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Abstract. In the field of large-scale field reconstruction, Kriging has
been a commonly used technique for spatial interpolation at unobserved
locations. However, Kriging’s effectiveness is often restricted when deal-
ing with non-Gaussian or non-stationary real-world fields, and it can be
computationally expensive. On the other hand, supervised deep learning
models can potentially address these limitations by capturing underly-
ing patterns between observations and corresponding fields. In this study,
we introduce a novel deep learning model that utilizes vision transform-
ers and autoencoders for large-scale field reconstruction. The new model
is named ViTAE. The proposed model is designed specifically for large-
scale and complex field reconstruction. Experimental results demonstrate
the superiority of ViTAE over Kriging. Additionally, the proposed Vi-
TAE model runs more than 1000 times faster than Kriging, enabling
real-time field reconstructions.
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1 Introduction

Spatial interpolation, which is predicting values of a spatial process in unmon-
itored areas from local observations, is a major challenge in spatio-temporal
statistics. As a reference method of spatial interpolation, Kriging [18,5] provides
the best linear unbiased prediction from observations. As a Gaussian process [21]
governed by covariance, Kriging interpolates unmonitored areas as a weighted
average of observed data. Kriging [18,5] is a geostatistical method that provides
the optimal linear unbiased prediction based on observed data. It assumes that
the underlying data follows a Gaussian process and is governed by covariance.
However, authors [19,26] noted that in many cases, the spatial covariance func-
tion of physical fields is non-Gaussian and non-stationary. As a consequence, the
optimality of Kriging can not be guaranteed in real-world scenarios. Another lim-
itation of Kriging is that its computational complexity can render it impractical
for large spatial datasets. In fact, the online implementation of Kriging involves
computing the inversion of a N × N covariance matrix, where N is the num-
ber of observed locations [13]. The aforementioned limitations of Kriging pose
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significant challenges in utilizing this method for generating credible large-field
reconstructions in real-time.

Recently, deep learning (DL) [15] or neural network (NN) [14] have be-
come increasingly utilized and powerful prediction tools for a wide range of
applications[11], especially in computer vision and natural language process-
ing [15]. DL has witnessed an explosion of architectures that continuously grow
in capacity [22]. The utilization of convolutional neural network (CNN)s has
become increasingly prevalent due to the rapid progress in hardware. CNNs
are well-suited for prediction tasks that involve complex features, such as non-
linearity and non-stationarity, and offer computational efficiency when analyzing
massive datasets with GPU acceleration. Previous research efforts, such as [23],
have explored the use of DL techniques for field reconstructions from observa-
tions. However, the traditional CNN-based approaches are inadequate in dealing
with the problem of time-varying sensor placement. Re-training is often required
when the number or the locations of sensors change, resulting in difficulties of
real-time field construction. Therefore, this paper proposes the use of DL for
large field reconstruction from random observations in real time.

2 Related works and contribution of the present work

NNs [15] have become a promising approach for effectively reconstructing fields
from sparse measurements. [8,1,25]. While graph neural network (GCN) [24] and
multi-layer perception (MLP) [15] could handle sparse data, they are known to
scale poorly because of the high computational cost. Moreover, these methodolo-
gies require predetermined measurements as input data, which renders them un-
feasible for real-world situations where sensor quantities and positions frequently
vary over time, ultimately making them impractical [7]. To tackle these two bot-
tlenecks, Fukami et al. [9] utilized Voronoi tessellation to transfer observations to
a structured grid representation, which is available for CNN. Despite their effec-
tiveness in capturing features, CNN typically overlook the spatial relationships
between different features, thus making it difficult for them to accurately model
the spatial dependencies required for reconstructing large-scale fields [16]. This
difficulty can be addressed by the introduction of Vision Transformers (ViT) [6].
Transformers were proposed by Vaswani et al. (2017) [22] and have since become
the state-of-the-art method in machine translation [20]. Apart from the complex
architecture of transformers, the effectiveness of natural language processing
(NLP) models heavily relies on the training strategy employed. One of the crit-
ical techniques utilized in training is auto-encoding with masks [12], where a
subset of data is removed, and the model learns to predict the missing content.
This technique has also demonstrated promising results in the field of computer
vision, further highlighting its potential for enhancing model performance. By
using masked autoencoder (AE)s to drop random patches of the input image
and reconstruct missing patches, He et al. [12] demonstrates that it is possible
to reconstruct images that appear realistic even when more than 90% of the orig-
inal pixels are masked. The underlying principle of reconstructing an image from
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randomly selected patches bears resemblance to the process of reconstructing a
field from observations.

Although the ViT model and the AE method [12] have succeeded in image re-
construction, to the best of our knowledge, no previous studies have applied them
to field reconstruction task. Inspired by the success of ViT and AE methods, we
propose a simple, effective, and scalable form of a Vision Transformer-based au-
toencoder (ViTAE) for field construction. To address the challenges mentioned
earlier, we present a technique ViTAE that incorporates sparse sensor data into a
Transformer model by mapping the observed values onto the field grid and mask-
ing unobserved areas. The masked observations field is divided into patches and
fed into the transformer encoder to obtain representations. These representations
are reshaped into patches and concatenated before being fed into the decoder
to predict the grid values. Our proposed model, ViTAE, is capable of efficiently
and accurately reconstructing fields from unstructured and time-varying obser-
vations. We compare the performance of our ViTAE with Kriging-based field
reconstruction methods in this study.

The rest of the paper is organized as follow. Section 3 introduces the con-
struction and properties of our ViTAE method. Section 4 presents some studies
to show the performance of ViTAE. Section 5 summarizes our main results and
suggests directions for future work.

3 Methodology

Our objective is to reconstruct a two-dimensional global field variable Q (dim(Q) =
n) from some local observations {Q̃i}, i ∈ O where O is a subset of [1, ..., n]. The
proposed ViTAE is an autoencoder that aims to reconstruct the complete field
from its partial observations. To deal with the sparsity of the data and extract
meaningful representations, we employ a ViT-based autoencoder, which enables
us to process the observations. Figure 1 illustrates the flowchart of the proposed
approach.

Fig. 1. Model overview. We split an image into fixed-size patches, linearly embed each
of them, add position embeddings, and feed the resulting sequence of vectors to a
standard Transformer encoder.
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ViT-based autoencoder First, to allow computationally tractable use of ViT, we
project local sensor measurements into a grid field I according to their location
in the field, defined as:

Ii (i = 1, ..., n) =

{
Q̃i if Q̃i is observable (i.e., i ∈ O)
0 otherwise.

(1)

Just as in a standard ViT, we reshape the field I into a sequence of N flat-
tened 2D patches, N is the resulting number of patches, which also serves as
the effective input sequence length for the Transformer. The Transformer uses a
constant latent vector size D through all of its layers, so we flatten the patches
and map to the embedding of dimensions D by a linear projection with added
positional embeddings, and then process the resulting set via a series of Trans-
former blocks to obtain latent representations and map the latent representation
back to the predicted field PE .

Reconstruction target Our ViTAE reconstructs the field by predicting the values
for entire field grids. Unlike [12] which calculates the loss only on the masked
patch, we compute the loss in the entire field. The loss is defined as:

L = MSE (Q,PE) (2)

it computes the mean squared error (MSE) between the reconstructed PE and
original fields Q in pixel space.

4 Test cases and results

This section presents an evaluation of the performance of ViTAE compared to
Kriging in stationary simulation data with a structured grid. To create a spa-
tially isotropic physical field, we generated the simulation field data using the
Gaussian covariance kernel with the help of gstool [17]. As a result, the correla-
tion between two points in the field is dependent solely on their spatial distance,
which is ideal for the Kriging method. Such simulations are commonly employed
for comparing various field reconstruction approaches [2]. After generating the
grid field, a random selection of grid points is used as observations for field re-
construction. Unlike the ViTAE method, Kriging requires prior knowledge of
the covariance kernel, including the kernel function and correlation length. To
further investigate the robustness of the method, numerical experiments of Krig-
ging are conducted using two kernel functions: Gaussian and Exponential, both
with the same correlation length as used for data generation. The latter is done
to simulate cases where the kernel function is misspecified, as in real-world ap-
plications, the exact covariance kernel is often unknown [10].

Our initial focus is on the computational efficiency of the proposed method.
Table 1 displays the accuracy of the reconstructing fields using the Gaussian ker-
nel of different sizes with varying numbers of observations. The results indicate
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that when the field size is larger than 256 and the number of observations ex-
ceeds 0.1%, Kriging’s computational time grows exponentially, taking thousands
of seconds to fit and predict. It should be noted that Kriging must be performed
online, i.e., after the observations are available, which poses computational chal-
lenges for high-dimensional systems. To compare the reconstruction accuracy of
our proposed ViTAE against Kriging, we conducted experiments on a field size
of 512×512. We used 0.5%, 1%, 2%, and 5% of the total number of grid points in
the field as the number of observations for training. For each observation ratio,
we generated 10,000 field snapshots and randomly selected observations from
each snapshot. This allowed us to use time-varying observations as input data
for Kriging and ViTAE to learn the entire physical field. We randomly parti-
tioned our dataset into training, validation, and testing sets using an 80/10/10
split.

Model ϵ

Kriging/RBF 0.2243 0.2221 0.2218 0.2215
Kriging/Exp 0.2553 0.2552 0.2550 0.2379

ViTAE-lite/16 0.2431 0.2346 0.2290 0.2242
ViTAE-base/16 0.2280 0.2369 0.2250 0.2234
ViTAE-large/16 0.2255 0.2228 0.2213 0.2202
Sampling Percent 0.5% 1% 2% 5%

Table 1. Gaussian field reconstruction result of the Gaussian field reconstruction for
ViTAE, and Kriging.

Model variation For the ViT-based encoder design, we follow the original ViT
set up [6] and use “Lite”, “Base”, and “Large” models, such that ViT-Lite has 8
layers, 32 as hidden size, 8 as Heads, 16 hannels and 16 as Patch size, ViT-Base
has 8 layers, 64 as hidden size, 32 as Heards, 16 hannels and 16 as Patch size,
and ViT-Large has 8 layers, 128 as hidden size, 64 as Heads, 16 hannels and
16 as Patch size. In what follows we use brief notation to indicate the model
size and the input patch size: for instance, ViT-L/16 denotes the “Large” variant
with 16 × 16 input patch size.

The field reconstruction results are shown in Figure 2. The field reconstructed
by ViTAE shows great similarity against the ground truth (GT) without knowing
the spatial correlation function a priori.
Figure 2 also reports the relative error defined as:

ϵ =
∥Qref −Qreconstruct∥2

∥Qref ∥2
, (3)

where ∥ · ∥ denotes the L2 norm, and Qref and Qreconstruct are the reference and
reconstructed simulation fields, respectively. This metric of relative error has
been widely used in field reconstruction and prediction tasks [4,3]. In this section,

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_34

https://dx.doi.org/10.1007/978-3-031-36027-5_34
https://dx.doi.org/10.1007/978-3-031-36027-5_34


6 H. Fan, S. Cheng, A. de Nazelle, R. Arcucci

Fig. 2. 512 × 512 Gaussian field reconstruction results of ViTAE and Kriging , 0.5%
sampling rate comparet to the GT.

we compare the performance of our ViTAE model with two Kriging models
using Gaussian and exponential covariance kernels, denoted as Kriging/RBF
and Kriging/exp, respectively. As shown in Figure 2, Kriging/exp is significantly
outperformed by Kriging/RBF, which demonstrates the vulnerability of Kriging
when the covariance kernel is not perfectly known. On the other hand, our ViTAE
model, which does not require prior knowledge of the covariance kernel, achieves
reconstruction results that are almost as accurate as Kriging/RBF. Additionally,
the online computation of ViTAE is much more efficient than Kriging, as shown
in Table 2. For example, when 5% of the field is observable, ViTAE-lite/16 runs
106 faster than Kriging.

Model Execution time (s)
Kriging/RBF 21 59 191 1491
Kriging/Exp 31 76 253 1586

ViTAE-lite/16 0.0105 0.0104 0.0105 0.0106
ViTAE-base/16 0.0128 0.0127 0.0128 0.0128
ViTAE-large/16 0.0150 0.0154 0.0151 0.0153
Sampling Percent 0.5% 1% 2% 5%

Table 2. Execution time in seconds of the Gaussian field reconstruction for ViTAE,
and Kriging.
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5 Conclusion

A long-standing challenge in engineering and sciences has been spatial interpo-
lation for large field reconstruction. To tackle this issue, the paper introduces
a novel autoencoder based on the ViT architecture, which serves as an efficient
learner for spatial interpolation. The results presented in this paper indicate
that the proposed ViTAE approach outperforms the Kriging method in spatial
interpolation tasks. The method does not require prior knowledge of the spatial
distribution and is computationally efficient. This work opens up new possi-
bilities for applying DL to spatial prediction and has potential applications in
complex data structures. In addition, the proposed method can be extended to
real-world physical systems to investigate relationships and correlations between
observations, supporting studies in spatio-temporal statistics and geostatistics.
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