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Abstract. Data assimilation methods are mainly based on the Bayesian
formulation of the estimation problem. For cost and feasibility reasons,
this formulation is usually approximated by Gaussian assumptions on the
distribution of model variables, observations and errors. However, when
these assumptions are not valid, this can lead to non-convergence or
instability of data assimilation methods. The work presented here intro-
duces the use of kernel methods in data assimilation to model uncertain-
ties in the data in a more flexible way than with Gaussian assumptions.
The use of kernel functions allows to describe non-linear relationships
between variables. The aim is to extend the assimilation methods to
problems where they are currently unefficient. The Ensemble Transform
Kalman Filter (ETKF) formulation of the assimilation problem is refor-
mulated using kernels and show the equivalence of the two formulations
for the linear kernel. Numerical results on the toy model Lorenz 63 are
provided for the linear and hyperbolic tangent kernels and compared to
the results obtained by the ETKF showing the potential for improve-
ment.

Keywords: data assimilation · kernel methods · ensemble Kalman fil-
ters.

1 Introduction

Data assimilation is a process that consists of estimating the state of a system
from observations and a numerical model of this system. This field of research has
many applications, for example in meteorology ([1], [2], [3]) or oceanography ([2],
[4], [5]). The resolution on this type of large-scale systems involves a large number
of state and observation variables, sometimes of the order of a billion ([4]). In
view of the complexity of these systems, several simplifications in the resolution
are made and in particular assumptions of Gaussianity of the uncertainties on
the observations and on the predictions ([2]).
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However, these assumptions are often not satisfied in practice and it happens
that the non-respect of these assumptions leads to problems in the assimilation
process, either prediction errors or instabilities of the method ([6]). To overcome
these different problems, several approaches have been put forward, such as
Gaussian anamorphoses ([7], [8]) or 2-step Bayesian updates ([9]). In this paper,
we investigate kernel methods. Recent works [10] proposed a first formulation of
an ensemble-based data assimilation algorithm based on "RBF" (radial-basis-
function) kernels; [11]). It is then proposed to approximate the innovation term
by a linear combination of RBF kernels, which parameters are estimated during
the assimilation process. The introduction of RKHS is also proposed to model
the temporal evolution of the dynamical system in order to apply ensemble meth-
ods in data assimilation [12], [13]. Furthermore, the analysis step of the Random
Feature Map Data Assimilation algorithm [[13]] can be viewed as the applica-
tion of an ensemble Kalman filter in a particular RKHS. In this work, we are
reformulating a data assimilation ensemble algorithm, the Ensemble Transform
Kalman Filter, as an optimization problem on any RKHS, in order to extend
the approach to a nonlinear framework, with limited loss of optimality. First, we
reformulate the ETKF as presented in [14] using kernel methods and present a
way to reconstruct the ensemble based on this formulation. We then give numer-
ical results for the Lorenz 63 toy model for the linear kernel and the hyperbolic
tangent kernel.

2 ETKF reformulation with kernel methods

In this section, we first present the classical ETKF formulation and its resolution
and then we present the corresponding kernel version.

2.1 ETKF formulation and classical resolution

The ETKF (Ensemble Transform Kalman Filter) problem is a classical formula-
tion of the data assimilation problem, proposed by [14]. Its formulation derives
from:

argmin
w∈RN

J (w) =
N − 1

2
||w||22 +

1

2
||y −H(x̄f +Xfw)||2R−1 (1)

where x̄f ∈ Rn the ensemble mean obtained after the prediction step,
Xf =

[
(xf

1 − x̄f ), . . . , (xf
N − x̄f )

]
∈ Rn×N the ensemble anomaly matrix ob-

tained after the prediction step, H : Rn → Rp the transition operator between
the model space and the observation space, w parameterizing xa: xa = x̄f +Xfw,
under the assumption that xa lies in the affine subspace of x̄f generated by Xf , N
the ensemble size, y ∈ Rp the observation vector, R ∈ Rp×p the error covariance
matrix of the observations and ||.||R−1 defined by ||x||2R−1 = x⊤R−1x

For the sake of simplicity, we assume that the observation operator H is
linear. We can then rewrite (1) as:
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A kernel extension of the Ensemble Transform Kalman Filter 3

argmin
w∈RN

J (w) =
N − 1

2
||w||22 +

1

2
||y −Hx̄f −HXfw||2R−1 (2)

with H the observation operator.
Here, for the sake of later clarity, we introduce some additional notations:

d̃ = R
−1/2

(y −Hx̄f ) ∈ Rp and H̃ = R
−1/2

HXf =


h̃1

⊤

...

h̃p

⊤

 ∈ Rp×N .

The first order optimality condition yields w∗ solution of (2):

w∗ = [(N − 1)I+ H̃⊤H̃]−1H̃⊤d̃ (3)

We then generate the ensemble members noted xa
i ∈ Rn, ∀ i ∈ {1, ..., N}:

xa
i = x̄f +Xfw∗ +

√
N − 1(Xf∇2J )i (4)

and

∇2J = (N − 1)IN + H̃⊤H̃ (5)

In practice, the anomaly matrix from the analysis Xa is obtained by the
following formula:

Xa = XfT (6)

with T = (I+ SS⊤)−1/2 − I and S = 1√
N−1

R−1/2HXf

2.2 Reformulation and resolution of ETKF with kernels

Let the previous ETKF problem be embedded in a RKHS (Reproducing Kernel
Hilbert Space):

(2) ⇔ argmin
w∈RN

J (w) =
N − 1

2
κ(w,w) +

1

2

p∑
i=1

(κ(h̃i,w)− d̃i)
2 (7)

with κ the linear kernel defined by: κ(x,y) = x⊤y, ∀ (x,y) ∈ RN × RN .
Considering the RKHS Hκ with reproducing kernel κ, where Hκ is a func-

tional space, (7) is equivalent to:

argmin
f∈Hκ

J̃ (f) =
N − 1

2
||f ||2Hκ

+
1

2

p∑
i=1

(f(h̃i)− d̃i)
2 (8)

with f ∈ Hκ such as: f :

{
Rp → R
x 7→ κ(x,w)

We thus have extended the previous problem, since we may use any kernel,
not only the linear one.
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We now can apply the representer theorem which leads to an optimisation
problem in finite dimension, given by the amount of data {(xj)1≤j≤n; (h̃l)1≤l≤p}.
The equation (8) can then be rewritten:

argmin
α∈Rp+n

˜̃J (α) =
N − 1

2
α⊤Kα+

1

2
∥d̃−ΠHKα∥22 (9)

with:

– ΠH =

[
0nn 0np

0pn Ip

]
∈ R(n+p)×(n+p) the projection matrix on the observation

space

– K =

[
KX KXH

KXH
⊤ KH

]
∈ R(n+p)×(n+p) with

• KX = (κ(afi ,a
f
j ))1≤i,j≤n ∈ Rn×n, the kernel applied to state variables

• KHX = (κ(afi , h̃j))1≤i≤n,1≤j≤p ∈ Rn×p, the crossed kernel application
• KH = (κ(h̃i, h̃j))1≤i,j≤p ∈ Rp×p, the kernel applied to observations

The solution α∗ of (9) is then determined with the first order optimality condi-
tion:

α∗ = [(N − 1)In+p +ΠHK]−1

[
0n1

d̃

]
(10)

which can be simplified as:{
α∗
X= 0n1

α∗
H=[(N − 1)Ip +KH]−1d̃

(11)

with α∗ =

[
α∗
X

α∗
H

]
∈ Rp+n.

Thus, the mean of the ensemble after the analysis will be:

x̄a = x̄f +KXHα∗
H (12)

⇔ x̄a = x̄f +KXH[(N − 1)Ip +KH]−1d̃ (13)

It requires to solve a linear system of a symmetric positive definite (SPD)
matrix.

Ensemble’s reconstruction: Now that we have the solution α∗, we must
integrate it into the construction of the ensemble resulting from the analysis. The
idea is to extend the ensemble to construct by considering the set of variables
to be determined not only as the set of observed and unobserved variables Ea

but also the set of transformed observed variables HEa, as it has already been
done in the determination of α∗.
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A kernel extension of the Ensemble Transform Kalman Filter 5

The principle of this generation is based on the deterministic version of the
Ensemble Kalman Filter (EnKF) algorithm [17]. However, following the strategy
formalized in [17], the state vector is extended to include both observed and
unobserved variables. Formally, it reads:[

Ea

HEa

]
=

[
x̄f

Hx̄f

]
+

[
Xf

HXf

]
w +

√
N − 1Pa1/2 (14)

with Pa =

[
Pa

X Pa
XH

Pa
XH

⊤ Pa
H

]
∈ R(n+p)×(n+p) the analysis error covariance matrix.

However, in order to update the ensemble Ea, the block Pa
X of Pa is sufficient.

Setting Pa
X = UΣV⊤ the SVD of Pa

X, we truncate Σ to its rank rΣ (Σ̃) and
the columns of U are also truncated to rΣ (Ũ) to compute the square root of
Pa

X. Using (13), this can be written member by member as follows:

∀i ∈ {1, ..., N}, xa
i = x̄f +KXH[(N − 1)Ip +KH]−1d̃+ [ŨΣ̃

1/2
W]i (15)

with W ∈ RrΣ×N a rotation matrix for column augmentation as implemented
by [16] and detailed in Algorithm 3.

However, we still have to determine the expression of Pa
X in order to perform

the SVD.
From the perspective of random variables, we can write α ∼ N (µα,P

α) and we
can interpret (12) as:

xa = x̄f +ΠXKα (16)

where ΠX =
[
In 0np

]
and xa ∼ (µa,P

a
X). Thus,

Pa
X = Cov(xa

i ,x
a
j ) = ΠXKPαKΠX (17)

where (xa
i ,x

a
j )1≤(i,j)≤n are randoms draws of xa.

According to [15], Pα can be approximated by:

Pα ≈ [∇2 ˜̃J ]−1 (18)

and
∇2 ˜̃J = [(N − 1)K+KΠHΠHK] (19)

Case where K is not invertible: Since K may be singular, we thus calculate
an approximation of ∇2 ˜̃J from de generalized inverse by truncating the SVD of
the matrix at rank of K:
We set ∇2 ˜̃J = VJΣJU⊤

J = ṼJ Σ̃J ŨJ
⊤

with ṼJ , Σ̃J and ŨJ
⊤

the respective
matrix of VJ ,ΣJ ,UJ

⊤ truncated at the rank of K. Thus,

Pa
X = ΠXKṼJ Σ̃J ŨJ

⊤
KΠX (20)
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Depending on the chosen kernel, the rank of K can be less than N . We
then have to augment the columns of Pa

X
1/2 in order to keep the same num-

ber of ensemble members. Appendix A of [16] gives an algorithm to augment
an ensemble covariance matrix Pa

X while keeping the same empirical covariance(
P̃a

X

1/2
)T (

P̃a
X

1/2
)

and P̃a
X

1/2
centered. We include this algorithm in the en-

semble reconstruction.
The case where K is invertible is provided in Annex A, which gives an ana-

lytical expression for Pa
X.

The method presented above is summarized in the form of Algorithms 1,
2 and 3.

Algorithm 1 ETKF kernel analysis
H̃← R−1/2HXf

d̃← R−1/2(y −Hx̄f )
Compute K ▷ depends on the chosen kernel
α∗
H = [(N − 1)Ip +KH]−1d̃ ▷ Solve a linear system of a SPD matrix

x̄a = x̄f +KXH
⊤
α∗
H

Compute Σ, U the singular values and vectors of Pa
X ▷ refer to Algorithm 2

Truncate Σ to its rank rΣ and compute its square root: Σ̃1/2

Pa
X

1/2 ← ŨΣ̃
1/2

▷ with Ũ, the first rΣ columns of U
for i = 1... N-rΣ do

rotate Pa1/2

X following the rotation step of Algorithm 3
end for
E = x̄a +

√
N − 1Pa

X
1/2

Algorithm 2 Computation of Pa
X

if K is not invertible then
Compute ∇2 ˜̃J ← [(N − 1)K+KΠHΠHK]

Compute the SVD of ∇2 ˜̃J = UJΣJV⊤
J

Compute ŨJ , Σ̃J and ṼJ
⊤

the respective matrix of UJ ,ΣJ ,VJ
⊤ truncated

at the rank of K
Σ← Σ̃−1

J

Compute U← ΠXKŨJ ▷ Pa1/2

X = UΣ1/2

else
Compute Pa

X ← KX −KHXUHdiag( 1
(N−1)+λi

)UH
⊤KHX

⊤ ▷ with [λi]1≤i≤n

the eigenvalues of KH

Compute the SVD of Pa
X = UΣV⊤

end if
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Algorithm 3 Rotation step of Pa1/2

X , directly derived from Annex A of [16]
Require: 1 ≤ i ≤ N − rΣ

ϵ← 1.0
Compute q ← rΣ + i
Compute θ ←

√
q√

q−ϵ

Compute Qϵ ← −θ
q
×



ϵ√
q

. . . . . . . . . . . . ϵ√
q

... 1− θ
q

−θ
q

. . . . . . −θ
q

... −θ
q

1− θ
q

−θ
q

. . . −θ
q

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 1− θ

q
−θ
q

ϵ√
q

−θ
q

. . . . . . −θ
q

1− θ
q


∈ Rq×q

W←
[
0n Pa1/2

X

]
∈ Rn×q

Compute Pa1/2

X ←WQϵ

3 Numerical experiments

In the following, we perform numerical experiments in order to compare the Root
Mean Square Errors (RMSE) of the ETKF and the proposed Kernel ETKF.

3.1 Experimental setup

These experiments are performed using the Lorenz 63 model, which is a simplified
chaotic and nonlinear model for atmospheric convection, widely used in data
assimilation to benchmark. It is defined by the following differential equations:

dx

dt
= σ(y − x)

dy

dt
=ρx− y − xz

dz

dt
= xy − βz.

(21)

These equations are integrated through a fourth-order Runge-Kutta scheme
with a time-step of δt = 0.01, σ = 10, ρ = 28, β = 8/3, as set in [19] and [18].
The initial condition is distributed according to a Gaussian distribution of mean
[1.509,−1.531, 25.46] and a covariance matrix set to C = 2 ∗ I3.

A graphic representation of the Lorenz 63 model is given in Figure 1 (a).
For all experiments, we computed the average RMSE over 10 different seeds
(generating observations, initial state...).

In a first set of experiments, we compare the initial ETKF and Kernel ETKF
applied to the linear kernel:

∀(x,y) ∈ RN × RN , κ(x,y) = x⊤y (22)
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(c) L63 t anfo med by hype bolic tangent function, 
 c = 3*10e-4

Phase space evolution

Fig. 1. Phase space evolution of the Lorenz 63 model: (a) classical L63; (b) L63 tran-
formed by hyperbolic tangent fonction (25) with c = 10−4; (c) L63 tranformed by
hyperbolic tangent fonction (25) with c = 3× 10−4 to accentuate the visual effect

.

The observations are generated every δto = 0.02, as set in [19], with R =

2 ∗ I3 and we set H =

[
1 0 0
0 1 0

]
, observing only the two first variables. A burn-in

period of 5× 103 × δto is enforced, as set in [19]. For these experiments, we use
5×105 observations vectors which determines the number of cycles. We compare
different inflation factors: infl ∈ {1.0, 1.04, 1.1}. For each inflation factor, the
evaluated ensemble sizes were N ∈ {3, 6, 9, 10, 12, 15}.

In a second set of experiments, we compare the performances of the initial
ETKF and the Kernel ETKF applied to a non linear kernel: the hyperbolic
tangent one. The hyperbolic tangent kernel is defined as in [20] by:

∀(x,y) ∈ DN
c × DN

c , κ(x,y) = ϕ(x)⊤ϕ(y) (23)

where DN
c is the Poincaré ball:

DN
c = {z ∈ RN : c||z|| < 1} (24)

and
∀c > 0, ∀z ∈ DN

c , ϕ(z) = tanh−1(
√
c||z||) z√

c||z||
(25)

A representation of the Lorenz 63 transformation induced by the hyperbolic
tangent kernel with c = 10−4 and c = 3 × 10−4 are given in Figure 1 (b) and
(c) respectively. One can notice that L63 is sensitive to small variations of the c
parameter. Quantile-quantile plots are given in Figure 2 in order to compare the
initial distribution of each variable of the L63 and the distribution after applying
the hyperbolic tangent function with c = 10−4 and c = 3× 10−4 to the normal
distribution. This last case is presented only to exacerbate the visual effect of the
transformation induced by the kernel but will not be used for the Kernel ETKF
experiments, because the transformation is too important to allow a regular
convergence of the method. The QQ-plots confirm that the L63 variables have
shorter tails than the Gaussian distribution but the hyperbolic tangent stretches
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the tails of the x and y variables closer to the Gaussian. The third variable z
still shows short tails after the transformation, probably because the two L63
attractors share the same coordinate z=0. This can probably be further improved
by fine tuning a different value of the c parameter for the z variable.
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QQ plots of each variable of L63 with of without applying hyperbolic tangent function

Fig. 2. QQ plots of each variable of the L63 relative to the normal distribution, Left:
classical L63; Middle: L63 tranformed by hyperbolic tangent fonction (25) with c =
10−4; Right: L63 tranformed by hyperbolic tangent fonction (25) with c = 3× 10−4 to
accentuate the visual effect

.

First, we set H = I3 and we change the time between the generation of obser-
vations to δto = 0.50 to reinforce the nonlinearities. We use 2× 104 observation
vectors and a burn-in period of 2× 102 × δto.

We then compute a last set the experiments with H =

[
1 0 0
0 1 0

]
, observing

only the first two variables. For this set, we set δto = 0.25 and we use 5 × 104

observation vectors. A burn-in period of 5× 102 × δto is enforced.
For these experiments, we computed the average RMSE over 10 different

seeds for the two methods, using five ensembles sizes: N = {3, 6, 10, 12, 15} for
which different inflation factors have been evaluated: infl ∈ {1.0, 1.04, 1.1}.

For all the experiments presented here, we used the python package DAP-
PER [18], which allows benchmarking of performances of data assimilation meth-
ods. Several methods of data assimilation, both ensemble-based and variational,
are already implemented in the package. We have also implemented our Kernel
ETKF method.

3.2 Discussion

Comparison of the classical ETKF and the Kernel ETKF applied to
the linear kernel: In Figure 3, we represent the average RMSE of both meth-
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10 S. Mauran et al.

ods with different ensemble sizes and different inflation factors when only two
variables observed. We expect similar performances, as the two formulations are
theoretically equivalent for the linear kernel. Any differences would be due to
the method of ensemble reconstruction.
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N

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

2

3

4

5

rm
se

.a

infl=1.0

ETKF
Ker nel ETKF
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Fig. 3. Average RMSE obtained by ETKF (in green) and linear Kernel ETKF (in blue)
assimilation methods when applied to the Lorenz 63 model and observing only the first
two variables. The average is computed upon 10 different seeds generating observations,
initial state... On each subfigure, a different inflation factor is applied to each method:
Left: no inflation (infl = 1.0), Middle: infl = 1.04, Right: infl = 1.1. In each subfigure,
different ensemble sizes N were tested, in each case N ∈ {3, 6, 9, 10, 12, 15}.

When infl ̸= 1.0, in Figure 3, the results of the two methods are similar,
as expected. However, the Kernel ETKF seems more sensitive to the absence
of inflation than the classical ETKF. This could be due to the implementation
of ensemble reconstruction for the Kernel ETKF method, and in particular to
sampling issues.

We obtain similar results when all variables of the L63 are observed: the
Kernel ETKF has equivalent results with the classical ETKF, except without
inflation where it shows a slower convergence. The presented results show the
equivalent performance (when using some inflation) of the classical ETKF and
the linear kernel-based approach proposed here as expected.

Experiments with non linearity reinforcement and non linear kernels:
In this perspective, we have carried out another set of experiments, this time
increasing the time between the generation of observations to reinforce the non-
linearities in the data assimilation experiments. We tested the performance of a
non linear kernel. We present here the results for the hyperbolic tangent kernel
with c = 10−4 which presented the best performances among the tested kernels.
In Figures 4 and 5, we give the average RMSE of both methods with different
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ensemble sizes and different inflation factors when all variables are observed in
Figure 4 and only two variables observed in Figure 5.
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Fig. 4. Average RMSE obtained by ETKF (in green) and Kernel ETKF applied to
hyperbolic tangent kernel with c = 10−4 (in blue) when applied to the Lorenz 63
model and observing all variables. The average is computed upon 10 different seeds
generating observations, initial state... Left: infl = 1.0. Middle: infl = 1.04. Right:
infl = 1.1. For each subfigure, different ensemble sizes are tested: N ∈ {3, 6, 10, 12, 15}.
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Fig. 5. Average RMSE obtained by ETKF (in green) and Kernel ETKF applied to
hyperbolic tangent kernel with c = 10−4 (in blue) when applied to the Lorenz 63 model
and observing the first two variables. The average is computed upon 10 different seeds
generating observations, initial state... Left: infl = 1.0. Middle: infl = 1.04. Right:
infl = 1.1. In each one, different ensemble sizes are tested: N ∈ {3, 6, 10, 12, 15}.
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In both cases, the hyperbolic tangent Kernel ETKF has a clear advantage
over the classical ETKF, especially for small sets, which seems particularly
promising for large problems, where set size is a key issue. However, we can
note an increase in RMSE for large ensemble sizes for the hyperbolic tangent
Kernel ETKF. This increase was already observed in [21], and seems intrinsi-
cally linked to the ETKF. The hyperbolic tangent Kernel ETKF being more
efficient for small ensemble sizes, it is logical that the above mentioned problem
occurs earlier. This problem of RMSE increase can be corrected by introducing
a rotation after the analysis, as proposed in [22].

In Figure 6, we take a closer look at the similarities between the ensemble
spread (experimental measure of forecast error) and the RMSE (exact measure
of forecast error) for each variable of the system in the case where N = 10, infl
= 1.04 and the two first variables are observed (same as in Figure 5). We note
that the RMSE of the classical ETKF is globally further from the spread than
the one of the Kernel ETKF, which explains in this case the overall difference in
RMSE between the two methods and the fact that the Kernel ETKF gives an
overall better result than the classical ETKF. Some statistics for this experiment
are given in Table 1. The advantage of the Kernel ETKF over the classical
ETKF is highlighted: the RMSE of each model variable is lower for the Kernel
ETKF than for the classical ETKF.
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Fig. 6. Ensemble spread (in orange) and RMSE (in blue) obtained by hyperbolic tan-
gent Kernel ETKF (left panel) and classical ETKF (right panel) assimilation methods
when applied to the Lorenz 63 model and observing the first two variables variables in
the case where N = 10, infl = 1.04. The ensemble spread and RMSE are displayed for
each three variables of the L63 model individually.
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ETKF Kernel ETKF
L63 variable RMSE Spread RMSE Spread

x 1.1 ± 1.0 0.68 ± 0.062 0.69 ± 0.28 0.75 ± 0.057
y 1.4 ± 1.1 0.93 ± 0.082 0.93 ± 0.32 1.0 ± 0.069
z 2.2 ± 1.7 1.4 ± 0.37 1.5 ± 0.82 1.7 ± 0.43

Table 1. RMSE and Spread of each variables for the hyperbolic tangent Kernel ETKF
and the classical ETKF when applied to the Lorenz 63 model and observing the first
two variables variables in the case where N = 10, infl = 1.04.

4 Conclusion and Perspectives

In this paper, we have proposed a generalisation of the ETKF problem by in-
troducing kernels into its formulation. We also proposed a reconstruction of the
set from the solution of the optimisation problem induced by the formulation.
An explicit algorithm for this method is given. In a second part, we compared
the performance of the proposed method with the linear kernel and the hyper-
bolic tangent kernel with that of the ETKF in the Lorenz 63 framework. We
obtained similar performances for the linear kernel which was theoretically ex-
pected. We also could envisage the interest of using other kernels with the results
of the hyperbolic tangent kernel when the model presents important nonlinear-
ities, which is encouraging for the continuation of our research: the interest of
the kernel methods will intervene when we will address systems where the use of
non-linear kernels (such as the Gaussian or hyperbolic tangent kernels) will be
more appropriate for the given data. Moreover, the good results obtained with
the hyperbolic tangent kernel are particularly interesting in the case of small
ensembles, since the size of the ensemble is a key issue when dealing with high
dimensional problems.

We are currently considering the integration of localisation into our method:
for localisation by Schur product, we consider as localisation matrix an exponen-
tial kernel matrix with respect to the distances between the variables and the
observations. The Schur product with our kernel matrix on the data retains the
kernel characteristic and we can then apply the resolution on this new matrix. For
domain-based localisation, the local analysis as proposed in the LETKF of [14],
implemented in DAPPER [18], is easily modified to be applied to our method,
which would have advantages in terms of resolution cost and parallelisation of
the method.
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A Construction of P a when K is invertible

We consider the expression of Pa given by (17):

Pa = KPαK

and substitute for Pα its approximation by the hessian (18):

Pa = K[(N − 1)K+KΠHΠHK]−1K (26)

Since K is invertible,

⇔ Pa =
1

N − 1
(K−1 +

1

N − 1
ΠHΠH)−1 (27)

We the apply Woodbury identity:

⇔ Pa =
1

N − 1
(K−KΠH((N − 1)In+p +ΠHKΠH)−1ΠHK) (28)

⇔ Pa =
1

N − 1
(K−

[
0n KHX

0pn KH

] [
(N − 1)In 0np

0pn (N − 1)Ip +KH

]−1 [
0n 0np

KHX⊤ KH

]
)

(29)

Let KH decompose as KH = UHΣHUH
⊤ with ΣH = diag([λi]1≤i≤p) and

[λi]1≤i≤p the eigenvalues of KH. We finally obtain:

P
a
=

1

N − 1

[
KX − KHXUHdiag( 1

(N−1)+λi
)UH

⊤KHX
⊤ KHX − KHXUHdiag(

λi
(N−1)+λi

)UH
⊤

KHX
⊤ − UHdiag(

λi
(N−1)+λi

)UH
⊤KHX

⊤ UHdiag(
λi(N−1)

(N−1)+λi
)UH

⊤

]
(30)

This gives an explicit expression for Pa which does not require numerical
inversion.
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