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Abstract. The two-dimensional scattered data interpolation problem
is investigated. In contrast to the traditional Method of Radial Basis
Functions, the interpolation problem is converted to a higher order (bi-
harmonic or modi�ed bi-Helmholtz) partial di�erential equation supplied
with usual boundary conditions as well as pointwise interpolation con-
ditions. To solve this fourth-order problem, the Method of Fundamental
Solutions is used. The source points, which are needed in the method,
are located partly in the exterior of the domain of the corresponding
partial di�erential equation and partly in the interpolation points. This
results in a linear system with possibly large and fully populated ma-
trix. To make the computations more e�cient, a localization technique
is applied, which splits the original problem into a sequence of local prob-
lems. The system of local equations is solved in an iterative way, which
mimics the classical overlapping Schwarz method. Thus, the problem of
large and ill-conditioned matrices is completely avoided. The method is
illustrated via a numerical example.

Keywords: Scattered data interpolation · Method of Fundamental So-
lutions · Localization.

1 Introduction

The scattered data interpolation problem is a relatively new mathematical prob-
lem which goes back to the pioneering work of Shepard [11]. His method was
based on weighted averages, the weights of which are inversely proportional to
some powers of the distances between the interpolation points and the point in
which the interpolation function is to be evaluated. Later, a much more powerful
family of methods was developed, the method of Radial Basis Functions (RBFs),
see e.g. [6], [2]. Here the interpolation function is sought in the following form:

u(x) :=

N∑
j=1

αj · Φ(x− xj), (1)

where Φ is a prede�ned radial (i.e., circularly symmetric) function, x1, x2, ..., xN

are prede�ned interpolation points scattered in the plane R2 without having
any grid or mesh structure, x ∈ R2 is an evaluation point. The method can be
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2 C. Gáspár

de�ned for higher dimensional interpolation problems in a similar way: here we
restrict ourselves to 2D problems.

The a priori unknown coe�cients α1, α2, ..., αN can be determined by enforc-
ing the interpolation conditions:

N∑
j=1

αj · Φ(xk − xj) = uk, k = 1, 2, ..., N, (2)

where the prede�ned values u1, u2, ..., uN are associated to the interpolation
points x1, x2, ..., xN .

For the RBF Φ, several choices have been proposed. Some popular techniques
are as follows (written in polar coordinates, for the sake of simplicity):

� Multiquadrics: Φ(r) :=
√
c2 + r2;

� Inverse multiquadrics: Φ(r) := 1√
c2+r2

;

� Thin plate splines: Φ(r) := r2 · log(r);
� Polyharmonic splines: Φ(r) := r2k · log(r) (where k is a prede�ned positive

integer);

� Gauss functions: Φ(r) := e−c2·r2 ;

and so forth (in the above formulations, c denotes a prede�ned scaling constant).
The above radial basis functions are globally supported, therefore the matrix of
the system (2) is fully populated and sometimes severely ill-conditioned, which
may cause computational di�culties, especially when the number of the inter-
polation points is large.

To overcome this di�culty, several methods have been developed. One of
them is the use of compactly supported radial basis functions (Wendland func-
tions, see e.g. [13]). Thus, the matrix of the system (2) becomes sparse, which is
advantageous from computational point of view.

Another technique is a generalization of the concept of the thin plate splines.
Utilizing the fact that the radial basis function of the thin plate spline Φ(r) =
r2 · log(r) is biharmonic (except for the origin), the interpolation problem can
be converted to a problem de�ned for the biharmonic equation supplied with
some usual boundary conditions along the boundary and also with the interpo-
lation conditions at the interpolation points. Thus, instead of a scattered data
interpolation problem, a fourth-order partial di�erential equation is to be solved
(supplied with some unusual conditions, i.e. pointwise interpolation conditions).

In its original form, the resulting biharmonic problem is solved by a �nite vol-
ume method. The cell system which the �nite volume method is performed on,
is preferably de�ned by a quadtree subdivision algorithm, which automatically
generates local re�nements in the vicinity of the interpolation points. The so-
lution procedure can be embedded in a natural multi-level context. This makes
the method quite economic from computational point of view. Note that the
above biharmonic equation can be replaced with more general fourth-order par-
tial di�erential equations e.g. the modi�ed Helmholtz equation. See [3] for details.
However, the method can be considered a 'quasi-meshfree' method only, though
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Biharmonic scattered data interpolation based on the MFS 3

the construction of cell system as well as the solution process are completely
controlled by the interpolation points.

In this paper, the above outlined strategy based on the solution of a bihar-
monic equation is connected with a truly meshless method, namely, the Method
of Fundamental Solutions (MFS), see [5]. This method results in a linear sys-
tem of equations with a fully populated (but often ill-conditioned) matrix. The
approach has been applied to biharmonic equations as well, see [10]. The compu-
tational di�culties can be reduced by introducing localization techniques which
convert the original problem to a set of smaller problems. See e.g. [1], [12].

In the following, the MFS-based solution technique is generalized to the bi-
harmonic interpolation problem using a special localization method which is
based on the traditional Schwarz alternating method. This results in a special
iterative method and splits the original problem into several local (and much
less) subproblems. The method is illustrated through a simple example.

2 Biharmonic interpolation

The main idea of this type of interpolation is to convert original interpolation
problem to a higher order partial di�erential equation supplied with the inter-
polation conditions as special pointwise boundary conditions. For second-order
partial di�erential equations, this results in an ill-posed problem, but for fourth-
order equations, this does not remain the case.

Let Ω ⊂ R2 be a two-dimensional, bounded and su�ciently smooth do-
main, and let x1, x2, ..., xN ∈ Ω be prede�ned interpolation points. Denote by
u1, u2, ..., uN ∈ R the values associated to the interpolation points. The bihar-
monic interpolation function u is expected to satisfy the biharmonic equation in
the domain Ω except for the interpolation points:

∆∆u = 0, in Ω \ {x1, x2, ..., xN}, (3)

where ∆ denotes the Laplace operator. Along the boundary Γ := ∂Ω, some
usual boundary condition can be prescribed, e.g. Dirichlet boundary condition:

u|Γ = u0,
∂u

∂n
|Γ = v0, (4)

or Navier boundary condition:

u|Γ = u0, ∆u|Γ = w0, (5)

where u0, v0, w0 are prede�ned, su�ciently regular boundary functions. At the
interpolation points, the interpolation conditions

u(xk) = uk, k = 1, 2, ..., N, (6)

are prescribed.
It is known that in spite of the pointwise de�ned interpolation conditions,

the problem (3)�(6) has a unique solution in a closed subspace of the Sobolev
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4 C. Gáspár

space H2(Ω). See [3] for details. Note that the interpolation conditions de�ned
in discrete points do not make the problem ill-posed due to the fact that the
Dirac functionals u → u(xk) are continuous in the Sobolev space H2(Ω) (but not
in H1(Ω), which is the usual basis of second-order elliptic boundary value prob-
lems). It should be pointed out that the biharmonic equation (3) can be replaced
with other fourth-order di�erential equations e.g. the modi�ed bi-Helmholtz
equation:

(∆− c2I)2u = 0, in Ω \ {x1, x2, ..., xN}, (7)

where I denotes the identity operator and c is a prede�ned constant which plays
some scaling role.

The above idea converts the original interpolation problem into the solution
of a (fourth-order) partial di�erential equation which seems to be much more
di�cult from computational point of view. However, if this partial di�erential
equation is solved by a computationally e�cient method, e.g. on a non-uniform,
non-equidistant cell system using �nite volume schemes and multi-level tech-
niques, the necessary computational cost can signi�cantly be reduced. Such a
non-equidistant, non-uniform cell system can be created by the help of the well-
known quadtree algorithm controlled by the interpolation points. The algorithm
results in local re�nements in the vicinity of the interpolation points and makes
it possible to build up a multi-level solution technique in a natural way. For de-
tails, see [3], [4] . Nevertheless, the accuracy of the above �nite volume schemes
is moderate. Moreover, the evaluation points of the interpolation function are
�xed to be the cell centers. In this paper, another solution technique is presented,
which is based on the Method of Fundamental Solutions.

3 The Method of Fundamental Solutions applied to the

biharmonic interpolation problem

First, let us brie�y recall the main concepts and ideas of the Method of Funda-
mental Solutions. For details, see e.g. [5].

The Method of Fundamental Solutions (MFS) is now a quite popular method
for solving partial di�erential equations. It is truly meshless, i.e. it requires nei-
ther domain nor boundary grid or mesh structure. If the di�erential equation
has the form

Lu = 0, in Ω,

where L is a linear partial di�erential operator, and Φ denotes a fundamental
solution of the operator L, then the MFS produces the approximate solution in
the following form:

u(x) =

M∑
j=1

αj · Φ(x− sj),

where s1, s2, ..., sM are prede�ned source points in the exterior of Ω. The a priori
unknown coe�cients α1, α2, ..., αM can be computed by enforcing the boundary
conditions in some prede�ned x1, x2, ..., xN boundary collocation points. In the
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Biharmonic scattered data interpolation based on the MFS 5

simplest case, when L is of second order and Dirichlet boundary condition is
prescribed, this results in the following linear system of algebraic equations:

M∑
j=1

αj · Φ(xk − sj) = u(xk), k = 1, 2, ..., N.

Recently, the approach has been generalized also to inhomogeneous problems,
see e.g. [14], and also for more general equations, see [8].

In the case of the biharmonic equation

∆∆u = 0, (8)

the MFS de�nes the approximate solution in the following form [10]:

u(x) :=

M∑
j=1

αj · Φ(x− sj) +

M∑
j=1

βj · Ψ(x− sj). (9)

Here s1, s2, ..., sM are again exterior source points. Φ denotes the following har-
monic fundamental solution:

Φ(x) :=
1

2π
log ||x||,

and Ψ denotes the following biharmonic fundamental solution:

Ψ(x) :=
1

8π
||x||2 log ||x|| − 1

8π
||x||2

(the symbol || · || denotes the usual Euclidean norm in R2).
The above de�nitions imply that ∆Ψ = Φ. This will simplify the later calcu-

lations.
Suppose, for simplicity, that the biharmonic equation (8) is supplied with

Navier boundary condition:

u|Γ = u0, ∆u|Γ = w0. (10)

Then the coe�cients α1, ..., αM , β1, ..., βM can be calculated by enforcing the
boundary conditions. Utilizing the equality ∆Ψ = Φ, this results in the following
linear system of equations:

M∑
j=1

αj · Φ(xk − sj) +

M∑
j=1

βj · Ψ(xk − sj) = u0(xk), k = 1, 2, ..., N,

M∑
j=1

βj · Φ(xk − sj) = w0(xk), k = 1, 2, ..., N,

(11)

where x1, x2, ..., xN ∈ Γ are prede�ned boundary collocation points. In gen-
eral, the numbers N and M need not be equal. If they di�er, then the system
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6 C. Gáspár

(11) should be solved e.g. in the sense of least squares. (11) is often overdeter-
mined, i.e., the number of collocation points is (much) greater than the number
of sources. Even if N = M , the above system of equations may be severely ill-
conditioned, especially when the sources are located far from the boundary of
the domain Ω. Moreover, the matrix of the system is fully populated. There-
fore, the practical implementation of the method may often be di�cult from
computational point of view.

3.1 Solution of the biharmonic problem by overlapping Schwarz

method

To circumvent the above mentioned computational problems, the traditional
Schwarz overlapping method [7] is applied. Such a method splits the original
problem into several smaller ones. It was originally de�ned for second-order
partial di�erential equations, however, the idea can easily be generalized for our
biharmonic problem. For the sake of simplicity, assume that Ω is a rectangle,
Ω = Ω1 ∪ Ω2, where Ω1 = (−π + h, h) × (0, π), Ω2 = (−h, π − h) × (0, π).
The prede�ned value 0 < h < π/2 characterizes the overlap, see Fig. (1). This
situation is a strong overlap, i.e. the distance of Γ1 and Γ2 is positive (= 2h),
where Γ1 := ∂Ω1 ∩Ω2, and Γ2 := ∂Ω2 ∩Ω1.

Fig. 1. Strongly overlapping subdomains. The distance of Γ1 and Γ2 is positive.

First, consider the pure biharmonic problem supplied with Navier boundary
conditions but without interpolation conditions:

∆∆u = 0, in Ω,
u|Γ = u0, ∆u|Γ = w0.

(12)

The Schwarz overlapping method approximates the solution with the following
sequence of functions. Starting from a function u1, for which u1 ∈ H2(Ω), ∆u1 ∈
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Biharmonic scattered data interpolation based on the MFS 7

H1(Ω), de�ne the sequence of the following subproblems for n = 1, 2, ... :

∆∆un+1/2 = 0, in Ω1,
un+1/2|∂Ω1\Γ1

= u0|∂Ω1\Γ1
, ∆un+1/2|∂Ω1\Γ1

= w0|∂Ω1\Γ1
,

un+1/2|Γ1
= un|Γ1

, ∆un+1/2|Γ1
= ∆un|Γ1

,
(13)

∆∆un+1 = 0, in Ω2,
un+1|∂Ω2\Γ2

= u0|∂Ω2\Γ2
, ∆un+1|∂Ω2\Γ2

= w0|∂Ω2\Γ2
,

un+1|Γ2
= un+1/2|Γ2

, ∆un+1|Γ2
= ∆un+1/2|Γ2

.
(14)

Now we will prove that the above de�ned Schwarz sequence converges to the
exact solution u∗. Denote by en, en+1/2 the corresponding errors: en := un − u∗

(in Ω2) and en+1/2 := un+1/2 − u∗ (in Ω1). Then, obviously, the error functions
satisfy the following biharmonic problems:

∆∆en+1/2 = 0, in Ω1,
en+1/2|∂Ω1\Γ1

= 0, ∆en+1/2|∂Ω1\Γ1
= 0,

en+1/2|Γ1
= en|Γ1

, ∆en+1/2|Γ1
= ∆en|Γ1

,
(15)

∆∆en+1 = 0, in Ω2,
en+1|∂Ω2\Γ2

= 0, ∆en+1|∂Ω2\Γ2
= 0,

en+1|Γ2
= en+1/2|Γ2

, ∆en+1|Γ2
= ∆en+1/2|Γ2

.
(16)

Now express en|Γ1
and ∆en|Γ1

in terms of trigonometric Fourier series (with
respect to the variable y). Due to the boundary conditions along the horizon-
tal sides, it is su�cient to use sinusoidal Fourier series. Using the traditional
notations x, y for the spatial variables, we have:

en|Γ1
= en(h, y) =

∞∑
k=1

α
(n)
k sin ky, ∆en|Γ1

= ∆en(h, y) =

∞∑
k=1

β
(n)
k sin ky. (17)

Straightforward calculations show that, in Ω1, the solution en+1/2 has the form:

en+1/2(x, y) =

∞∑
k=1

(
A

(n+1/2)
k sinh k(x+ π − h)+

+B
(n+1/2)
k (x+ π − h) cosh k(x+ π − h)

)
sin ky

(18)

with some coe�cients A
(n+1/2)
k , B

(n+1/2)
k . Indeed, one can easily check that each

term in the Fourier series (as a function of x and y) is biharmonic. Moreover:

∆en+1/2(x, y) =

∞∑
k=1

2kB
(n+1/2)
k sinh k(x+ π − h) sin ky, (19)

therefore both en+1/2 and ∆en+1/2 vanish along ∂Ω1 \ Γ1.
The equalities

en+1/2|Γ1
= en|Γ1

, ∆en+1/2|Γ1
= ∆en|Γ1
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8 C. Gáspár

imply that the vectors of coe�cients

(
A

(n+1/2)
k

B
(n+1/2)
k

)
satisfy the systems of equa-

tions: (
sinh kπ π cosh kπ

0 2k sinh kπ

)(
A

(n+1/2)
k

B
(n+1/2)
k

)
=

(
α
(n)
k

β
(n)
k

)
.

Now the traces of en+1/2 and ∆en+1/2 along Γ2 can be calculated without di�-
culty:

en+1/2|Γ2 = en+1/2(−h, y) =

∞∑
k=1

(
A

(n+1/2)
k sinh k(π − 2h)+

+B
(n+1/2)
k (π − 2h) cosh k(π − 2h)

)
sin ky =:

=:
∞∑
k=1

α
(n+1/2)
k sin ky,

(20)

∆en+1/2|Γ2
= ∆en+1/2(−h, y) =

∞∑
k=1

2kB
(n+1/2)
k sinh k(π − 2h) sin ky =:

=:

∞∑
k=1

β
(n+1/2)
k sin ky.

(21)

That is, the vectors of the Fourier coe�cients

(
α
(n+1/2)
k

β
(n+1/2)
k

)
can be expressed

with the help of

(
α
(n)
k

β
(n)
k

)
as follows:

(
α
(n+1/2)
k

β
(n+1/2)
k

)
=

(
sinh k(π − 2h) (π − 2h) cosh k(π − 2h)

0 2k sinh k(π − 2h)

)(
A

(n+1/2)
k

B
(n+1/2)
k

)
=

=

(
sinh k(π − 2h) (π − 2h) cosh k(π − 2h)

0 2k sinh k(π − 2h)

)(
sinh kπ π cosh kπ

0 2k sinh kπ

)−1
(
α
(n)
k

β
(n)
k

)
.

In a quite similar way, the error function en+1 can be expressed in Ω2 as:

en+1(x, y) =

∞∑
k=1

(
A

(n+1)
k sinh k(x− π + h)+ (22)

+B
(n+1)
k (x− π + h) cosh k(x− π + h)

)
sin ky

with some coe�cients A
(n+1)
k , B

(n+1)
k . Moreover:

∆en+1(x, y) =

∞∑
k=1

2kB
(n+1)
k sinh k(x− π + h) sin ky, (23)
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where the vectors of coe�cients

(
A

(n+1)
k

B
(n+1)
k

)
satisfy the systems of equations:

(
sinh k(−π) −π cosh k(−π)

0 2k sinh k(−π)

)(
A

(n+1)
k

B
(n+1)
k

)
=

(
α
(n+1/2)
k

β
(n+1/2)
k

)
.

Calculating the traces of en+1 and ∆en+1 along Γ1, we obtain:

en+1|Γ1 = en+1(h, y) =

∞∑
k=1

(
A

(n+1)
k sinh k(2h− π)+

+B
(n+1)
k (2h− π) cosh k(2h− π)

)
sin ky =:

=:

∞∑
k=1

α
(n+1)
k sin ky,

(24)

∆en+1|Γ1
= ∆en+1(h, y) =

∞∑
k=1

2kB
(n+1)
k sinh k(2h− π) sin ky =:

=:

∞∑
k=1

β
(n+1)
k sin ky.

(25)

Consequently, the vectors of the Fourier coe�cients

(
α
(n+1)
k

β
(n+1)
k

)
can be expressed

with the help of

(
α
(n+1/2)
k

β
(n+1/2)
k

)
exactly in the same way than

(
α
(n+1/2)
k

β
(n+1/2)
k

)
with

the help of

(
α
(n)
k

β
(n)
k

)
. This implies that after a complete Schwarz iteration:

(
α
(n+1)
k

β
(n+1)
k

)
= M2

k

(
α
(n)
k

β
(n)
k

)
,

where

Mk =

(
sinh k(π − 2h) (π − 2h) cosh k(π − 2h)

0 2k sinh k(π − 2h)

)(
sinh kπ π cosh kπ

0 2k sinh kπ

)−1

.

Standard calculations show that(
sinh kπ π cosh kπ

0 2k sinh kπ

)−1

=

( 1
sinh kπ − π cosh kπ

2k(sinh kπ)2

0 1
2k sinh kπ

)
.

Consequently, Mk is an upper triangular matrix, and both diagonal entries are

equal to sinh k(π−2h)
sinh kπ . This implies that both eigenvalues of M2

k are equal to(
sinh k(π−2h)

sinh kπ

)2
. And since 0 < h < π

2 , these eigenvalues are less than 1, i.e., the

Schwarz iteration is convergent. Theorem is proven.
The above theorem can be generalized to the case when the number of sub-

domains is greater that 2. Details are omitted.
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3.2 Localization of the MFS for the biharmonic equation based on

overlapping Schwarz method

In practice, the idea of the overlapping Schwarz method can be used for creating a
special localization technique. Here we brie�y outline this method applied to the
biharmonic equation. For the localization of the biharmonic equation, without
Schwarz method, see e.g. [1], [12], [9].

Consider a point set S0 := {x1, x2, ..., xN} scattered in the domain Ω. Denote
by Sb the set of prede�ned boundary collocation points: Sb := {x̂1, x̂2, ..., x̂M},
and de�ne the set S := S0 ∪ Sb.

For a given central point x
(i)
0 ∈ S0, de�ne the circle centered at x

(i)
0 with the

prescribed radius R(i) (the local subdomains):

Ω(i) := {x ∈ R2 : ||x− x
(i)
0 || < R(i)}

De�ne the sets:

S
(i)
0 := S0 ∩Ω(i) = {x(i)

1 , ..., x
(i)

N
(i)
p

}, S
(i)
b := Sb ∩Ω(i) = {x̂(i)

1 , ..., x̂
(i)

N
(i)

b

}.

Note that the set S
(i)
b may be empty (when no boundary collocation points is

included in Ω(i), i.e. N
(i)
b = 0). See Fig (2) for illustration. The approximate

Fig. 2. Local subdomain and local points

solutions of the local problems are computed by utilizing the MFS in Ω(i). To

do this, de�ne some local source points s
(i)
1 , s

(i)
2 , ..., s

(i)

N
(i)
s

(e.g. along the perimeter

of a circle centered at x
(i)
0 with radius which is greater than R(i) (the de�nition

2R(i) is an acceptable value). For illustration, see Fig. (3). The numbers of local

sources can be kept at a common value, but N
(i)
s < N

(i)
p should be satis�ed. The

approximate local solution is expressed in the following form:

u(x) :=

N(i)
s∑

j=1

α
(i)
j Φ(x− s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x− s

(i)
j ), (26)
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Fig. 3. Local sources along a circle

with some a priori unknown coe�cients α
(i)
j , β

(i)
j , j = 1, 2, ..., N

(i)
s . The local

Navier boundary conditions are approximated by enforcing the following equal-

ities for all local points x
(i)
k , k = 1, 2, ..., N

(i)
p :

N(i)
s∑

j=1

α
(i)
j Φ(x

(i)
k − s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x

(i)
k − s

(i)
j ) = u

(i)
k := u(x

(i)
k ). (27)

If the local subdomain Ω(i) contains boundary collocation points, i.e. N
(i)
b > 0,

then the above equations are completed by the original boundary conditions:

N(i)
s∑

j=1

α
(i)
j Φ(x̂

(i)
k − s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x̂

(i)
k − s

(i)
j ) = u0(x̂

(i)
k ),

N(i)
s∑

j=1

β
(i)
j Φ(x̂

(i)
k − s

(i)
j ) = w0(x̂

(i)
k ),

(28)

where k = 1, 2, ..., N
(i)
b (since ∆Φ = 0, except for the origin, and ∆Ψ = Φ). The

system (27)�(28) is overdetermined, if 2N
(i)
s < N

(i)
p +2N

(i)
b , and should be solved

in the sense of least squares, i.e. by solving the corresponding Gaussian normal
equations. Since the local systems are typically small, they can be expected to
be only moderately ill-conditioned.

Having solved the ith local system, the approximate solution at the point

x
(i)
0 is updated by:

u(x
(i)
0 ) :=

N(i)
s∑

j=1

α
(i)
j Φ(x

(i)
0 − s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x

(i)
0 − s

(i)
j ), (29)

and the iteration should be continued for all local subdomains.
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3.3 Localized solution of the biharmonic interpolation problem

Let us return to the biharmonic interpolation problem. Denote by Sint the set
of prede�ned interpolation points: Sint := {x1, ..., xNint

} ⊂ Ω, which is assumed
to be disjoint of S. Denote by Uint the set of prede�ned values associated to
the interpolation points: Uint := {u1, ..., uNint} ⊂ Ω For a given central point

x
(i)
0 ∈ S0, collect the interpolation points contained in the local subdomain Ω(i):

S
(i)
int := Sint ∩Ω(i) = {x(i)

1 , ..., x
(i)

N
(i)
int

},

together with the values associated to these local interpolation

U
(i)
int := {u(i)

1 , ..., u
(i)

N
(i)
int

}.

Now the approximate local solution is expressed in the following form:

u(x) :=

N(i)
s∑

j=1

α
(i)
j Φ(x− s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x− s

(i)
j ) +

N
(i)
int∑

j=1

γ
(i)
j Ψ(x− x

(i)
j ) (30)

(the last sum plays the role of the thin plate splines).
Thus, the equalities to be enforced will be expanded as follows.

Collocation at the inner points x
(i)
k , k = 1, 2, ..., N

(i)
p :

N(i)
s∑

j=1

α
(i)
j Φ(x

(i)
k −s

(i)
j )+

N(i)
s∑

j=1

β
(i)
j Ψ(x

(i)
k −s

(i)
j )+

N
(i)
int∑

j=1

γ
(i)
j Ψ(x

(i)
k −x

(i)
j ) = u(x

(i)
k ). (31)

Collocation at the boundary collocation points x̂
(i)
k , k = 1, 2, ..., N

(i)
b :

N(i)
s∑

j=1

α
(i)
j Φ(x̂

(i)
k − s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x̂

(i)
k − s

(i)
j )+

+

N
(i)
int∑

j=1

γ
(i)
j Ψ(x̂

(i)
k − x̂

(i)
j ) = u0(x̂

(i)
k )

N(i)
s∑

j=1

β
(i)
j Φ(x̂

(i)
k − s

(i)
j ) +

N
(i)
int∑

j=1

γ
(i)
j Φ(x̂

(i)
k − x

(i)
j ) = w0(x̂

(i)
k ).

(32)

Collocation at the interpolation points x
(i)
k , k = 1, 2, ..., N

(i)
int:

N(i)
s∑

j=1

α
(i)
j Φ(x

(i)
k − s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x

(i)
k − s

(i)
j ) +

N
(i)
int∑

j=1

γ
(i)
j Ψ(x

(i)
k − x

(i)
j ) =

= u
(i)
k .

(33)
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The system (31)�(33) is overdetermined, if 2N
(i)
s < N

(i)
p + 2N

(i)
b , as earlier. It

should be solved in the sense of least squares, i.e. by solving the corresponding
Gaussian normal equations.

After solving the ith local system, the approximate solution at the point x
(i)
0

is updated by:

u(x
(i)
0 ) :=

:=

N(i)
s∑

j=1

α
(i)
j Φ(x

(i)
0 − s

(i)
j ) +

N(i)
s∑

j=1

β
(i)
j Ψ(x

(i)
0 − s

(i)
j ) +

N
(i)
int∑

j=1

γ
(i)
j Ψ(x

(i)
0 − x

(i)
j ),

(34)

and the iteration should be continued for all local subdomains.

4 A numerical example

To illustrate the method, suppose that the original domain Ω is the unit circle.
Let x1, ..., xNint

some interpolation points de�ned in Ω in a quasi-random way.
Let us associate the values uk (k = 1, 2, ..., Nint) to the interpolation points by
uk := u∗(xk), where the test function u∗ is de�ned by

u∗(x) := 1− ||x||2. (35)

Note that the test function (35) itself is biharmonic, and satis�es the following
boundary conditions along Γ :

u∗|Γ = u∗
0 = 0, ∆u∗|Γ = w∗

0 = −4. (36)

Therefore, it is expected that the test function can be reconstructed from its
values at the interpolation points more or less exactly, provided that the number
of scattered points as well as of interpolation points is large enough.

N := Np+Nint+Nb points were de�ned inΩ, whereNp := 4000 is the number
of the inner points, while Nint denotes the number of interpolation points. The
number of boundary collocation points Nb was set to Nb := 500. The inner and
the interpolation points were de�ned also in a quasi-random way. To de�ne the
local subdomains, the radii of the subdomains were set to 0.1. In each subdomain,
the number of local sources was set to the same constant denoted by Ns. Table
1 shows the discrete relative L2-errors of the approximation

relative L2-error :=

√√√√ N∑
j=1

(u(xj)− u∗(xj))
2

√√√√ N∑
j=1

(u∗(xj))
2

with respect to di�erent numbers of Ns and Nint.
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Table 1. The relative L2-errors with di�erent values of the numbers of local sources
(Ns) and the numbers of interpolation points (Nint).

Ns \Nint 250 500 1000 2000 4000

6 2.742E-3 1.964E-3 4.018E-4 1.902E-4 7.817E-5

8 1.861E-4 1.543E-4 7.558E-5 4.778E-5 1.159E-5

10 7.512E-5 1.858E-5 1.212E-5 7.193E-6 2.395E-6

12 5.649E-6 3.092E-6 1.899E-6 1.140E-6 5.217E-7

As it was expected, the relative errors decrease when the number of interpo-
lation points increases. The errors also decrease when the number of local sources
increases; note, however, that in this case, the computational cost also increases,
since the local systems become larger. It is anticipated that the computational
cost can be reduced by applying a simple multi-level technique.

5 Conclusions

A computational method for solving the 2D scattered data interpolation problem
has been proposed. The method converts the interpolation problem to a bihar-
monic equation supplied with some boundary conditions along the boundary
and pointwise interpolation conditions at the interpolation points. The Method
of Fundamental Solutions has been generalized to this special fourth-order prob-
lem. A localization technique based on the overlapping Schwarz iteration has
been also introduced. This results in an iterative algorithm; in each step, only a
local subproblem is to be solved, which makes the computation simpler. In ad-
dition to it, the problem of solving large linear systems with dense and possibly
ill-conditioned matrices is completely avoided.
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