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Abstract. Data generated by manufacturing processes can often be rep-
resented as a data stream. The main characteristics of these data are
that it is not possible to store all the data in memory, the data are gen-
erated continuously at high speeds, and it may evolve over time. These
characteristics of the data make it impossible to use ordinary machine
learning techniques. Specially crafted methods are necessary to deal with
these problems, which are capable of assimilation of new data and dy-
namic adjustment of the model. In this work, we consider a cold rolling
mill, which is one of the steps in steel strip manufacturing, and apply
data stream methods to predict distribution of rolling forces based on
the input process parameters. The model is then used for the purpose
of anomaly detection during online production. Three di�erent machine
learning scenarios are tested to determine an optimal solution that �ts
the characteristics of cold rolling. The results have shown that for our use
case the performance of the model trained o�ine deteriorates over time,
and additional learning is required after deployment. The best perfor-
mance was achieved when the batch learning model was re-trained using
a data bu�er upon concept drift detection. We plan to use the results
of this investigation as a starting point for future research, which will
involve more advanced learning methods and a broader scope in relation
to the cold rolling process.

Keywords: data streams · anomaly detection · cold rolling.

1 Introduction

Progressing digitalization of the industry has led to the production of enormous
amounts of data, which possesses many characteristics of data streams. These
data are generated in form of a continuous �ow of information from sensor read-
ings, which is produced with high speed and volume and is in�nite in nature, as
new data will be generated as long as the manufacturing process is in operation.
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In many cases, it is not possible to store all sensor readings and process them
in batch mode. This approach might be infeasible due to hardware or software
constraints. The manufacturing process may evolve over time (concept drift)
due to factors like wear of the asset, changes in production mix, or modi�cations
in the production process. Still, sensor data may give valuable insight into the
nature of the process and improve its performance by e.g., adapting the process
to new conditions or detecting anomalies in near real time. Therefore, it can be
very bene�cial for companies to use these data; however, its processing pipeline
should be well adjusted to the speci�c problem and take into account important
characteristics of the data.

Learning from data streams is a challenging task that involves dealing with
many data problems, i.e., inability to process all data at once, variations in
data distribution over time, class imbalance, delayed or inaccessible labels [13].
It often requires the assimilation of most recent data to adapt the model to
dynamically changing conditions. To build a robust machine learning model to
control the manufacturing process, all the mentioned factors must be carefully
analyzed and addressed.

In this work, we present our preliminary results on the machine learning
model that controls the steel cold rolling process and detects potential anoma-
lous measurements. Cold rolling is an important step in the steel manufacturing
process, where the thickness of the steel is reduced to reach the dimensions re-
quested by the client. One of the critical parameters of this process is the rolling
force, which should be carefully monitored to ensure the quality of the �nal prod-
uct [24]. To control the rolling forces, we propose a machine learning approach,
which learns the proper distribution of forces based on the given steel proper-
ties and rolling parameters. The main goal of the proposed solution is to detect
anomalies in the rolling force in real time. We exploit three di�erent scenarios
of the ML pipeline to handle the problem and evaluate them in terms of their
learning capabilities. Our baseline scenario assumes processing the small part of
the data in batch mode and evaluating its results on the rest of the data. In
the second scenario, we retrain the model in batch mode using a sliding window
every time a drift is detected. Finally, we use online ML models to learn from
the data continuously as each data point arrives. We also discuss and tackle
the problem of data imbalance, which is present in our dataset and is one of
the important concerns when learning from streaming data. To the best of our
knowledge, there is no paper dealing with the problem of anomaly detection in
cold rolling by using data stream learning techniques. One of the issues that
we discuss in this paper is the problem of distinction between anomalies and
concept drift that might occur in the data stream.

The rest of the paper is organized as follows. In Section 2 we brie�y discuss
state-of-the-art techniques for learning from data streams and provide details
on the cold rolling mill. In Section 3 we present the details of the proposed
anomaly detection model and the learning scenarios. In Section 4 we present
our preliminary results from the experiments carried out and discuss them. In
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Section 5 we conclude our �ndings and discuss the potential directions of future
research in this topic.

2 Related Works

2.1 Data Streams

Learning from data streams is a well-established problem in the �eld of machine
learning and has been a topic of many studies [10, 11]. The main requirements
for an ML model in streaming data setting that need to be faced include: (1) the
computation time and memory usage should be irrespective of the total number
of observed measurements, (2) the model should be able to learn by using each
observation only once, (3) the model should perform similarly to equivalent
model trained in batch setting, and (4) the model should be able to adapt to
any changes in the data distribution, but should not forget relevant information
from the past (catastrophic forgetting). In practice, many of these requirements
are di�cult to meet as some trade-o�s might occur. For example, increasing the
complexity of the model may allow to increase its accuracy but may deteriorate
its ability to learn in real-time. Models such as neural networks bene�t greatly
from making many passes (epochs) over the same chunk of data, so limiting
learning to a single pass over data will usually decrease their performance.

Many state-of-the-art machine learning models, e.g., XGBoost, Random For-
est, require access to the entire dataset for training. After the training has ended,
it is not possible to adjust the model to the new data while preserving some part
of the information learned earlier. To solve this problem, speci�c algorithms for
online learning, which can learn incrementally as new data arrive, were pro-
posed [12, 15]. On the other hand, ordinary ML algorithms can also be useful in
streaming data applications if we are able to store some part of data in memory
in the form of, e.g. sliding window.

Concept dirft is one of the biggest problems faced when dealing with stream-
ing data. Changes in data can be actual, when there occurs a change in the
decision boundaries, or virtual, when the decision boundary remains stable, but
the distribution of the data within each class changes [21]. Many concept drift
detection methods have been proposed, such as EDDM [2], ADWIN [3] to list
a few. They focus on observing the performance of the model and detecting the
point in time in which the model starts to deteriorate. This is an indication
that the current model no longer preserves its original accuracy and that some
adaptations are needed to recover the model.

The problem of data imbalance is well known and has been studied, especially
in batch learning [14]. However, in streaming data, it is particularly di�cult to
deal with class imbalance due to factors like dynamically changing distribution
of the data. The class imbalance may also a�ect the drift detection algorithms [6]
where, for example, the classi�er has a lower accuracy on rare examples. There
are several strategies to deal with imbalanced data. Oversampling strategies aim
to generate new samples from minority classes, while undersampling selects only
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some portion of the data from majority classes to achieve better data balance.
There exist also hybrid approaches, which combine the above mentioned strate-
gies.

2.2 Anomaly Detection

Anomaly detection methods aim to discover the outliers in a dataset, that do not
�t to the observed distribution and usually constitute a small fraction of the data.
In supervised learning scenarios, where each observation has an anomaly label
assigned, the problem can be described as a speci�c type of imbalanced learning
with binary classi�cation task. However, in practical applications, especially in
manufacturing processes, the data are usually generated without labels. In such
cases, it is not possible to use supervised learning techniques.

On the other hand, unsupervised learning methods are very robust in anomaly
detection tasks. There exist several well-studied techniques for anomaly detec-
tion based on tree or clustering algorithms, which also have their implementation
for online learning problems [25, 26]. Another approach to detect anomalies is
to train a regular ML model to learn the relationship between independent and
dependent variables and assume the error of the model as the anomaly level.

2.3 Cold Rolling Process

ArcelorMittal Poland is the largest steel producer in Poland, and its production
chain includes all relevant steps from the production of pig iron to the �nal
product in the form of a steel strip. In the steel plant, the thickness of the steel
is about 220 mm. One of the important steps in the production of steel strips is to
reduce this thickness to obtain the product ordered by customers. First, the steel
is hot rolled, where the thickness of the steel is reduced at high temperature to a
range of about 2 to 5 milimeters. If there is a demand for a lower thickness, a cold
rolling is necessary. During cold rolling, a metal strip is passed through a rolling
mill, consisting of many subsequent pairs of work rolls without prior preheating.
The minimum strip thickness produced in the analyzed plant is below 0.4 mm.
The simpli�ed scheme of the considered rolling mill is presented in Figure 1.

During contact of the strip with the work rolls, a force is applied to the rolls,
which is transferred to the strip and causes its reduction in thickness and equiv-
alent elongation. In steel manufacturing mills, the cold rolling is performed at
very high speeds (sometimes exceeding 1000 m/min), which requires a very fast
adaptation of process parameters to achieve the desired thickness and �atness of
the �nal product. These adaptations are usually made by a PLC, that controls
the whole process. The superior goal of the control system is to achieve desired
thickness after the last stand, while preserving the safe limits of the speed, forces,
etc.

There are several process parameters that can be used to evaluate the con-
dition of the rolling mill. One of the most important parameters is the rolling
force applied in each stand. In general, these forces should be within certain
limits based on the product characteristics (thickness, width, steelgrade) and
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Fig. 1. Schematic diagram of tandem cold mill with four rolling stands.

process parameters (speed, state of the work rolls). High deviations of the forces
from the normal working condition may be a symptom of malfunctions and can
lead to dangerous situations, e.g., strip breaks. However, taking into account the
number of variables that in�uence the force value, it is infeasible to build simple
rules to control their values in a kind of manual mode.

Rolling mechanics has been studied for decades, and there are several state-
of-the-art physical models of this process [1, 4]. The main problem with the
physical models is that they usually rely on some assumptions, which are hard
to precisely determine during online production. For example, the Bland and
Ford model [4] is highly dependent on friction between the strip and the work
roll, which is a kind of stochastic parameter and is almost unmeasurable in the
production environment [20]. This implies that more robust machine learning
approaches could be used to model the cold rolling process. Several researchers
proposed using ML methods in the analysis of the cold rolling process [8, 16, 19],
but we have not found work that used the approach of learning from streaming
data. The aforementioned characteristics of the data streams are consistent with
the characteristics of the steel rolling process. Imporant process parameters,
for example, steel yield strength, friction coe�cient, are prone to systematic
variations due to changes in roll roughness, lubrication, or unknown variations
in previous production steps. Therefore, it is important that the model developed
for the cold rolling process is robust and has the ability to evolve under changing
conditions. On the other hand, the model should remember relevant patterns
from the past � this is important especially for the rarely produced steels, which
can appear in the schedule only a few times in a year.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_37

https://dx.doi.org/10.1007/978-3-031-36027-5_37
https://dx.doi.org/10.1007/978-3-031-36027-5_37


6 J. Jakubowski et al.

3 Research Methods

3.1 Dataset description

We have collected historical data from the Cold Rolling Mill in Kraków, Poland.
The data set contains records of 20,000 steel coils, representing a few months
of production. The original data are generated by a process with a sampling
frequency of 1Hz. The data were �ltered from the periods when the production
line was stopped and when impossible values (from a process point of view)
were recorded. However, we tried to keep anomalous measurements within the
data, as the goal of the proposed solution is to detect outliers. We have manually
scaled the data, based on known process limits, to �t the observations within the
range 0-1. The objective of the ML model is to accurately predict the required
rolling forces in the �rst three stands given the material properties, rolling speed,
reduction, and tensions. We remove all the variables which are correlated with
force but are not independent of it, e.g., rolling gap, motor torque, and motor
load. The �nal dataset consists of over 250,000 observations and 23 features.
Next, on the basis of the mean squared error (MSE) between the predicted and
measured rolling forces, the anomaly score is calculated.

Fig. 2. Normalized data distribution of the most relevant features

Figure 2 presents the distribution of selected features. These distributions
show that we have a potential issue with inbalanced data, since most of the
production is a thin material with a very speci�c width and material class. We
address this issue and describe our solution in Section 3.2.
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3.2 Dealing with imbalanced data

In Section 3.1 we discuss the problem of data imbalance, which is caused by the
fact that the majority of production consists of few types of products and the
other products are not well represented in the dataset. This could easily lead to
over�tting the model to a majority group of products.

To solve this problem, we propose to use a clustering algorithm to group the
data based on intrinsic product characteristics, that is, thickness, width, and
material class. We use the KMeans model, which is built on the training dataset
to assign each observation to a cluster. The number of clusters is determined
based on the Silhouette Score [23].

In the next step, we have used a sampling algorithm, which combines the
under-sampling and over-sampling methods. We have iterated over each point
and computed the repetitions of that sampled point on the basis of the cluster
size and the Poisson distribution. In practice, some of the samples from overrep-
resented clusters were omitted, and the samples from underrepresented clusters
were duplicated. To avoid generating too many of the very same points, we
limited the number of possible sample repetitions to three.

3.3 Learning scenarios

To simulate the data stream environment, we have divided the dataset into
the following proportions: 15% for training, 5% for validation (hyperparameter
tuning) and 80% for testing. It is important to mention that although we divide
the data in an ordinary way, in some scenarios the test data is used to learn
the model, e.g. in online learning where the model never stops learning. In this
work, we analyze three scenarios regarding the model learning process in order
to �nd the best solution to the problem.

Batch model This is the baseline scenario, which assumes that we follow an
ordinary machine learning pipeline, where the model is trained only once on a
training dataset. This scenario assumes that we are able to collect enough data
during the model development and that no concept drift will occur in the future.

Batch model with retraining In this scenario, we train the model as de-
scribed in the above scenario. The trained model is put into production (run on
a test dataset) along with a concept drift detection algorithm, which controls if
the current model is still valid. We also keep a �xed-size bu�er in the form of
a sliding window (FIFO). If at any point a drift is detected, the current model
is dropped and a new model is built, which is trained on the data stored in the
bu�er. Therefore, the assimilation of the new data is made upon detection of
concept drift.
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Online learning In this setting, we apply an online learning paradigm, where
the model is learned iteratively as new samples arrive. This scenario does not
require separation of the data into training, validation, and test sets, but we
keep such a structure to be more coherent with previous scenarios to allow for
a trustworthy evaluation of the results. In this setting, the assimilation of the
recent data is made as soon as it is accessible. Since we assume that we have
access to the data stored in the training and validation sets, we can calculate the
performance metrics on the validation set to perform hyperparameter tuning.

3.4 Learning algorithms and validation

In this work we have used three di�erent types of machine learning algorithms,
that is:

� Linear Model (with L1 regularization)
� Multi-Layer Perceptron (MLP), which is one of the basic types of Arti�cial
Neural Networks (ANN)

� Random Forest (RF).

In the latter case, more speci�cally, we have used a forest of CART [5] in
a batch setting and Adaptive Random Forest [12] (ARF) built with Hoe�ding
Trees [9] in an online setting. We have utilized sckit-learn [7] library for training
batch models and river [22] library for online learning. The choice of models was
mainly motivated by the fact that all three types of models have their imple-
mentation for batch and online learning. The focus of this work is on selecting
the best learning scenario, rather than achieving the best possible performance
of the model.

The hyperparameters of each model were determined using a grid search
method by �tting the model to the training dataset and evaluating its mean
absolute error (MAE) in the validation data set. We have chosen MAE as the
main metric for model evaluation to minimize the e�ect of anomalies, which we
want to �nd in the next step. However, we also evaluate the models based on the
root mean squared error (RMSE) and the coe�cient of determination (R2).

An important aspect of model evaluation is the proper selection of observa-
tions for the calculation of performance metrics. In our use-case we deal with
situations where we observe very similar points for a longer period of time due to
e.g. production of the same steel strip for a longer period of time. Such a setting
results in situation where dummy predictor, which uses previous measurement
as the prediction, may have very high performance metrics. To address this issue,
we have limited the data used for evaluation purposes. The condition to include
the observation in the evaluation data was that there is a signi�cant di�erence
between the current and previous force measurements (set at 3% of the total
range).

3.5 Anomaly detection

The anomaly detection is performed by comparing the measured rolling forces
with the values predicted by the model. This assumes that the model has learned
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the relationship between input and output features precisely. The di�erence be-
tween those values can be treated as the anomaly level. The magnitude of the
anomaly, which we will refer to as the anomaly score, is computed by calculating
MSE between the observed and predicted forces.

An important aspect, which we consider in our work, is that we must be
able to distinguish between anomalies and concept drifts. In some cases the
rapid changes in the value of the force may not be a clear symptom of anomaly,
but a sudden drift which occurred in the process. We note that sometimes it
might not be possible to distinguish between them, as a concept drift might be
a result of some persistent failure (which from the process point of view should
be treated as an anomaly). Moreover, we assume that the model should not
update itself on anomalous samples; therefore, once detected, they should not
be included in the model learning in the online phase. To resolve these issues, we
propose the following methodology. First, we determine the running statistics of
the mean anomaly score (µ) and its standard deviation (σ). Next, we compare
the anomaly score of a signle observation with the distribution of all calculated
anomaly scores.

1. If the anomaly score is less than µ+2σ, there is no anomaly, and any ongoing
deviations can be treated as concept drift.

2. If the anomaly score is between µ+ 2σ and µ+ 3σ, there is a high risk that
we observe an anomaly, but we consider this as a transient state and only
raise a warning. The model is not updated with this data.

3. If the anomaly score is above µ + 3σ, we raise an alert, which means that
the anomaly is detected.

Nevertheless, we use the observations marked as anomalies in the calculation
of model performance metrics to avoid the situation when the incorrectly learned
relations are discarded from the validation.

4 Results and Discussion

In this section, we present the results of our research. The �rst step of the ma-
chine learning pipeline was the resampling of the original data. To determine
which observations to undersample and which to oversample, we have clustered
the observations, as discussed in 3.2, with the KMeans algorithm. For our ap-
plication, the highest Silhouette score was achieved when the number of clusters
was n = 6. Figure 3 presents the number of observations in the training set
before and after resampling.

Below, we present the achieved performance metrics of each model on the
test dataset � each model was veri�ed in terms of its mean absolute error, root
mean squared error, and coe�cient of determination. We also evaluated each
model in terms of the share of anomalies, which is the number of anomalies
(determined as described in Section 3.5) as a fraction of all observations. The
results are listed in Table 1.
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Fig. 3. Count of original and resampled data with respect to the assigned cluster.

The results show that the best performance of the model has been achieved in
a setting with a batch model and a concept drift detector. Suprisingly, the best
metrics were achieved for Linear Models, which are characterized by the least
complexity. This induces the correlations between the variables to be mostly
linear, and increasing the complexity of the model might harm the ability of the
model to generalize. However, the metrics achieved for the MLP network were
comparable, indicating that some more �ne-tuning of this algorithm could help
outperform the Linear Model. The most important observation is that there is
a signi�cant increase in performance of the models, if the model learns continu-
ously. This implies that a model without the ability to adapt as new data come
is not able to precisely predict the rolling force and thus potential anomalies.
Such a model in production could result in too many false alarms, which is an
undesirable scenario.

The proposed methodology for anomaly detection results in having between
1.0% and 2.5% of alarms. These values seem to be in acceptable range; however,
this problem should be further addressed to determine optimal anomaly thresh-
old for the analyzed process. We observe that online models tend to give less
alarms than other methods, which is most probably due to its ability to quickly
adapt to changing conditions.

Figure 4 presents how the anomaly score varies with the number of observa-
tions. In the initial stage, we note that all three models have a similar anomaly
score. However, after approximately 12,000 observations, a sudden drift occurs,
leading to an increase in the anomaly score for batch models. The online model
maintains a similar anomaly score as before. Subsequently, the batch model
equipped with drift detection is capable of adapting to new data and reducing
the anomaly score, which is the situation we expected.

Figure 5 presents the sample of data, where the rolling force in the �rst
stand is plotted over time. Comparison of the measured force with the calculated
ones clearly shows that at a given point in time the accuracy of the unadapted
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Table 1. Achieved model performance metrics and corresponding percentage of obser-
vations marked as anomalies. The best results are highlighted in bold.

Method ML model Metrics
Anomaly

share

MAE RMSE R2

Batch Learning
Linear 0.052 0.066 0.74 1.6%
ANN 0.050 0.063 0.76 2.5%
RF 0.047 0.059 0.79 2.2%

Batch Learning
with Retraining

Linear 0.033 0.044 0.89 1.8%
ANN 0.035 0.046 0.88 1.9%
RF 0.038 0.051 0.85 2.2%

Online Learning
Linear 0.035 0.046 0.88 1.4%
ANN 0.038 0.051 0.85 1.4%
ARF 0.036 0.047 0.87 1.0%

Fig. 4. Examplary anomaly score variations (moving average) for the MLP models.

batch model is much worse than that of the other two models. Furthermore,
a discovered anomaly region has been highlighted, where the force has largely
increased for a certain period of time, but the models did not predict it to
happen, showing that they are able to indicate the anomaly in the process.

5 Conclusion and Future Works

In this paper, we have applied machine learning models to predict rolling forces
in a cold rolling process. The goal of this model is to control the manufacturing
process online and detect anomalies. The characteristics of the problem imply
the use of methods designed for data streams. The main data stream features,
which we considered were the inability to store a whole data set in memory,
the possibility of concept drift occurring, and imbalances in the data. We have
considered three learning scenarios: (1) batch learning without any changes in
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Fig. 5. Examplary rolling forces in the �rst stand measured and calculated by the
linear models.

the model once it is deployed in production, (2) batch learning with concept
drift detection and retraining upon the changes in the data distribution, and
(3) online learning, where each sample is seen only once by the model. Three
di�erent types of machine learning models were explored; linear model, arti�cial
neural network, and random forest.

The results have shown that the baseline scenario, which did not take into
account the possibility of concept drift, has shown poor performance in com-
parison with the other scenarios. The best results were obtained in the scenario
where the batch model was re-trained on a bu�er data every time a drift has been
detected. However, the online learning scenario has also shown some promising
results, so this option should also be considered as a potential solution to our
problem. Our work shows that machine learning from streaming data has a high
potential to discover anomalies in the cold rolling process. Assimilation of recent
data is crucial to keep high prediction capabilities of the model. Although our
work is strictly dedicated to the steel manufacturing process, we believe that a
similar approach can be adapted to other manufacturing processes.

In future work, we plan to further investigate the applications of data stream
methods to a problem of anomaly detection in steel manufacturing processes.
We plan to focus on the problems that were discovered in this investigation
but can be analyzed more in-depthly. First, we want to investigate the use of
ensemble learners, which are one of the most promising methods for dealing
with drifting data streams [18] and are capable of solving issues such as pattern
forgetting or over�tting. Next, we plan to investigate more robust methods for
dealing with class imbalance and bu�er storage, which will result in having more
diverse training data and better generalization. When it comes to online learning,
we want to validate whether the methods designed to tackle the problem of
catastrophic forgetting, for example, EWC [17], are able to help online algorithms
outperform their batch equivalents. Finally, we want to extend our method by
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detecting anomalies not only in the rolling force measurements but also in other
dependent variables such as gap position or motor load.
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