the algorithm to occasionally move
away from being too greedy [16].

Now consider the case of Ramsey numbers of the type R(Cm,K1,n). The
procedure is basically the same as above, with the di�erence that the objective
function is calculated in a di�erent way. The objective function is de�ned as
follows: f(S) is equal to the sum of the number of edges that are in at least one
forbidden cycle Cm colored with color 1 and the number of vertices of red (color
2) degree at least n, and the number of red edges in the red neighborhood of
these vertices. This surprising last number came from observing the behavior of
the machine learning algorithm considered above for two cycles. Probably the
current geometric similarity speeds up the algorithm.

4 Computational experiments

The basis of our software framework consisted of the package NetworkX, which
includes a graph generator, tool to �nd all cycles of a given length and several
other utilities for graph manipulation. All tests were carried out on a PC un-
der 64-bit operating system Windows 11 Pro Intel(R) Core(TM) i5-1135G7 @
2.40GHz 2.42 GHz, RAM 16GB compiled with aid of Python 3.9.

To obtain the desired colorings, each instance was solved 10 times inde-
pendently with di�erent random seeds. Each execution was terminated when
a Ramsey coloring is found or the number of iterations without improvement
reaches its maximum allowable value (500). As a result of the computational ex-
periments, the values of all learning parameters were determined. Table 1 shows
the descriptions and setting of the parameters used for our experiments. The
considered colorings and the times of receiving the appropriate colorings are
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presented in Table 2. For small cases, it was from a dozen to several dozen it-
erations, for larger ones it did not exceed 700. The case of coloring (C8, C8; 10)
was considered in 3 versions: random coloring or random (C8, C8; 8)-coloring or
random (C8, C8; 9)-coloring was given at the start, respectively. In addition to
the colorings presented in Table 2, a number of calculations lasting several dozen
hours were also performed in order to �nd the (C8,K1,10; 15) − coloring. The
calculations were started with various types of (C8;K1,10; 14)− colorings. Each
of the calculations stopped at some point and for at least 600 iterations the lo-
cally best solution was no longer corrected. Due to this fact, it can be assumed
that R(C8,K1,10) = 15 and Conjecture 1 from [15] holds for m = 8 and k = 10.

Parameter Description Value

ω noise probability 0.2
α reward factor for correct color 0.1
β penalization factor for incorrect color 0.5
ρ smoothing coe�cient 0.55
p0 smoothing probability 0.955

Table 1. Parameters of Algorithm RLS.

Coloring Comp. time(s)

(C6, C6; 7) < 1s.
(C6, C8; 8) < 1s.
(C6, C8; 9) 9-13 s.

(C8, C8; 10) ver 1. 106-372 s.
(C8, C8; 10) ver 2. 101-118 s.
(C8, C8; 10) ver 3. 12-85 s.

(C8, C10; 10) 45-180 s.
(C8, C10; 11) 6-78 min.

Coloring Comp. time(s)

(C10, C10; 10) < 1 s.
(C10, C10; 11) 159-473 s.
(C6,K1,6; 10) < 30 s.
(C6,K1,7; 10) < 30 s.
(C8,K1,5; 9) 29-552 s.
(C8,K1,6; 11) 17-23 min.
(C8,K1,9; 14) 69-236 min.
(C8,K1,10; 14) 62-189 min.

Table 2. The times of determining the given colorings.

The frequent spread of computation time comes from the random, and there-
fore unpredictable, pre-coloring of the graph. In order to improve the speed of
the algorithm, various pre-coloring can be applied and a number of useful Ram-
sey properties can be used. Examples of such actions are presented above. The
structure of the graphs and the objective function used are also important. It is
possible that other objective functions than those presented above in the article
can be used. The same is true of machine learning parameters. It is likely that for
other classes of graphs they should be adapted to them. The performed calcula-
tions indicate that within a dozen or so hours at most, we are able to determine
the coloring for a graph with 15 vertices (i.e. having 105 edges), as long as the
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task is to color all the edges. Python was used for the implementation, but there
are faster languages, such as ANSI C.

5 Conclusion

The adaptation of the method of Zhou, Hao and Duval [16] and the obtained re-
sults show that reinforcement learning can be considered as another and promis-
ing heuristic that can be used in determining Ramsey numbers. Appropriate
selection of the graph structure, objective function, learning parameters, pre-
coloring or even �xing the colors of certain edges can truly bring measurable
results in determining unknown values of Ramsey numbers. Future work can be
started by applying this method to the open problems contained in [10].
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