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Abstract. Variational data assimilation and deep learning share many
algorithmic aspects. While the former focuses on system state estima-
tion, the latter provides great inductive biases to learn complex rela-
tionships. We here design a hybrid architecture learning the assimilation
task directly from partial and noisy observations, using the mechanistic
constraint of the 4DVAR algorithm. Finally, we show in an experiment
that the proposed method was able to learn the desired inversion with
interesting regularizing properties and that it also has computational
interests.
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1 Introduction

Data Assimilation [5] is a set of statistical methods solving particular inverse
problems, involving a dynamical model and imperfect data obtained through an
observation process, with the objective to estimate a considered system state. It
produces state-of-the-art results in various numerical weather prediction tasks
and is mostly used in operational meteorological centers.

Although they are not initially designed for the same purpose, variational
data assimilation [11] and deep learning share many algorithmic aspects [1]. It
has already been argued that both methods can benefit from each other [17,
10]. Data assimilation provides a proper Bayesian framework to combine sparse
and noisy data with physics-based knowledge while deep learning can leverage a
collection of data extracting complex relationships from it. Hybrid methods have
already been developed either to correct model error [8, 6], to jointly estimate
parameters and system state [4, 14] or to fasten the assimilation process [20].
Most of these algorithms rely on iterative optimization schemes alternating data
assimilation and machine learning steps.

In this work we design a hybrid architecture bridging a neural network and
a mechanistic model to directly learn system state estimation from a collection
of partial and noisy observations. We optimize it in only one step still using
the variational assimilation loss function. Finally, We show in an experiment
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using the chaotic Lorenz96 dynamical system, that the proposed method is able
to learn the variational data assimilation with desirable regularizing properties,
then providing a computationally efficient inversion operator.

2 Related work

Hybridizing data assimilation with machine learning. While deep learning has
proven to be extremely useful for a variety of inverse problems where the ground
truth is available, unsupervised inversion is still being investigated [15]. For in-
stance, when data are highly-sparse, neural architectures may be hard to train.
On the other hand, data assimilation can provide dense data. From this state-
ment, approaches have naturally emerged in the data assimilation community,
iterating data assimilation steps and machine learning steps for simultaneous
state and parameters estimation [4, 14]. But end-to-end learning approaches are
also investigated, in [7] the architecture is constrained to internally behave like
a 4DVAR pushing the hybridization further.

Mechanistically constrained neural networks. Variational data assimilation has a
pioneering expertise in PDE-constrained optimization [11], making use of auto-
matic differentiation to retro-propagate gradients through the dynamical system.
In [3, 13] the output of a neural network is used as input in a dynamical model,
and architectures are trained with such gradients, in a supervised and adver-
sarial manner, respectively. Similar methods have been used to learn accurate
numerical simulations still using differentiable mechanistic models [18, 19]. Also,
Physically-consistent architectures are developed to enforce the conservation of
desired quantity by neural architectures [2].

3 Data assimilation and learning framework

3.1 State-space system

A system state Xt evolves over time according to a considered perfectly known
dynamics Mt and observations Yt are obtained through an observation operator
H up to an additive noise εRt

, as described in Eqs. 1 and 2,

Dynamics: Xt+1 = Mt(Xt) (1)
Observation: Yt = Ht(Xt) + εRt

(2)

We denote the trajectory X = [X0, . . . ,XT ], a sequence of state vectors over
a temporal window, and Y the associated observations. The objective of data
assimilation is to provide an estimation of the posterior probability p(X | Y)
leveraging the information about the mechanistic model M. The estimation can
later be used to produce a forecast.
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3.2 The initial value inverse problem

When considering the dynamics perfect, the whole trajectory only depends on
the initial state X0, the assimilation is then said with strong-constraint. The
whole process to be inverted is summed up in the simple Eq. 3, where F is
the forward model, combining Mt and Ht. More precisely, by denoting multiple
model integrations between two times Mt1→t2 , we can rewrite the observation
equation as in Eq. 4.

Y = F(X0) + εR (3)
Yt = Ht ◦M0→t(X0) + εRt (4)

The desired Bayesian estimation now requires a likelihood model p(X | Y) and
a prior model p(X) = p(X0). We assume the observation errors uncorrelated in
time so that p(X | Y) =

∏
t p(εRt

) and we here make no particular assumption
on X0 corresponding to a uniform prior.

3.3 Variational assimilation with 4DVAR

The solve this problem in a variational manner, it is convenient to also assume
white and Gaussian observational errors εRt

, of known covariance matrices Rt,
leading to the least-squares formulation given in Eqs. 5, where ∥εRt

∥2Rt
stands

for the Mahalanobis distance associated with the matrix Rt. The associated loss
function is denoted J4DV , Eq. 6, and minimizing it corresponds to a maximum
a posteriori estimation, here equivalent to a maximum likelihood estimation.

− log p(X | Y) =
1

2

T∑
t=0

∥εRt
∥2Rt

− logK s.t. M(Xt) = Xt+1 (5)

J4DV (X0) =
1

2

T∑
t=0

∥Ht ◦M0→t(X0)−Yt∥2Rt
(6)

This optimization is an optimal control problem where the initial state X0

plays the role of control parameters. Using the adjoint state method, we can
derive an analytical expression of ∇X0J4DV as in Eq. 7. It is worth noting that
the mechanism at stake here is equivalent to the back-propagation algorithm
used to train neural networks. The algorithm associated with this optimization
is named 4DVAR.

∇X0
J4DV (X0) =

T∑
t=0

[
∂(Ht ◦M0→t)

∂X0

]⊤
Rt

−1εRt
(7)

3.4 Learning inversion directly from observations

We now consider independent and identically distributed trajectories denoted
and the dataset of observations D = {Y(i),R−1(i)}Ni=1. The associated ground

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_32

https://dx.doi.org/10.1007/978-3-031-36027-5_32
https://dx.doi.org/10.1007/978-3-031-36027-5_32


4 A. Filoche et al.

truth T = {X(i)}Ni=1 is not available so the supervised setting is not an option.
The posteriors for each trajectory are then also independent as developed in this
equation: log p(T | D) =

∑N
i=0 log p(X

(i) | Y(i)).
Our objective is to learn a parameterized pseudo-inverse F⋆

θ : (Y,R−1) 7→ X0

that should output initial condition from observations and associated errors co-
variance, which is exactly the task solved by 4DVAR. Such modeling choice cor-
responds to the prior p(X0) = δ(X0−F⋆

θ (Y,R−1)), as we do not use additional
regularization, where δ is the Dirac measure.

To learn the new control parameters θ, we leverage the knowledge of the
dynamical model M as in 4DVAR. After outputting the initial condition X0 we
forward it with the dynamical model and then calculate the observational loss.
A schematic view of the performed integration is drawn in Fig. 1.

data
control variables

estimation

numerical cost

Fig. 1. Schematic view of the hybrid architecture learning the 4DVAR inversion

Then the cost function associated with the MAP estimation can be developed
as in Eq. 8. A simple way of thinking it is to run multiple 4DVAR in parallel to
optimize a common set of control parameters θ.

J (θ) =
∑
D

J4DV (X
(i)
0 ) s.t. Fθ(Y

(i),R−1(i)) = X
(i)
0 (8)

To calculate ∇θJ we simply use the linearity of the gradient then the chain rule
(Eq. 9) and finally we can re-use ∇X0J4DV calculated before (Eq. 7). Gradients
are back-propagated through the dynamical model first and then through the
parameterized pseudo-inverse. Calculating the gradient on the whole dataset at
each iteration may be computationally too expensive so one could instead use
mini-batch gradient descent.

∇θJ =
∑
D

∇θJ4DV =
∑
D

∇X0J4DV ∇θX0 =
∑
D

∇X0J4DV ∇θF⋆
θ (9)

4 Experiments and Results

4.1 Lorenz96 dynamics and observations

We use the Lorenz96 dynamics [12] as an evolution model Lorenz96, dXt,n

dt =
(Xt,n+1−Xt,n−2)Xt,n−1−Xt,n+F , numerically integrated with a fourth-order
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Runge Kutta scheme. Here n indexes a one-dimensional space. On the right-hand
side, the first term corresponds to an advection, the second term represents
damping and F is an external forcing. We use the parameters dt = 0.1 and
F = 8 corresponding to a chaotic regime [9]. Starting from white noise and after
integrating during a spin-up period to reach a stationary state, we generate
ground truth trajectories.

To create associated observations, we use a randomized linear projector as
an observation operator, making the observation sparse to finally add a white
noise. Noises at each point in time and space can have different variances,
εRn,t ∼ N (0, σn,t), and we use the associated diagonal variance matrix defined
by R−1

n,t = 1
σ2
n,t

. Figure 2 displays an example of simulated observations. Vari-
ances are sampled uniformly such that σn,t ∼ U(0.25, 1). When a point in the
grid is not observed we fix “R−1

n,t = 0”, which corresponds to an infinite variance
meaning a lack of information. From a numerical optimization view, no cost
means no gradient back-propagated which is the desired behavior.

Fig. 2. Observation generated with the Lorenz96 model, a randomized linear projector
as observation operator, and a white noise.

4.2 Algorithm benchmarks

We evaluate our method (NN-4DVAR-e2e) on the assimilation task which is esti-
mating X0. We compare it with a 4DVAR, a 4DVAR with additional L2 regular-
ization (4DVAR-B), a neural network trained on the output of both 4DVAR esti-
mations (NN-4DVAR-iter and NN-4DVAR-B-iter), and a neural network trained
with the ground truth (NN-perfect). The latter should represent the best-case
scenario for the chosen architecture while NN-4DVAR-iter plays the role of the
iterative method. The same neural architecture is used for all the methods in-
volving learning. Its design is fairly simple, being composed of 5 convolutional
layers using 3×3 kernels, ReLu activation, no down-scaling, and a last layer flat-
tening the two-dimensional maps into the shape of X0. We use 250, 50, and 250
samples for training, validation, and testing, respectively. When learning is in-
volved, the Adam optimizer is used while 4DVAR is optimized with the L-BFGS
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solver. We notice here that once learned, both NN-4DVAR-iter and NN-4DVAR-
e2e provide a computationally cheap inversion operator. For their learning, the
computationally intensive step was the forward integration of the dynamical
model. Denoting n_iter the number of iterations done in 4DVAR and n_epoch
the number of epochs in our learning process, NN-4DVAR-iter, and 4DVAR-e2e
cost N × n_iter and N × n_epoch dynamics integration, respectively. Depend-
ing on these parameters, one approach or the other will be less computationally
intensive. In our case, we used n_iter < 150 and n_epoch = 50.

4.3 Results

The accuracy of the X0 estimation on the test set is quantified using the RMSE
and the average bias (see Figs 3). We notice first that when 4DVAR is not reg-
ularized, some samples induce bad estimations which disturb 4DVAR-NN-iter
learning over them. The others methods involving produce RMSE scores on par
with 4DVAR-B, the best estimator. However, our 4DVAR-NN-e2e is the less
biased algorithm. It is to be noted that 4DVAR-NN-e2e has no additional regu-
larization and still stays robust regarding difficult samples, highlighting desirable
properties from the neural architecture.

5 Conclusion

We proposed a hybrid architecture inspired by the 4DVAR algorithm allowing
to use of the data assimilation Bayesian framework while leveraging a dataset to
learn an inversion operator. We showed in an assimilation experiment that the
algorithm was able to desired function while having a stable behavior.

The designed algorithm fixes the maximum temporal size of the assimilation
window. For smaller windows, it can still be used filling the masking variance
with zeros accordingly but for larger ones, the only possibility is to use sliding
windows, then raising to question of the coherence in time. Typically, the method
in that form can not fit quasi-static strategies [16] employed in variational assim-
ilation. Also, We made the convenient hypothesis that observational errors are
uncorrelated in space, so that R−1 can be reshaped in the observation format,
which may not be the case depending on the sensors. However, the method has a
computational interest. Once the parameterized inversion operator learned, the
inversion task becomes computationally cheap. But this also stands for the it-
erative approaches. As discussed before, learning the inversion directly with our
method may be less computationally costly, in terms of dynamics integration,
depending on the number of epochs when learning our architecture, the number
of samples in the dataset, and the number of iterations used in 4DVAR.

One of the motivations for the designed architecture was to circumvent algo-
rithms iterating data assimilation and machine learning steps, because of their
difficulty of implementation but also their potential bias as exhibited in the
experiment. However, we made the debatable, simplifying, perfect model hy-
pothesis. Usually, the forward operator is only partially known and we ambition
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Fig. 3. Boxplot of assimilation accuracy of each algorithm, RMSE and Bias scores, on
the 250 samples of the test set

to develop the proposed framework further to relax such a hypothesis. In Fig. 4,
we performed an accuracy sensitivity experiment regarding noise and sparsity
levels. Particularly, we tested noise levels out of the dataset distribution. We
see that learning-based approaches are more sensitive to noise increases while
4DVAR is more concerned by sparsity. Also, we notice that our NN-4DVAR-e2e
methods generalize better than NN-4DVAR-B-iter to unseen levels of noise.

Bias

RMSE

4DVAR-B NN-4DVAR-B-iter NN-4DVAR-e2e NN-perfect

Fig. 4. Sensitivity of the assimilation regarding noise and sparsity levels (σ, pdrop). At
each pixel, levels are constant and scores are averaged on 25 samples. σ > 1 not seen
in training.
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