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Abstract. Molecular-continuum coupled flow simulations are used in
many applications to build a bridge across spatial or temporal scales.
Hence, they allow to investigate effects beyond flow scenarios modeled
by any single-scale method alone, such as a discrete particle system or a
partial differential equation solver. On the particle side of the coupling,
often molecular dynamics (MD) is used to obtain trajectories based on
pairwise molecule interaction potentials. However, since MD is compu-
tationally expensive and macroscopic flow quantities sampled from MD
systems often highly fluctuate due to thermal noise, the applicability
of molecular-continuum methods is limited. If machine learning (ML)
methods can learn and predict MD based flow data, then this can be
used as a noise filter or even to replace MD computations, both of which
can generate tremendous speed-up of molecular-continuum simulations,
enabling emerging applications on the horizon.
In this paper, we develop an advanced hybrid ML model for MD data
in the context of coupled molecular-continuum flow simulations: A con-
volutional autoencoder deals with the spatial extent of the flow data,
while a recurrent neural network is used to capture its temporal corre-
lation. We use the open source coupling tool MaMiCo to generate MD
datasets for ML training and implement the hybrid model as a PyTorch-
based filtering module for MaMiCo. It is trained with real MD data from
different flow scenarios including a Couette flow validation setup and a
three-dimensional vortex street. Our results show that the hybrid model
is able to learn and predict smooth flow quantities, even for very noisy
MD input data. We furthermore demonstrate that also the more complex
vortex street flow data can accurately be reproduced by the ML module.

Keywords: Flow Simulation · Machine Learning · Denoising · Data
Analytics · Molecular Dynamics · Molecular-Continuum

1 Introduction

One of the fundamental nanofluidics tools in engineering, biochemistry and other
fields are molecular dynamics (MD) simulations [5, 14]. MD has the potential
to assess the properties of novel nanomaterials, for example it has been applied
to water desalination, in order to develop highly permeable carbon nanotube
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membranes for reverse osmosis [20]. However, in many such application cases
the challenging computational cost of MD imposes a barrier that renders full-
domain simulations of larger nanostructures infeasible. Thus, coupled multiscale
methods, where MD is restricted to critical locations of interest and combined
with a continuum flow model to create a molecular-continuum simulation, are
typically used to enable computationally efficient simulations of macroscopic
flows. In the water purification example, the MD simulation of the carbon nan-
otube confined flow can be accompanied by a Hagen-Poiseuille flow solver to
yield a multiscale method that still captures molecular physics but also makes
water transport predictions for larger laboratory-scale membranes [2].

Here we focus on cases where the flow in the MD domain could be described
by the continuum solver, unlike carbon nanotubes, so that we can use the ad-
ditional continuum information to validate coupling methodology. Since from a
software design perspective, implementing a coupling can come with many chal-
lenges, many general-purpose frameworks for arbitrary multiphysics simulations
are available (e.g. [3, 19, 21]), however only a few focus on molecular-continuum
flow [8, 15, 18]. In our recent work [8] we have presented MaMiCo 2.0, an open
source C++ framework designed to create modular molecular-continuum simula-
tions. Data sampled from MD often suffers from high hydrodynamic fluctuations,
i.e. thermal noise, but many coupling schemes and continuum methods depend
on smooth flow data. Hence, MaMiCo supports two ways to obtain smoother
data: ensemble averaging and noise filtering. For the former, an ensemble of
independent MD simulation instances is launched on the same subdomain, so
that their results can be averaged [13]. Depending on the temperature, typically
50-200 instances are necessary to obtain a stable transient two-way coupled sim-
ulation [23]. For noise filtering, there is a flexible filtering system with several
filter module implementations, such as proper orthogonal decomposition (POD)
or Non-Local Means (NLM) [6]. NLM can reduce the number of MD instances
required for a certain flow result accuracy, approximately by a factor of 10,
for details see [6]. MaMiCo 2.0 can change the number of active MD instances
dynamically at run time of the coupled simulation for on-the-fly error control
[8].

However, also with a combination of ensemble averaging to obtain averaged
data for stable coupling and noise filtering to reduce the number of MD in-
stances, a problem of major importance remains to be the computational cost of
MD, which restricts the applicability of the methodology to limited scenarios. A
promising approach to further tackle this are machine learning (ML) methods
which can support the coupling in this case in two ways: First, if ML is used as
an advanced noise filter in the filtering system of MaMiCo, then this can help to
reduce the number of MD instances. Second, if an ML model is able to learn and
predict the behavior of MD, then it can be used to avoid costly computations
and to replace the MD simulation, at least for some of the time steps or some of
the instances. Note that from ML perspective, both use cases are very similar: in
either case, the ML module receives as input data the state of MD, i.e. the data
sampled from MD at coupling time step t, as well as the information from the
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continuum solver at the outer MD boundaries, and the ML module is supposed
to output only the filtered MD state, either at t or at t+1. Note that while these
use cases are the primary motivation for the ML developments presented in this
paper, here we will focus on definition, training, validation and analysis of the
novel ML module for the purposes of both filtering and prediction of the MD
flow description, yet abstaining from replacing MD entirely which we consider
a natural next step in the near future, since this is an active field of research.
For instance, in [9] a surrogate model of MD simulations is developed, which can
accurately predict a small number of key features from MD, based on a fully
connected neural network. Here we focus on architectures for grid-based flow
data instead, since fully connected networks are not scalable to operate on large
inputs.

In recent years, many works have studied various neural network architec-
tures for complex fluid flow and turbulent CFD problems [4, 12]. For instance,
Wiewel et al. have developed a hybrid model using a convolutional neural net-
work (CNN) based autoencoder (AE) and an LSTM, which is a type of recurrent
neural network (RNN) [22]. While they achieve significant speed-ups compared
to traditional solvers, they did not investigate the impacts of noisy input data.
However, in 2022, Nakamura and Fukagata have performed a robustness anal-
ysis, investigating the effects of noise perturbation in the training data in the
context of an CNN-AE for turbulent CFD [11], although without employing an
RNN. Here, we combine and use insights from both these works by applying
a similar hybrid model to a different context, molecular dynamics data, which
often contains a higher level of noise.

The goal of this paper is to introduce a convolutional recurrent hybrid model
and to demonstrate that it is able to do both: work as an advanced MD noise
filter and accurately predict the behavior of the MD simulation over time in a
transient three-dimensional molecular-continuum flow.

In Section 2 we introduce the coupling methodology, software tools, flow
solvers and scenarios used in this paper. In Section 2.1 we give details how they
are applied to generate the datasets for the ML training. Section 3 develops
a convolutional recurrent autoencoder model for MD data. Therefore, first we
define an AE in Section 3.1, then we introduce an RNN for the CNN latent space
in Section 3.2, and finally in Section 3.3 we combine both of them into a hybrid
model. Section 4 gives details about our implementation of this hybrid model,
documents the training approach and defines hyper-parameters. We first show
results of the hybrid model for a Couette flow validation test case in Section
5, and then demonstrate and explain its capabilities for a more complex vortex
street in Section 6. Finally, Section 7 summarizes our insights and provides an
outlook to future research that is rendered possible by this work.

2 Molecular-Continuum Coupled Flow

For our molecular-continuum simulations we consider a domain decomposition
into a small molecular region placed within a much larger continuum domain,
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with nested time stepping between the two solvers. For the datasets used in this
paper, on the particle side MaMiCo’s in-house MD code SimpleMD is applied
to model a Lennard-Jones fluid and on the continuum side we use the lbmpy [1]
software package to apply a Lattice-Boltzmann method (LBM).

Couette Flow Vortex Street (KVS)

Fig. 1. Transient coupled flow scenarios; MD receives con-
tinuum data in overlap region, ML aims to predict MD data
in inner cells. Left: flow between two parallel plates. Right:
vortex street, obstacle not shown.

In this paper, as
illustrated in Fig. 1,
we use a Couette
flow case similar to
scenario 2A defined
in [6] and a vor-
tex street test case
similar to scenario
1, corresponding to
the benchmark 3D-
2Q by Schäfer et
al. [17]. The coupling
methodology, software
and flow test scenario
setup have been de-
scribed thoroughly in previous publications, thus the reader is referred to [6, 7]
for more details. The Kármán vortex street (KVS), while not a common nanoflu-
idics scenario, is excellent for investigating and comparing the performance of
ML models, since it yields a sufficiently complex multidimensional transient flow
with challenging non-linear data. In both scenarios we zero-initialize the flow.
We start to couple with MD during a transient start-up phase. Since coupling is
already enabled while the continuum solver is establishing the flow, the velocities
vary more. This can be used to reveal potential mismatches between MD data
and ML predictions. The tests performed in this paper use a single MD instance
only, for simplicity and because this is the most challenging test case for an ML
module, with the highest possible level of noise in the data sampled from MD.
All simulations used in this paper are one-way coupled, meaning that flow data
is transferred from the continuum solver to the particle system, but not in the
other direction.

2.1 Dataset Creation

The filtering system of MaMiCo operates on a regular grid of voxel cells that
covers the MD domain, where each cell contains quantities, such as density, tem-
perature or velocity, which are sampled from the MD simulations and averaged
over all particles within that cell. Typically each cell contains ca. 10 to 100 par-
ticles, depending on the exact simulation configuration. Note that since we train
and use ML models as modules in the filtering system of MaMiCo, they do not
have any access to individual particles, but only to grid-based quantities. This
means that the ML model does not operate on the full state of the MD system,
but instead on the information that is exchanged between MD and continuum
solver. If ML can predict this information with a sufficient accuracy, then it can
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replace the MD simulation from the perspective of the continuum solver – even
without any knowledge of the internal MD state.

In this paper, the ML training and validation datasets generated by MaMiCo
are multichannel volumes in the shape of [900 × 3 × 24 × 24 × 24]. The first
dimension refers to 900 coupling cycles, i.e. macroscopic simulation time steps,
while the second dimension refers to three flow velocity components per voxel, ux,
uy and uz. For simplicity, we disregard the other quantities stored in the cells, but
the ML methodology can be applied to them in an analogous way. The remaining
dimensions define the volume of interest spanning 24 × 24 × 24 cells covering the
entire MD domain. There is an overlap region that covers the three outer cell
layers of the MD domain, where data from the continuum solver is received and
applied to the MD system as a boundary condition, using momentum imposition
and particle insertion algorithms, for details see [6]. On the inner MD domain
consisting of 18×18×18 cells, quantities are sampled from MD for transfer to the
continuum solver. The goal of the ML model developed in Section 3 is to predict
a future filtered state of these quantities in the inner MD domain, excluding the
overlap region, while given as input a noisy state from past coupling time steps of
the entire domain, including the overlap region. This means that the ML model
can access the data that is or would be transferred from the continuum solver to
MD, and in turn tries to replace both, MD simulation and noise filters, in order
to forecast the data that would finally be transferred back to the continuum
solver one coupling cycle later.

Our data stems from 20 KVS and 21 Couette flow MaMiCo simulations.
To generate this amount of data, we vary three parameters and choose seven
Couette wall velocities at three MD positions, and five KVS init-times at four
MD positions. For example, a KVS dataset where the coupling starts after 22000
LBM steps and the MD domain is placed north-west of the KVS center is labeled
as ‘22000_NW’ (compare Fig. 6). The most important parameters defining the
simulations in this paper are: 175616 molecules per instance, density ρ ≈ 0.813,
Lennard-Jones parameters σLJ = ϵLJ = 1, cutoff radius rcutoff = 2.5, temper-
ature T = 1.1, yielding a kinematic viscosity ν ≈ 2.63, given in dimensionless
MD units (see [6]). In the KVS scenario, we couple with 50 MD steps per cycle
to a D3Q19-TRT LBM on 12580620 LB cells, and place the center of MD at
50% × 73.2% × 50% of domain size in 3D-2Q setup, plus small variations. All
of this yields a data size of 12.2 GB (in binary format), we split it into 80%
training and 20% validation data sets. More detailed information generating the
datasets can be accessed online1.

3 Convolutional Recurrent Autoencoder

In this section, we introduce our ML model developed to make time-series pre-
dictions of microscale flow velocity distributions. Designing such a model must
reflect the spatial and temporal dependencies in the underlying physics [4, 22].

1 https://github.com/HSU-HPC/MaMiCo_hybrid_ml
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Advances in computer vision have shown that spatially correlated data, such as
images or volumes, are best dealt with CNNs [10]. Advances in machine transla-
tion and speech recognition have shown that sequentially correlated data such as
language can be modeled with RNNs [24]. Our models follow a hybrid approach
combining their advantages. Our experiments have shown that in this MD data
context, a classical AE performs better than a model based on the U-Net archi-
tecture [16]. Thus, in the following we focus on a concept similar to the approach
presented by Nakamura et al. [12].

3.1 Convolutional Autoencoder (AE)

Fig. 2. Schematic of a single CNN AE as used for the triple model approach.

A convolutional AE is a type of CNN that consists of an encoding and a
decoding path, as shown in Fig 2. It aims to learn a dense comprehensive rep-
resentation of the input. The sizes of our datasets make RNN approaches im-
practical, thus we use an AE to encode lower-dimensional representations of the
input, called latent space [12]. Let U be the velocity distribution input data and
h(U) describe the encoding function. The encoding function h(U) maps the in-
put data U to a latent space representation L̂, using convolutional and pooling
layers such that

h(U) = L̂ = σ(WhU + bh) . (1)

Here, Wh and bh are the weights and biases of the encoding function, and
σ is a non-linear activation function, such as ReLU. The decoding function g(L̂)
maps L̂ back to the original input space Û using transposed convolutional and
upsampling layers such that

g(L̂) = Û = σ(WgL̂ + bg) . (2)

Here Wg and bg are the weights and biases of the decoding function. The AE
is trained by minimizing a reconstruction loss function L(U, Û) which measures
the difference between the original input U and the reconstructed input Û. The
models used in this paper follow a single or triple model approach. The former
uses a single AE to operate on the entire velocity distribution U while the triple
model uses three identical instances of an AE designed to operate on a single
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velocity channel Ui. For each AE, in the encoding path, the first three horizontal
groups apply a DoubleConv layer consisting of two ReLU-activated 3 × 3 same
convolutions followed by a MaxPool layer consisting of a 2×2 max pooling opera-
tor. This operator halves each spatial dimension. Next, a DownHelper consisting
of a ReLU-activated 2 × 2 valid convolution is applied in order to further reduce
dimensionality. Finally, another DoubleConv layer is applied thereby yielding the
latent space L̂i. In the decoding path, L̂i is first passed to an UpHelper1 con-
sisting of a 2 × 2 deconvolution. Next, a Deconvolution tailored to double the
spatial dimensions followed by a DoubleConv is applied. This is repeated until
the input spatial dimensionality is restored. Finally, an UpHelper2 consisting of
a 3 × 3 same convolution tailored to a single channel output is applied. When
the output of the AE is used in the hybrid model, only the inner 3 × 183 values
are selected and passed on towards the continuum solver, since they correspond
to the inner MD cells excluding the overlap layers.

3.2 Recurrent Neural Network

Fig. 3. Schematic of one unrolled RNN as used for the time-series prediction of mi-
croscale fluid flow latent spaces.

We account for the temporal dependency via an RNN with a hidden state
as depicted in Fig 3. The hidden state at a given time step is a function of the
hidden state of the previous step and the input of the current step. With this,
the hidden state is able to preserve historical information from previous time
steps of the sequence. Let Ht be the hidden state at time t, given as [25]

Ht = σ(L̂tWxh + Ht−1Whh + bhh) . (3)

Here, Wxh are the input weights, Whh are the hidden state weights and bhh

are the biases. The RNN latent space output L̂t+1 is then the output of a fully
connected layer such that

L̂t+1 = HtWhq + bqq . (4)

Whq and bqq are output weights and biases. A single or triple AE requires a
similar RNN approach. This means one RNN operates on L̂ in a single model,
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while the triple model requires three RNNs to each operate on one component
L̂i. Fig. 3 depicts such an RNN that is a component of a triple model.

3.3 Hybrid Model

Fig. 4. Schematic of the convolutional recurrent autoencoder as employed in the triple
model approach for the task of time-series prediction of cell-wise averaged fluid flow
velocities.

Our two hybrid model architectures combine the single and triple model
convolutional AEs and RNNs. Figure 4 depicts the hybrid triple model where the
input Ut corresponds to the multichannel volume at t. The input channels Ut

i are
separated and propagate independently of each other through the network. First,
the AE determines the corresponding latent space representations L̂t

i. This is
then passed to the RNN to predict the corresponding latent space representations
of the next time step L̂t+1

i . Next, the predicted latent spaces are passed back to
the AE thereby predicting the single channel velocity distributions Ût+1

i for t+1.
Combining all the Ût+1

i yields the multichannel velocity distributions Ût+1 at
t + 1. Note that since the flow physics is invariant to rotations, the three models
are the same. The hybrid single model works in the same way, except that it
does not separate the input channels.

4 Implementation and Training Approach

We implement the convolutional recurrent hybrid model for MaMiCo using the
open-source machine learning framework PyTorch2. PyTorch offers CUDA sup-
port for GPU-based deep learning. In the following we briefly describe our train-
ing approaches for the AE and the RNN. As [12, 22] show, they can be trained
separately. Both the single and triple model approaches require to first train the
AE by itself. After having successfully trained the AEs, the latent spaces can be
generated from the original datasets. Then the RNN can be trained on them.
The RNN must be trained on the same AE it is actually used with, i.e. if the AE
ever changes, then the RNN has to be trained again. For brevity, the training
configurations and hyper-parameters are presented in Table 1. As listed there,
2 https://pytorch.org/docs/stable/index.html
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we apply the single model to the Couette scenario and the triple model to the
KVS scenario, because only the KVS dataset shows a multidimensional transient
flow.

Table 1. Training Configurations

Conv. AE RNN
Model Single Triple Single Triple
Dataset Couette KVS Couette KVS
Loss, Activ. Fn. MAE, ReLU MAE, ReLU MAE, tanh MAE, tanh
Optimizer opt.Adam opt.Adam opt.Adam opt.Adam
Batch Size 32 32 32 32
Epochs, Learn. Rate 250, 1e-4 100, 1e-4 250, 1e-4 15, 1e-4
#Layers, Seq. Size - - 1, 25 1, 25
Shuffled, Augmented True, False True, True True, False True, True

Convolutional Autoencoder (AE) The triple models are trained with
augmented versions of the velocity resulting from swapping the channels of
the original datasets, i.e. the permutations (U0, U1, U2) and (U1, U2, U0) and
(U2, U0, U1) are used. This is done so that the models are encouraged to learn
a more general mapping by means of a greater variance in the inputs.

RNN The RNN takes a sequence of the past 25 latent spaces [L̂t−24, . . . , L̂t]
and performs the time-series prediction to yield an estimate for L̂t+1. We choose
a sequence length of 25 here, because in our experiments that performed best at
minimizing validation loss, e.g. it was 34% better compared to a sequence length
of 15 latent spaces. A range of about 10-50 is generally reasonable because it
should be long compared to the frequency of fluctuations in MD data, but short
compared to simulation run time.

In contrast to more common approaches where model prediction is sanc-
tioned by means of loss quantification w.r.t. to the model target output, i.e.
L(L̂t+1

i,targ , L̂t+1
i,pred), we implement a loss quantification in the velocity space by

comparing the decoded latent space prediction to the target single channel ve-
locity distribution, i.e. L

(
Ut+1

i , g(L̂t+1
i,pred)

)
. This helps to train the RNN in such

a way that the combined hybrid model, including the CNN decoder, minimizes
the error in its predicted flow velocities.

5 Results – Couette Flow Scenario

In order to validate the relatively simple single model hybrid ML approach,
we choose a Couette flow start-up test scenario as defined in [6]. There is no
macroscopic flow in Y and Z directions, thus we focus on the direction of the
moving wall, i.e. the X component of the velocity ux, which is shown in Figure 5
over 850 simulation time steps, i.e. excluding a 50 step initialization phase. Figure
5a averages ux over a line of cells and displays its standard deviation over these
cells as a lighter shaded area, while Figure 5b shows the value for one cell only,
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(a) Flow velocity ux over time in a line
of 24 cells through MD domain

(b) Flow velocity ux over time in one cell
centered in MD domain

Fig. 5. Comparison of CNN+RNN hybrid ML model predictions in orange with raw
MD data in blue for x-component of flow velocity ux in Couette flow scenario.

which is in the center of the MD domain. It can be observed that the raw MD
data exhibits a high level of random noise, caused by thermal fluctuations. Here
we investigate the noise filtering properties of the ML model. In Fig. 5a one can
notice that the standard deviation of the ML output grows slightly over time
(i.e. the orange shaded area gets wider). However, it can be seen in both Fig. 5a
and 5b that the hybrid ML predictions constitute a very stable noiseless signal,
that are in good agreement with the mean flow displayed by the fluctuating
MD data. Note that the ML model was not trained with information from a
continuum flow solver, and also not with any noise filtering algorithm, instead
it was trained on noisy raw MD data only (test case ‘C_1_5_M’ in the online
repository). The filtering effect seen in Figure 5 is obtained in space due to the
dimensionality reduction into the latent space of the CNN AE and in time due
to the application of the RNN (shown separately below, see Fig. 6 and 7), thus
the desired filtering effect is already designed into the architecture of the hybrid
model.

6 Results – Kármán Vortex Street Scenario

To predict more complex flow patterns, we set up a vortex street scenario (KVS).
It exhibits multidimensional non-steady signals in each of the flow velocity com-
ponents, so that the ML performance can be investigated adequately. Figure
6 compares the ML predictions with raw MD data, for one of the cells in the
center of the MD domain. Both Figures 6 and 7 evaluate the ML models on
test cases from the validation set, i.e. on data on which they have not been
trained. Fig. 6 shows the performance of the AE only, i.e. the result of en- and
decoding MD data. This aims to help the reader distinguish the CNN and the
RNN impacts on the hybrid model behavior. It can be seen in Fig. 6 that the
AE is able to represent all information necessary to capture and preserve the
mean flow characteristics, while it does not preserve spatial noise present in the
MD data (i.e. visually that the orange curve follows only a sliding mean of the
blue curve). However, it can also be seen that the raw AE output is more noisy
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Fig. 6. AE vs. MD, KVS validation ‘22000_NW’, for one cell in MD domain center

than the hybrid model data (i.e. orange curve less smooth than in Fig. 7), as the
temporal smoothing and prediction coming from the RNN is missing here.

In contrast to that, Fig. 7 shows the CNN+RNN hybrid ML model. For the
orange curve, MD data is used as ML input, similar to Fig. 5, a filtering effect
is obtained. But for the green curve, the hybrid ML model is used standalone,
without any MD input data. The ML input is zero-initialized. The effect of this
can be seen for small values of t in Fig. 7, where the green curve starts close
to zero. Then the ML model is applied recursively, so that all of its inputs for
inner MD cells are its own previous outputs. For the overlap cell region, the
ML input is coming from the continuum solver, meaning that the ML model
receives the same information as a coupled MD. Note that we plot a cell in
the domain center, far away from this overlap region, so that it is not directly
influenced by continuum data. Instead the plot shows the time evolution of the
ML data during a long series of recursive evaluations. This is very different from
the MD+ML case (orange curve) where the ML model gets real MD input data
in every time step and performs a prediction for only one step into the future.
Since no MD data is fed into the ML model here, there is less confidence that
the model will stick to physical MD behavior, especially over longer time spans.
However, except of just two small offsets for uy around t = 250 and t = 550,
it is still in an excellent agreement with the correct particle data, revealing the
prediction capabilities of the hybrid model.

To give more details about the computational performance of these surrogate
model predictions, compared to the original full-scale MD: the AE training in
this case took ten hours on a single NVIDIA A100 GPU, the RNN training one
hour, yielding eleven hours in total for the hybrid model training. The evaluation
of the trained model in our experiments on an Intel Xeon 8360Y CPU costs
81.7 ms, while running the MD model sequentially on the same CPU requires
about 19 200 ms per coupling cycle.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_42

https://dx.doi.org/10.1007/978-3-031-36027-5_42
https://dx.doi.org/10.1007/978-3-031-36027-5_42


12 P. Jarmatz et al.

Fig. 7. Raw MD vs. CNN+RNN hybrid ML model performance with and without MD
input data, KVS validation case ‘20000_NE’, for one cell in center of MD domain

Figure 8 presents the same insights as Fig. 7, but in a greater level of de-
tail. It shows the same test case, i.e. flow data on which the ML models have
not been trained. Here, instead of only one cell, a line of 24 cells in the MD
domain is plotted, with a shaded area representing the standard deviations and
a continuous line representing the average values of the respective flow velocity
components. It is visible that both the MD+ML as well as the ML-only approach
deliver results matching the true particle data – except the aforementioned shift
in uy for ML-only, which is however clearly inside the standard deviation of the
real MD data. Thus, this can be considered to be an excellent prediction result
for a very noisy and challenging complex validation data set.

7 Conclusions

We have pointed out that a hybrid convolutional recurrent autoencoder is a
promising approach to learn and predict molecular dynamics data in the con-
text of a molecular-continuum coupled simulation, in order to explore potentials
for acceleration of simulation execution. To make our results reproducible, we
provided an implementation of the proposed approach based on PyTorch and
documented the dataset generation and training processes. Unlike existing ap-
proaches, we have introduced a type of loss function for the RNN training that
quantifies loss in the velocity space, instead of in the latent space, leading to
an enhanced integration of the hybrid model components. We solved problems
caused by interdependent flow components by introducing a triple model ap-
proach. Our results demonstrate that the hybrid CNN+RNN ML model does
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Fig. 8. Comparison of hybrid ML model performance with raw MD data in validation
case 20000_NE, average and standard deviation of velocity for all cells in MD domain.
Note that high ML output standard deviation here does not mean that the data is
noisy, but that flow velocity varies over space for different cells, see also Fig. 1.

not only work as a powerful advanced noise filtering system, but even in a com-
plex flow scenario, it is able to replace the MD system entirely and accurately
predict the data that MD would generate for the coupled simulation.

We have considered one-way coupled simulations only. This was reasonable
here because we wanted be able to analyze the behavior of the MD system and
our ML model operating on particle data, or even analyze the ML module en-
tirely replacing the particle system, independent of any additional effects which
would stem from two-way coupling of the two systems. Thus, the impacts and
limitations of the ML model in a two-way coupled setup constitute an open
question for the future. While we have applied our approach to MD only, we
expect it to naturally generalize to other types of particle systems, such as dis-
sipative particle dynamics or smoothed particle hydrodynamics. They tend to
expose the macroscopic solver to less noise and thus facilitate AE and RNN
training, however their reduced computational cost makes it more difficult to
obtain a significant performance benefit with a ML surrogate model. While we
have shown that our ML model opens chances for drastic increases of computa-
tional efficiency, a further systematic investigation of the speed-ups achievable
in practice by this method, including scaling to large-scale simulations on HPC
clusters, would be essential. The fact that it can be expensive to re-initialise a
MD simulation, after skipping some time steps, might play a crucial role here.
So far the hybrid model was only tested for ‘toy’ scenarios where the average
behavior of the MD system can be modeled by a macroscopic solver stand-alone.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_42

https://dx.doi.org/10.1007/978-3-031-36027-5_42
https://dx.doi.org/10.1007/978-3-031-36027-5_42


14 P. Jarmatz et al.

Thus, future work suggesting itself would be to conduct experiments with scenar-
ios where the MD simulation actually provides differing physical characteristics,
such as fluid-structure interaction or flows through carbon nanotube membranes.
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