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Abstract. This paper proposes a wildfire prediction model, using ma-
chine learning, social media and geophysical data sources to predict wild-
fire instances and characteristics with high accuracy. We use social media
as a predictor of wildfire ignition, and a machine learning based reduced
order model as a fire spead predictor. We incorporate social media data
into wildfire instance prediction and modelling, as well as leveraging
reduced order modelling methods to accelerate wildfire prediction and
subsequent disaster response effectiveness.
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1 Introduction

Real-time forecasting of wildfire dynamics has attracted increasing attention
recently in fire safety science. Twitter and other social media platforms are in-
creasingly being used as real-time human-sensor networks during natural disas-
ters, detecting, tracking and documenting events [13]. Current wildfire models
currently largely omit social media data, representing a shortcoming in these
models, as valuable and timely information is transmitted via this channel [14].
Rather, these models use other data sources, mainly satellites, to track the ig-
nition and subsequently model the progression of these events. This data can
often be incomplete or take an infeasible amount of preprocessing time or com-
putation. Subsequently, the computation of current wildfire models is extremely
challenging due to the complexities of the physical models and the geographical
features [8]. Running physics-based simulations for large-scale wildfires can be
computationally difficult. The combination of these factors often makes wildfire
modelling computationally infeasible, due to both the unavailability or delay in
the data, and the computational complexity of the subsequent modelling.

We show that by including social data as a real-time data source, setting up a
Twitter based human sensor network for just the first days of a massive wildfire
event can predict the ignition point to a high degree of accuracy. We also pro-
pose a novel algorithm scheme, which combines reduced-order modelling (ROM)
and recurrent neural networks (RNN) for real-time forecasting/monitoring of
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the burned area. An operating cellular automata (CA) simulator is used to com-
pute a data-driven surrogate model for forecasting fire diffusions. A long-short-
term-memory (LSTM) neural network is used to build sequence-to-sequence pre-
dictions following the simulation results projected/encoded in a reduced-order
latent space. This represents a fully coupled wildfire predictive & modelling
framework. The performance of the proposed algorithm has been tested in a
recent massive wildfire event in California - The Chimney Fire.

In using social data coupled with a fast and efficient model, we aim to help
disaster managers make more informed, socially driven decisions. We implement
machine learning in a wildfire prediction model, using social media and geo-
physical data sources to predict wildfire instances and characteristics with high
accuracy. We demonstrate that social media is a predictor of wildfire ignition,
and present aforementioned novel modelling methods which accurately simulate
these attributes. This work contributes to the development of more socially con-
scious wildfire models, by incorporating social media data into wildfire instance
prediction and modelling, as well as leveraging a ROM to accelerate wildfire
prediction and subsequent disaster response effectiveness.

2 Background & Literature Review

Sentiment analysis has been used in several studies [16, 3, 4] to predict natural
disasters. These studies analyse social media content to detect sentiments re-
lated to natural disasters and identify potential warnings or updates. [15] used
Twitter data and sentiment analysis to identify tweets related to wildfires and
classify them based on the level of urgency. The study utilized natural language
processing techniques to extract features from the tweets, such as location, hash-
tags, and keywords, and trained a machine learning model to classify the tweets
into categories such as warnings, updates, or irrelevant. In addition to sentiment
analysis, some studies have also used other techniques such as image analysis
and environmental data integration to improve the accuracy of wildfire detec-
tion [18, 12]. For example, [23] used a combination of machine learning models
and environmental data such as temperature and humidity to predict the oc-
currence and spread of wildfires accurately. In summary, sentiment analysis has
shown promise to predict and detect wildfires. By analyzing social media content
and identifying relevant sentiments, researchers can improve the efficiency and
accuracy of real-time detection systems which is crucial for real-time wildfire
nowcasting. Machine learning (ML)-based reduced order surrogate models [17,
5] have become a popular tool in geoscience for efficiently simulating and pre-
dicting the behavior of complex physical systems. Advantages of these models
include their ability to effectively capture the nonlinear relationships and high-
dimensional input-output mappings in geoscience problems and their ability to
operate in real-time [6]. These models can be easily combined with data as-
similation techniques to perform real-time corrections [9]. Additionally, machine
learning algorithms can be trained on large amounts of data, making it possible
to effectively incorporate a wide range of observations and simulations into the
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modeling process [8]. ML-based ROMs have shown promise in the application of
wildfire forecasting [8, 24, 25]. These models can effectively capture the complex
relationships between inputs such as weather patterns, topography, and vegeta-
tion, and outputs such as fire spread and intensity. Advantages of these models
include the ability to operate in real-time, the ability to effectively incorporate
a wide range of observations and simulations, and the ability to incorporate the
effects of time-varying variables such as wind speed and direction.
In this paper, we apply a surrogate model based on offline cellular automata
(CA) simulations [2] in a given ecoregion. The physics-based CA model takes
into account the impact of geophysical variables such as vegetation density and
slope elevation on fire spread. The surrogate model consists of POD (Proper
Orthogonal Decomposition) [19] (also known as Principle Component Analysis
(PCA)) and LSTM (Long Short-Term Memory) neural network [20]. Wildfire
spread dynamics are often chaotic and non-linear. In such cases, the use of ad-
vanced forecasting models, such as LSTM networks, can be highly beneficial in
providing accurate and timely predictions of fire spread.

3 Methods

The pipeline of the proposed Human-Sensors & Physics aware machine learning
framework is shown in Figure 1. The main two component consist of the ignition
point prediction using the Human Sensor network and the fire spread prediction
using a ML based ROM.

Fig. 1. Workflow of the proposed Human-Sensors & Physics aware Machine Learning
framework

Ignition point prediction using social media: The data used for the instance
prediction stage of the coupled model is taken from Twitter, using an aca-
demic licence for the V2 API, allowing for a full archive search of all tweets
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from the period of the event. The twitter data queried was geotagged with a
place name, which was subsequently geocoded to generate coordinates for the
place of posting. The historical tweets were queried using the following query:
‘(ChimneyORFireORWildfireOR#ChimneyFire)place : Californiahas : geo′,
meaning the query was for the first keywords, posted in the region of California,
and containing geolocation data. The query was run on a full historical search
from public accounts from 12th-13th August 2016 - the first day of the wild-
fire event. For this period, in this location, 154 Tweets were downloaded and
analysed. The resulting tweets then formed the dataset for the prediction. These
tweets were analysed using a BERT transformer model for disaster classification,
using the same methodology as used in [1]. This model analyses the text content
of the message, and allocates disaster related labels based on the content of the
post. Only posts with labels, i.e. classified by the model to be disaster related,
were considered. Following this, the place name was extracted from the filtered
Tweets via the Tweet metadata. The place name is given by a placeid, a hash
code allocated by the API. Some of these also contained coordinates, but those
that didn’t were geocoded using the API to generate lon and lat coordinates for
the tweet. Finally, all of the filtered, disaster related Tweets for the first day of
the event had been allocated coordinates. Following this, named entity extraction
was performed using google Entity Analysis API. This API uses NLP to extract
named entities from a string of text. For this stage of the analysis, only entities
with the type ‘LOCATION’ were extracted. These entities extracted were then
geocoded using the Google Maps Geocoding API. Finally, the coordinate list for
the tweet location and named entity location were averaged and used to make
the final prediction for the wildfire ignition point. The averages were performed
with a higher weighting on the locations extracted from the Entity Analysis, as
these had been shown to be more indicative of accurate wildfire reporting.

Physics Aware Wildfire Nowcasting The ignition point computed in the first
part, is here used as input to predict the fire spread. The physics simulation is
implemented using a CA model, a mathematical model used for simulating the
behavior of complex systems [2, 21]. In this study, the basic idea behind CA is
to divide the landscape into a grid of cells, each of which can be in a certain
state (e.g., unburned, burning, burned) [2, 8]. At each time step, the state of a
cell is updated based on the states of its neighboring cells and a set of rules that
determine how fire spreads. To generate the training dataset of machine learning
algorithms, we perform offline CA simulations with random ignition points in a
given ecoregion. To do so, an ecoregion of dimension 10×10 km2 (split equally to
128× 128 cells for CA) is chosen. 40 fire events with random ignition points are
generated using the state-of-the-art CA model [2]. We then train a ML model us-
ing the simulations as training data. The ML model can then be used for unseen
fire events in the ecoregion. A reduced space is then computed implementing a
POD, a mathematical method used in dynamical systems to reduce the complex-
ity and dimensionality of large-scale systems. It represents the system’s behavior
using a reduced set of orthogonal modes. These modes are obtained through a
singular value decomposition of the time-series data as shown in many applica-
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tions [10, 7, 26]. In this study, POD is applied to perform dimension reduction
for wildfire burned area, where 100 principle components are used to describe
the whole system. More precisely, the temporal-spatial snapshots, obtained from
offline CA simulations [2] are collected to compute the principle components of
the burned area. These offline CA simulations are carried out with randomly
selected ignition point in the ecoregion. This ensures the good generalizability
of the proposed approach when dealing with unseen data. Finally a ML model
is trained in the reduced space using a LSTM [20], a type of recurrent neural
network commonly used in machine learning and deep learning applications. In
a reduced latent space, LSTMs are used to model complex sequential data in
a compact and computationally efficient manner [11, 22, 5]. After the dimension
reduction, by working in the reduced latent space, the LSTM network is able
to handle the high-dimensional input data. In this work,we train a sequence-to-
sequence LSTM model for burned area forecasting. The model take 4 snapshots
(equivalent of 24 hours of fire spread) to predict the next 4 time steps of fire
propagation. To form the training datasets for both POD and LSTM, 40 simula-
tions with random ignition points are created. Each simulation is performed with
4 days of fire spread after ignition. Once the prediction in the lo.w-dimensional
latent space is performed, the predicted latent vector can be decompressed to
the full physical space. Forecasting the spread of a wildfire at the beginning of
the fire is crucial because it helps decision-makers allocate resources effectively
and prioritize evacuation plans.

4 Results: wildfire ignition and spread prediction

We tested the proposed approach on the Chimney wildfire event. The system has
analysed twitted data as detailed in Section 3 and the ignition point result in (-
119.72232658516701, 37.53677532750952) as (latitude, longtitude) coordinates.
This point has been used as starting point for the fire spread prediction detailed
later. The predicted fire spread of the first four days is illustrated in Figure
2. The image background represent the associated vegetation distribution in
the ecoregion where the green color refers to a high vegetation density. The
dimension of the ecoregion is about 10× 10km2. As explained in Section 3, CA
simulations are carried out offline a priori to generate training data for the
ML surrogate model. The developed ML model then manages to handle unseen
ignition scenarios with the closest ecoregion. It can be clearly observed from
Figure 2 that the wildfire prediction model exhibits a high level of performance,
with a simulated fire spread that demonstrates a strong alignment with relevant
geological features, namely the vegetation distribution. In fact, as described in
Section 3, the ML model learns the fire-vegetation relationship from the CA
simulation. It is clearly shown in Figure 2 that the area with higher vegetation
density will have a higher probability to be burned out. In this study, we focus
on the initial phase of fire spread (i.e., the first four days) since providing in-
time fire spread nowcasting at the beginning of the fire event is crucial for fire
fighting decision making. We also compare the predicted evolution of the burned
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Fig. 2. Predicted sequences of burned area with the ignition point predicted by human
sensors. The time interval is 6 hours and the first four time steps are provided by the
CA simulation as the initial input of the ML model.
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Fig. 3. The burned area after ignition: Satellite vs. ML prediction

area in km2 to the satellite observations in Figure 3. It can be clearly seen
that the predicted burned area in km2 exhibits a growth trajectory similar to
that of the observed values, which demonstrates the robustness of the proposed
approach. The comparison between the proposed POD + LSTM approach and
the original CA simulations has been performed in [8] for recent massive wildfires
in California.

5 Conclusion & Future Work

The human-sensors & physics aware machine learning proposed in this pa-
per provide an end-to-end framework that provides reliable fire ignition detec-
tion/localization and early-stage fire spread nowcasting. By including social data
as a real-time data source, we show that setting up a Twitter based human sensor
network for just the first days of a massive wildfire event can accurately predict
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the ignition point of the event. Subsequently, using our novel algorithm, we
show that the predicted burned area for each day of the event can be accurately
modelled quickly and efficiently without using conventional data sources. The
combination of using this real-time data source and a ROM system, we propose
a lightweight coupled framework for real time wildfire detection and modelling.
This work employs and develops the concept of the human-sensor in the con-
text of wildfires, using users’ Tweets as noisy subjective sentimental accounts of
current localised conditions. By leveraging this social data, the models make pre-
dictions on wildfire instances. Subsequently, these instances are modelled using
a fast, computationally efficient and accurate wildfire prediction model which is
able to predict ignition points and burned area. We found that the main error
in the prediction of fire ignition was that the ignition point prediction was bi-
ased towards more highly by populated areas. This result is to be expected to
an extent, as there would naturally be more viewers and therefore sensors of an
event in these locations. To combat this, a future work can aim to improve the
methodology by taking into account the population density.
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