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Abstract. Physics-Informed Neural Networks (PINNs) have gained
much attention in various fields of engineering thanks to their capability
of incorporating physical laws into the models. The partial differential
equations (PDEs) residuals are minimized on a set of collocation points
which distribution appears to have a huge impact on the performance of
PINNs and the assessment of the sampling methods for these points is
still an active topic. In this paper, we propose a Fixed-Budget Online
Adaptive Learning (FBOAL) method, which decomposes the domain
into sub-domains, for training collocation points based on local maxima
and local minima of the PDEs residuals. The numerical results obtained
with FBOAL demonstrate important gains in terms of the accuracy and
computational cost of PINNs with FBOAL for non-parameterized and
parameterized problems. We also apply FBOAL in a complex industrial
application involving coupling between mechanical and thermal fields.

Keywords: Physics-informed neural networks · Adaptive learning · Rub-
ber calendering process

1 Introduction

In the last few years, Physics-Informed Neural Networks (PINNs) [8] have become
an attractive and remarkable scheme of solving inverse and ill-posed partial
differential equations (PDEs) problems. The applicability of PINNs has been
demonstrated in various fields of research and industrial applications [3]. However,
PINNs suffer from significant limitations. The training of PINNs takes high
computational cost, that is, a standard PINN must be retrained for each PDE
problem, which is expensive and the numerical physics-based methods can strongly
outperform PINNs for forward modeling tasks. There are continuing efforts to
overcome this limitation by proposing to combine with reduced order methods
so that the model has a strong generalization capacity [2]. Furthermore, the
theoretical convergence properties of PINNs are still poorly understood and need
further investigations [9]. As PINNs integrate the PDEs constraints by minimizing
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the PDE residuals on a set of collocation points during the training process, it
has been shown that the location of these collocation points has a great impact
on the performance of PINNs [1]. To the best of the authors’ knowledge, the first
work that showed the improvement of PINNs performance by modifying the set
of collocation points is introduced by Lu et al. (2021) [5]. This work proposed the
Residual-based Adaptive Refinement (RAR) that adds new training collocation
points to the location where the PDE residual errors are large. RAR has been
proven to be very efficient to increase the accuracy of the prediction but however
leads to an uncontrollable amount of collocation points and computational cost
at the end of the training process. In this work, we propose a Fixed-Budget
Online Adaptive Learning (FBOAL) that fixes the number of collocation points
during the training. The method adds and removes the collocation points based
on the PDEs residuals on sub-domains during the training. By dividing the
domain into smaller sub-domains it is expected that local maxima and minima
of the PDEs residuals will be quickly captured by the method. Furthermore, the
stopping criterion is chosen based on a set of reference solutions, which leads
to an adaptive number of iterations for each specific problem and thus avoids
unnecessary training iterations. The numerical results demonstrate that the use
of FBOAL help to reduce remarkably the computational cost and gain significant
accuracy compared to the conventional method of non-adaptive training points.
In the very last months, several works have also introduced a similar idea of
adaptive re-sampling of the PDE residual points during the training [1,6,10]. Wu
et al. (2023) [10] gave an excellent general review of these methods and proposed
two adaptive re-sampling methods named Residual-based Adaptive Distribution
(RAD) and Residual-based adaptive refinement with distribution (RAR-D), which
are the generalization of all existing methods of adaptive re-sampling for the
collocation points. These approaches aim to minimize the PDEs residuals at their
global maxima on the entire domain. Besides that, the existing studies did not
investigate the parameterized PDE problems (where the parameter of interest
is varied). In this study, we first compare the performance of RAD, RAR-D,
and FBOAL in an academic test case (Burgers equation). We illustrate a novel
utilization of these adaptive sampling methods in the context of parameterized
problems. The following of this paper is organized as follows. In section 2, we
briefly review the framework of PINNs and introduce the adaptive learning
strategy (FBOAL) for the collocation points. We then provide the numerical
results of the performance of the studied methods and comparison to the classical
PINNs and other adaptive re-sampling methods such as RAD and RAR-D in a
test case of Burgers equation. The application to an industrial use case is also
represented in this section. Finally, we summarize the conclusions in section 4.

2 Methodology

In this section, the framework of Physics-Informed Neural Networks (PINNs) [8]
is briefly presented. Later, Fixed-Budget Online Adaptive Learning (FBOAL)
for PDE residual points is introduced.
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2.1 Physics-informed neural networks

To illustrate the methodology of PINNs, let us consider the following parameter-
ized PDE defined on the domain Ω ⊂ Rd: ut +Nx(u,λ) = 0 for x ∈ Ω, t ∈ [0, T ]
where λ ∈ Rp is the PDE parameter vector with the boundary condition
B(u,x, t) = 0 for x ∈ ∂Ω and the initial condition u(x, 0) = g(x) for x ∈ Ω. In
the conventional framework of PINNs, the solution u of the PDE is approximated
by a fully-connected feed-forward neural network NN and the prediction for the
solution can be represented as û = NN (x, t,θ) where θ denotes the trainable
parameters of the neural network. The parameters of the neural network are
trained by minimizing the cost function L = Lpde + wicLic + wbcLbc, where
the terms Lpde, Lic, Lbc penalize the loss in the residual of the PDE, the initial
condition, the boundary condition, respectively, and wic, wbc are the positive
weight coefficients to adjust the contribution of each term to the cost func-

tion: Lpde =
1

Npde

∑Npde

i=1 |ûti +Nxi(û,λ)|2, Lic =
wic

Nic

∑Nic

i=1 |û(xi, 0)− g(xi)|2,

and Lbc =
wbc

Nbc

∑Nbc

i=1 |B(û,xi, ti)|2 where Nic, Nbc, Ndata denote the numbers of

learning points for the initial condition, boundary condition, and measurements
(if available), respectively, and Npde denotes the number of residual points (or
collocation points or unsupervised points) of the PDE.

We note that PINNs may provide different performances with different network
initialization. In this work when comparing the results of different configurations
of PINNs, we train PINNs five times and choose the mean and one standard
deviation values of the performance criteria of five models for visualization and
numerical comparison.

2.2 Adaptive learning strategy for PDEs residuals

Fixed-Budget Online Adaptive Learning Motivated by the work of Lu et al.
(2021) [5] which proposed the Residual-based Adaptive Refinement (RAR) that
adds progressively during the training more collocation points at the locations
that yield the largest PDE residuals, our primary idea is to control the number
of potentially added training points by removing the collocation points that yield
the smallest PDE residuals so that the number of collocation points remains
the same during the training. With this approach, the added points tend to be
placed at nearly the same location corresponding to the global maximum value
of the PDE residual. We suggest considering a set of sub-domains in order to
capture not only the global extrema but also the local extrema of the PDEs
residuals. More precisely, we propose a Fixed-Budget Online Adaptive Learning
(FBOAL) that adds and removes collocation points that yield the largest and the
smallest PDE residuals on the sub-domains during the training (see Algorithm
1). With the domain decomposition step, the algorithm is capable of detecting
the local extrema inside the domain. Another remarkable advancement of this
method is that in the parameterized problem, the collocation points can be
relocated to the values of the parameter for which the solution is more complex
(see section 3.1 for an illustration on Burgers equation). To minimize the cost
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Algorithm 1 Fixed-Budget Online Adaptive Learning (FBOAL)

Require: The number of sub-domains d, the number of added and removed points m,
the period of resampling k, a testing data set, a threshold s.

1: Generate the set C of collocation points on the studied domain Ω.
2: Divide the domain into d sub-domains Ω1 ∪Ω2... ∪Ωd = Ω.
3: for lri in lr do
4: repeat
5: Train PINNs for k iterations with the learning rate lri.
6: Generate a new set C′ of random points inside the domain Ω.
7: Compute the PDE residual at all points in the set C′ and the set C.
8: On each subdomain Ωi, take 1 point of the set C′ which yield the largest PDE

residuals on the subdomain. Gather these points into a set A.
9: On each subdomain Ωi, take 1 point of the set C which yield the smallest PDE

residuals on the subdomain. Gather these points into a set R.
10: Add m points of the set A which yield the largest errors for the residuals to

the set C, and remove m points of the set R which yield the smallest errors
for the residuals.

11: until The maximum number of iterations K is reached or the error of the
prediction on the testing data set of reference is smaller than some threshold s.

12: end for

function, we adopt Adam optimizer with a learning rate decay strategy, which
is proven to be very efficient in training deep learning models. In this work, we
choose a set of learning rate values lr = {10−4, 10−5, 10−6}. The way to divide
the domain and the number of sub-domains can play important roles in the
algorithm. If we dispose of expert knowledge on the PDEs problem, we can divide
the domain as a finite-element mesh such that it is very fine at high-gradient
locations and coarse elsewhere. In this primary work, we dispose of no knowledge
a priori and use square partitioning for the domain decomposition. We note
this partitioning is not optimal when dealing with multidimensional space and
different scales of spatial and/or temporal dimensions. The stopping criterion is
chosen based on a number of maximum iterations for each value of the learning
rate and an error criterion computed on a testing data set of reference. The
detail of this stopping criterion is specified in each use case. With this stopping
criterion, the number of training iterations is also an adaptive number in each
specific case, which helps to avoid unnecessary training iterations. We note that
when dealing with multi-physics problems which involve systems of PDEs, we
separate the set of collocation points into different subsets for each equation and
then effectuate the process independently for each subset. Separating the set of
collocation points helps to avoid the case when added points for one equation
are removed for another. The code in this study is available from the GitHub
repository https://github.com/nguyenkhoa0209/PINNs_FBOAL.

Residual-based Adaptive Distribution and Residual-based Adaptive
Refinement with Distribution Wu et al. (2023) [10] proposed two residual-
based adaptive sampling approaches named Residual-based Adaptive Distribution
(RAD) and Residual-based Adaptive Refinement with Distribution (RAR-D).
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In these approaches, the training points are randomly sampled according to a
probability density function which is based on the PDE residuals. In RAD, all
the training collocation points are re-sampled. While in RAR-D, only a few new
points are sampled and then added to the training data set. The main differences
between RAD, RAR-D, and our proposed method FBOAL lie in the domain
decomposition step in FBOAL and the percentage of modified collocation points
after every time we effectuate the re-sampling step. The decomposition step helps
FBOAL to be able to detect local maxima and local minima of the residuals
inside the domain (which, however, depends on the way we divide the domain),
and thus FBOAL gives equal concentration for all local maxima of the PDE
residuals.

3 Numerical results

In this section, we first compare and demonstrate the use of adaptive sampling
methods (FBOAL, RAD, and RAR-D) to solve the viscous Burgers equation in
both non-parameterized context and parameterized context (i.e. the viscosity is
fixed or not). We then illustrate the performance of FBOAL in a realistic industrial
case: a system of PDEs that is used in the rubber calendering process. In the
following, unless specifying otherwise, to compare the numerical performance of

each methodology, we use the relative L2 error defined as ϵw =
||w − ŵ||2
||w||2

where

w denotes the reference simulated field of interest and ŵ is the corresponding
PINNs prediction.

3.1 Burgers equation

We consider the following Burgers equation:
ut + uux − νuxx = 0 for x ∈ [−1, 1], t ∈ [0, 1]

u(x, 0) = − sin(πx)

u(−1, t) = u(1, t) = 0

where ν is the viscosity. For a small value of ν, the solution is very steep close to
x = 0. For higher values, the solution becomes smoother. Thus when ν is fixed,
it is expected that the collocation points are located close to x = 0 during the
training to better capture the discontinuity. When ν is varied, it is expected that
the number of collocation points is more important for smaller values of ν while
being located close to x = 0. In the following, we assess whether FBOAL can
relocate the collocation points to improve the performance of PINNs.

In our experiment, to simplify the cost function and guarantee the boundary
and initial conditions, these conditions are forced to be automatically satisfied by
using the following representation for the prediction û = t(x− 1)(x+1)NN (.)−
sin(πx). Interested readers may refer to the work in [4] for the general formulations.
With this strategy, we do not need to adjust different terms in the loss function
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as there is only the loss for PDE residuals which is left. For the architecture of
PINNs, we use a feedforward network with 4 hidden layers with 50 neurons per
layer with tanh activation function. The results are obtained with 50,000 epochs
with the learning rate lr = 10−3, 200,000 epochs with the learning rate lr = 10−4

and 200,000 epochs with lr = 10−5. For a fair comparison, the initialization of
the training collocation points is the same for all methodologies. The learning
data set and the testing data set are independent in all cases.

Non-parameterized problem We first illustrate the performance of adaptive
sampling approaches in a context where ν is fixed. We take 10 equidistant values
of ν ∈ [0.0025, 0.0124]. For each ν, we compare the performance of classical
PINNs, PINNs with RAD, RAR-D, and PINNs with FBOAL. For the training of
PINNs, we take Npde = 1024 collocation points that are initialized equidistantly
inside the domain. We take a testing set of reference solutions on a 10 × 10
equidistant spatio-temporal mesh and stop the training when either the number
of iterations surpasses K = 500, 000 or the relative L2 error between PINNs
prediction and the testing reference solution is smaller than the threshold s = 0.02.
The following protocol allows us to compare fairly all adaptive sampling methods.
For the training of FBOAL, we divide the domain into d = 200 sub-domains
as squares of size 0.1. After every k = 2, 000 iterations, we add and remove
m = 2% × Npde ≈ 20 collocation points based on the PDE residuals. For the
training of RAD, we take k = 1 and c = 1 and effectuate the process after 2, 000
iterations. For the training of RAR-D, we take k = 2 and c = 0 and after every
2, 000 iterations, 5 new points are added to the set of training collocation points.
At the end of the training, the number of collocation points for FBOAL and
RAD remains the same as at the beginning (Npde = 1024), while for RAR-D,
this number increases gradually until the stopping criterion is satisfied.

Figure 1 shows the PDE residuals for ν = 0.0025 after the training process
on the line x = 0 and at the instant t = 1 where the solution is very steep.
The curves and shaded regions represent the geometric mean and one standard
deviation of five runs. On the line x = 0 (Figure 1a), with classical PINNs where
the collocation points are fixed during the training, the PDE residuals are very
high and obtain different peaks (local maxima) at different instants. It should
be underlined that all the considered adaptive sampling methods are able to
decrease the values of local maxima of the PDEs residuals. Among the approaches
where the number of collocation points is fixed, FBOAL is able to obtain the
smallest values for the PDE residuals, and for its local maxima, among all the
adaptive resampling methodologies. At the instant t = 1 (Figure 1b), the same
conclusion can be drawn. However, we note that at this instant, the classical
PINNs outperform other methods at the zone where there are no discontinuities
(the zones that are not around x = 0). This is because the collocation points are
fixed during the training process for classical PINNs, while with other methods,
the collocation points are either re-assigned (with FBOAL and RAD) or some
points are added (with RAR-D) to the high gradient regions. Thus, for adaptive
resampling methods, the training networks have to additionally balance the
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errors for high-gradient locations and low-gradient locations and thus diminish
the accuracy at the zones where there are low gradients as the cost function is a
sum of the PDE errors at all points.

(a) On the line x = 0 (b) At instant t = 1

Fig. 1: Burgers equation: Absolute value of PDE residuals for ν = 0.0025.

To assess the overall performance of PINNs, we evaluate the errors of the
prediction on a 256 × 100 spatio-temporal mesh (validation mesh). Figure 2a
shows the relative L2 error between PINNs predictions and reference solution.
Figure 2b shows the number of training iterations for PINNs to meet the stopping
criterion. As expected, when ν increases, which means the solution becomes
smoother, the accuracy of PINNs in all methodologies increases and the models
need less number of iterations to meet the stopping criterion. We note that when
ν is large and the solution is very smooth, the classical PINNs are able to give
comparable performance to PINNs with adaptative methodologies. However,
when ν becomes smaller, it is clear that PINNs with adaptive sampling methods
outperform classical PINNs in terms of accuracy and robustness. Among these
strategies, FBOAL provides the best accuracy in terms of errors and also needs
the least iterations to stop the algorithm. Table 1 illustrates the training time
of each methodology for ν = 0.0025. We observe that by using FBOAL a huge
amount of training time is gained compared to other approaches. Figure 2c
illustrates the cost function during the training process for ν = 0.0025 and the
errors of the prediction on the testing mesh. For clarity, only the best cost function
(which yields the smallest values after the training process in five runs) of each
methodology is plotted. After every k = 2, 000 epochs, as the adaptive sampling
methods relocate the collocation points, there are jumps in the cost function.
The classical PINNs minimize the cost function better than other methodologies
because the position of collocation points is fixed during the training. This leads
to the over-fitting of classical PINNs on the training collocation points and does
not help to increase the accuracy of the prediction on the testing mesh. While
with adaptive sampling methods, the algorithm achieves better performance on
the generalization to different meshes (the testing and validation meshes). Table
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(a) Relative L2 error (b) Nb. of training itera-
tions

(c) Loss for ν = 0.0025

Fig. 2: Burgers equation: Comparison of classical PINNs and PINNs with adap-
tive sampling approaches. In (c) the solid lines show the cost function during the
training, the dashed lines show the errors on the testing mesh, and the black line
shows the threshold to stop the training.

1 provides the training time and the number of resampling of each methodology
with the hyperparameter values mentioned previously, which are optimal for all
adaptive resampling methods. We see that the resampling does affect the training
time. More precisely, with RAR-D and RAD, a huge number of resampling is
effectuated, which leads to a long training time compared to the classical PINNs
(even though these methods need smaller numbers of training iterations). While
with FBOAL, the number of resampling is small and we obtain a smaller training
time compared to the classical PINNs.

Table 1: Burgers equation: Training time and the number of resampling for
ν = 0.0025. The training is effectuated on an NVIDIA V100 GPU card.

Classical RAR-D RAD FBOAL

Training time (minutes) 33.7 ± 1.5 41.0 ± 5.8 38.8 ± 2.3 21.5 ± 2.7
Number of resampling 0 ± 0 201 ± 75 210 ± 77 48 ± 2

In the following, we analyze in detail the performance of FBOAL. Figure 3
illustrates the density of collocation points after the training with FBOAL for
different values of ν. We see that, for the smallest value ν = 0.0025, FBOAL
relocates the collocation points close to x=0 where the solution is highly steep.
For ν = 0.0076, as there is only one iteration of FBOAL that adds and removes
points (see Figure 2b), there is not much difference with the initial collocation
points but we still see few points are added to the center of the domain, where
the solution becomes harder to learn. For the biggest value ν = 0.0116, there
is no difference with the initial collocation points as PINNs already satisfy the
stopping criterion after a few iterations. For the values of the hyperparameters,
empirical tests (not shown here for concision) suggest starting with small values
of m (number of added and removed points) and k (period of resampling) (for
example k = 1, 000,m = 0.5%Npde) and then increase these values to see whether
the predictions can become more accurate or not.
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(a) For ν = 0.0025 (b) For ν = 0.0076 (c) For ν = 0.0116

Fig. 3: Burgers equation: Density of collocation points after FBOAL training.

Parameterized problem We now illustrate the performance of PINNs in a
parameterized problem where ν can be varied. In this case, ν is also considered
as an input of PINNs, i.e. the network in PINNs is represented as NN (x, t, ν,θ).
With this configuration, PINNs can predict the solution for different values
of ν in one model. For the training, we take 40 values of ν ∈ [0.0025, 0.0124].
For each ν, we initialize 1024 equidistant collocation points, which leads to
Npde = 1024× 40 = 40, 960 collocation points in total. During the training with
FBOAL, the number of total collocation points remains the same, however, the
number of collocation points can be varied for each ν. We take a testing set of
reference solutions on a 10× 10 equidistant spatio-temporal mesh and stop the
training when either the number of iterations surpasses K = 2× 106 or the sum
of relative L2 error between PINNs prediction and the testing reference solution
of all learning values of ν is smaller than the threshold s = 0.02 × 40 = 0.8.
For the training of FBOAL, we divide the domain into d = 200 sub-domains
as squares of size 0.1. After every k = 2, 000 iterations, we add and remove
m = 0.5% × Npde ≈ 200 collocation points based on the PDE residuals. For
the training of RAD, we take k = 1 and c = 1 and effectuate the process after
2, 000 iterations. For the training of RAR-D, we take k = 2 and c = 0 and after
every 2, 000 iterations, 5× 40 = 200 new points are added to the set of training
collocation points. At the end of the training, the number of collocation points for
FBOAL and RAD remains the same as the beginning (Npde = 40, 960), while for
RAR-D, this number increases gradually until the stopping criterion is satisfied.

Figure 4 illustrates the absolute value of the PDE residuals for ν = 0.0025
on the line x = 0 and at the instant t = 1 where the solution is very steep.
On the line x = 0 (Figure 4a), with classical PINNs, the PDE residuals are
very high and obtain different local maxima at different instants. Again, all the
considered adaptive sampling methods are able to decrease the values of local
maxima of the PDEs residuals. Among these approaches, FBOAL is able to
obtain the smallest values for the PDE residuals. We note that the number of
collocation points of each methodology is different (see Figure 5b). For ν = 0.0025,
FBOAL relocates a very high number of collocation points. This leads to a better
performance of FBOAL for ν = 0.0025. At the instant t = 1, FBOAL, RAD
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and RAR-D provide nearly the same performance and are able to decrease the
values of local maxima of the PDEs residuals compared to the classical PINNs.
Figure 5a shows the relative L2 error between PINNs prediction and reference

(a) On the line x = 0 (b) At instant t = 1

Fig. 4: Burgers equation: Absolute value of PDE residuals for ν = 0.0025.

solution on a 256× 100 mesh. The zone in gray represents the learning interval
for ν (interpolation zone). Figure 5b shows the number of collocation points
for each ν. We see again in the interpolation zone, that when ν increases, the
accuracy of PINNs in all methodologies increases. It is clear that PINNs with
adaptive sampling methods outperform classical PINNs in terms of accuracy
for all values of ν in both interpolation and extrapolation zones. As expected,
with the approaches FBOAL and RAD (where Npde is fixed), the number of
collocation points for smaller values of ν is more important than the number for
higher ones. This demonstrates the capability of FBOAL and RAD of removing
unnecessary collocation points for higher values of ν (whose solution is easier to
learn) and adding them for smaller values of ν (as the solution becomes harder
to learn). When ν tends to the higher extreme, the number of training points
increases as there are fewer training values for ν in this interval. While with
RAR-D (where Npde increases gradually), we do not see the variation of the
number of collocation points between different values of ν as RAR-D tries to
add more points at the discontinuity for all ν. Table 2 provides the training
time of and the number of resampling of each methodology. It is clear that
RAR-D outperforms the other approaches in terms of computational time as this
approach needs very few numbers of resampling to meet the stopping criterion.
However, to achieve this gain, RAR-D added for about 40,000 new collocation
points after the training, which is not profitable in terms of memory. RAD and
FBOAL provide comparable computational training time in this case and they
both outperform the classical PINNs while the number of collocation points in
total is fixed. Figure 5c illustrates the cost function during the training process
and the errors of the prediction on the testing mesh. For clarity, only the best
cost function (which yields the smallest number of iterations after the training
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(a) Relative L2 error (b) Nb. of collocation points (c) Loss function

Fig. 5: Burgers equation: comparison of classical PINNs and PINNs with adaptive
sampling approaches. The zone in gray is the learning interval. In (c) the solid
lines show the cost function during the training, the dashed lines show the errors
on the testing data set, and the black line shows the threshold to stop the training.

process in five runs) of each methodology is plotted. Again, since the position of
the collocation points is fixed during the training, classical PINNs minimize the
cost function better than PINNs with adaptive sampling methods, which leads to
over-fitting on the training data set and does not help to improve the accuracy
of the prediction on the testing mesh. We see that FBOAL and RAR-D need a
much smaller number of iterations to meet the stopping criterion.

In the following, we analyze in detail the performance of FBOAL. Figure
6 illustrates the density of collocation points after the training with FBOAL
with different values of ν. We see that for all values of ν, FBOAL relocates the
collocation points close to the discontinuity. For the values of the hyperparameters,
empirical tests (not shown here for concision) suggest starting with small values
of m (number of added and removed points) and k (period of resampling) (for
example k = 1, 000,m = 0.5%Npde) and then increase these values to see whether
the predictions can become more accurate or not.

Table 2: Burgers equation: Training time and the number of resampling of each
methodology. The training is effectuated on an NVIDIA A100 GPU card.

Classical RAR-D RAD FBOAL

Training time (hours) 13.2 ± 0.0 1.4 ± 0.3 9.1 ± 3.5 7.8 ± 1.9
Number of resampling 0 ± 0 34 ± 8 204 ± 71 173 ± 25

3.2 Application to calendering process

In the industry of tire manufacturing, calendering is a mechanical process used
to create and assemble thin tissues of rubber. From the physical point of view,
the rubber is assimilated as an incompressible non-Newtonian fluid flow in the
present study (in particular, the elastic part of the material is not considered
here). Moreover, only the steady-state regime is considered. The goal of the
present study is only to model the 2D temperature, velocity, and pressure fields
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(a) For ν = 0.0025 (b) For ν = 0.0076 (c) For ν = 0.0116

Fig. 6: Burgers equation: Density of collocation points after FBOAL training.

inside rubber materials going through two contra-rotating rolls of the calender
as depicted in Figure 7a. A detailed description of the calendering process and
its mathematical formulation can be found in [7]. Here we briefly introduce the
dimensionless PDEs system that is used in PINNs training process:

∇̃.
(
2η̃(⃗̃u, T̃ )˜̄̄ϵ(⃗̃u)

)
− ⃗̃∇p̃ = 0⃗

∇̃.⃗̃u = 0

⃗̃u ⃗̃∇T̃ =
1

Pe
∇̃2T̃ +

Br

Pe
η̃(⃗̃u, T̃ )|γ̃(⃗̃u)|2

where ⃗̃u = (ũx, ũy)
T is the velocity vector, p̃ is the pressure, T̃ is the tempera-

ture, ˜̄̄ϵ is the strain-rate tensor, η̃ is the dynamic viscosity. Pe and Br are the
dimensionless Péclet number and Brickman number, respectively.

We tackle an ill-posed configuration problem, i.e the boundary conditions of
the problem are not completely defined, and we dispose of some measurements
of the temperature (NT = 500 measurements, which are randomly distributed
inside the domain). The goal is to infer the pressure, velocity, and temperature
fields at all points in the domain. We note that here, no information on the
pressure field is given, only its gradient in the PDE residual is. Thus the pressure
is only identifiable up to a constant. As shown in [7], only the information of
the temperature is not sufficient to guarantee a unique solution for the velocity
and the pressure fields, we take in addition the knowledge of velocity boundary
conditions. The authors also showed that taking the collocation points on a
finite-element (FE) mesh, which is built thanks to domain expertise and provides
a priori knowledge of high gradient location, improves significantly the accuracy
of the prediction instead of taking the points randomly in the domain. However,
to produce the FE mesh, expert physical knowledge is required. In this work, we
show that FBOAL and other adaptive sampling methods RAD and RAD-D are
able to infer automatically position for collocation points, and thus improve the
performance of PINNs without the need for any FE mesh.

For the architecture of PINNs, we use a feedforward network with 5 hidden
layers and 100 neurons per layer. To minimize the cost function, we adopt Adam
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(a) Sketch of the 2D configuration
and geometrical setup

(b) Density of collocation points

Fig. 7: Calendering process: Configuration and density of training points.

optimizer with the learning rate decay strategy. The results are obtained with
50,000 epochs with the learning rate lr = 10−3, 100,000 epochs with the learning
rate lr = 10−4 and 150,000 epochs with lr = 10−5. For the training of PINNs, we
suppose to dispose of the boundary condition for the velocity and NT = 500 points
of measurements for the temperature that are randomly distributed inside the
domain. The number of collocation points is fixed as Npde = 10, 000 points. For
the training of FBOAL, in this primary investigation, we do not divide the domain.
After every k = 25, 000 iterations, we add and remove m = 2.5%×Npde = 250
collocation points based on the PDE residuals. Again, we note that in this case,
since there are four PDEs residuals, we divide the set of collocation points into
four separated subsets whose cardinal equal to Npde/4 = 2, 500, and then add
and remove m/4 points independently for each equation. For the training of
RAD, we choose k = 1, c = 1 and effectuate the re-sampling after every 25, 000
iterations. For the training of RAR-D, we choose k = 2, c = 0 after every 25, 000
iterations we add 250 new collocation points to the training set. Figure 7b shows
the density of collocation points produced by different methods. The FE mesh is
much finer at the output of the calender compared to other methods, where there
are high-gradient locations. However, with FBOAL, we see that the collocation
points are not only added to the output of the calender, but also to the input
where there is contact with the solid rolls. The same conclusion can be drawn
with RAR-D. With RAD, as this method redistributes all the collocation points
at the same time, the observation for important zones is not as clear as in other
methods.

To assess the performance of PINNs, we evaluate the errors of the prediction
on a random mesh that contains N = 162, 690 points. To avoid any artificial
high values of the error for fields very close to zero, we use a relative L2 error
that divides the absolute error by the reference field amplitude, which is defined

as ϵw =
||w − ŵ||2

wmax − wmin
where w denotes the reference simulated field of interest

and ŵ is the corresponding PINNs prediction. Table 3 shows the performance
of PINNs with different cases of collocation points in terms of relative L2 error.
We see that PINNs with adaptive sampling methods give better accuracy for
all physical fields than classical PINNs with random collocation points. The
classical PINNs with collocation points on the FE mesh still produce the most
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ϵT ϵux ϵuy ϵP
Random points 13.6 ± 1.17 24.1 ± 3.77 15.6 ± 2.73 11.9 ± 1.33

FE mesh 8.54 ± 1.39 14.7 ± 2.49 18.0 ± 2.61 1.41 ± 0.17
FBOAL 10.5 ± 1.82 19.3 ± 1.85 9.63 ± 3.24 5.13 ± 0.72
RAD 10.2 ± 1.41 20.5 ± 1.96 9.71 ± 2.55 5.08 ± 0.76

RAR-D 12.3 ± 1.74 18.7 ± 1.65 11.1 ± 2.90 4.87 ± 0.69

Table 3: Calendering process: Relative L2 errors between reference solution and
PINNs prediction with different cases of collocation points.

accurate prediction for T, ux and p. However, for the vertical velocity component
uy, FBOAL and RAD give the best prediction. This is because the solution for
uy at the input of the calender has more complex behavior than at other zones.
The adaptive sampling methods are able to capture this complexity based on
the PDEs residuals. The classical PINNs with the collocation points on FE mesh
give the largest errors for uy since the FE mesh is very coarse at the input of
the calender. With adaptive sampling methods, the algorithm is able to detect
new zones which produce high errors for the PDEs residuals. Figure 8 illustrates
the absolute error between the reference solution and the prediction produced
by different methodologies for uy. Again, we see that with adaptive sampling
methods, the errors are significantly reduced compared to the classical approach
with the collocation points taken on the FE mesh or random points.

(a) Random points (b) FE mesh (c) FBOAL

Fig. 8: Calendering process: Absolute error between the reference solution and
the prediction produced by different methodologies for the vertical velocity
component uy.

4 Conclusion

In this paper, we introduced a Fixed-Budget Online Adaptive Learning (FBOAL)
for the collocation points in PINNs that adds and removes points based on PDEs
residuals on sub-domains while fixing the number of training points. The numerical
results in academic test cases showed that FBOAL provides better accuracy
with fewer iterations than classical PINNs. Besides that, we also compared the
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performance of FBOAL with other existing methods of adaptive sampling for
the collocation points such as Residual-based Adaptive Distribution (RAD) and
Residual-based Adaptive Refinement with Distribution (RAR-D). It is shown that
in most cases, FBOAL is able to provide a comparable or even better performance
than other approaches in terms of accuracy and computation cost. We then apply
the methods FBOAL, RAD, and RAR-D to the rubber calendering process
simulation. PINNs with these adaptive sampling methods give remarkably better
predictions for the vertical velocity component than classical PINNs with the
collocation points taken on an expert-designed FE mesh. This promising result
demonstrates that the adaptive sampling methods can help to provide a prior
knowledge of high-gradient locations and improve the conventional numerical
solver in the construction of the mesh.
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