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Abstract. Systems with time-delayed chaotic dynamics are common in nature,
from control theory to aeronautical propulsion. The overarching objective of this
paper is to compute the stability properties of a chaotic dynamical system, which
is time-delayed. The stability analysis is based only on data. We employ the echo
state network (ESN), a type of recurrent neural network, and train it on timeseries
of a prototypical time-delayed nonlinear thermoacoustic system. By running the
trained ESN autonomously, we show that it can reproduce (i) the long-term statis-
tics of the thermoacoustic system’s variables, (ii) the physical portion of the Lya-
punov spectrum, and (iii) the statistics of the finite-time Lyapunov exponents.
This work opens up the possibility to infer stability properties of time-delayed
systems from experimental observations.
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1 Introduction

Chaotic systems with time-delayed dynamics appear in a range of scientific fields [8].
Because of their dependence on both the present and past states, these systems have rich
and intricate dynamics. Their chaotic behaviour can be assessed with stability analysis,
which is a mathematical tool that quantifies the system’s response to infinitesimal per-
turbations. Stability analysis relies on the linearization of the time-delayed dynamical
equations, which spawns the Jacobian of the system. From the Jacobian, we compute
the Lyapunov Exponents (LEs), which are the key quantities to quantifying chaos [2].

A data-driven method, which considers the sequential nature of the dataset (e.g. time-
series) to infer chaotic dynamics, is the recurrent neural network (RNN). Such networks
have been successfully applied to learn chaotic dynamics (with no time delay) for dif-
ferent applications [12,13,17]. The majority of RNNs require backpropagation through
time for training, which can lead to vanishing or exploding gradients, as well as long
training times [17]. Instead, the echo state network (ESN), which we employ here, is
trained via ridge regression, which eliminates backpropagation and provides a faster
training [7, 9, 14]. The objective of this paper is to train an ESN with data from a pro-
totypical chaotic thermoacoustic system, which is a nonlinear time-delayed wave equa-
tion. We further assess the capabilities of the ESN to accurately learn the ergodic and
? This research has received financial support from the ERC Starting Grant No. PhyCo 949388.
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stability properties of the thermoacoustic system, by calculating fundamental quantities,
such as the Lyapunov exponents. Other RNN architectures for time-series forecasting
are the Long-Short term memory and the Gated Recurrent units [3], which require back-
propagation. In this paper, we take advantage of the simple training of ESNs, which do
not require backpropagation. We briefly review stability analysis for time-delayed sys-
tems in Sec. 2 and present the considered thermoacoustic system in Sec. 2.1. In Sec. 3,
we discuss the ESN architecture and properties. We present the results in Sec. 4 and
conclude in Sec. 5.

2 Stability Analysis for time-delayed systems

We consider a physical state xxx(t) ∈ RD, which is the solution of a nonlinear time-
delayed dynamical system

dxxx
dt

= f (xxx(t), xxx(t− τ)), xxx(t) = xxx0, ∀ t ≤ 0, (1)

where τ is a constant time-delay. We analyse the system’s stability by perturbing the
state with infinitesimal perturbations uuu∼O(ε), ε→ 0, as xxx+uuu, with xxx∼O(1). Hence,
we obtain the tangent linear equation

dUUU
dt

= JJJ (xxx(t), xxx(t− τ))UUU , (2)

which involves the time-marching of K ≤ D tangent vectors, uuui ∈ RD, as columns of
the matrix UUU ∈ RD×K , UUU = [uuu1,uuu2, . . . ,uuuK ]. This is a linear basis of the tangent space.
The linear operator JJJ ∈RD×D is the Jacobian of the system, which is time-dependent in
chaotic attractors. As shown in [12], we can extract the Jacobian of a reservoir computer
by linearizing Eqs. (7), which are the evolution equations of the ESN.

We periodically orthonormalize the tangent space basis during time evolution by
using a QR-decomposition of UUU , as UUU(t) = QQQ(t)RRR(t,∆ t) and by updating the columns
of UUU with the columns of QQQ, i.e. UUU ← QQQ [2]. The matrix RRR(t,∆ t) ∈ RK×K is upper-
triangular and its diagonal elements [RRR]i,i are the local growth rates over a time span ∆ t
of UUU . The LEs are the time averages of the logarithms of the diagonal of [RRR]i,i, i.e.,

λi = lim
T→∞

1
T

∫ T

t0
ln[RRR(t,∆ t)]i,idt. (3)

The FTLEs are defined as Λi =
1

∆ t ln[RRR]i,i, which quantify the expansion and contraction
rates of the tangent space on finite-time intervals, ∆ t = t2− t1.

2.1 Time-delayed thermoacoustic system

As a practical application of time-delayed systems, we consider a thermoacoustic sys-
tem, which is composed of three interacting subsystems, the acoustics, the flame and
the hydrodynamics (see, e.g., [10]). The interaction of these sub systems can result in a
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positive feedback loop, which manifests itself as a thermoacoustic instability. If uncon-
trolled, this instability can lead to structural failure. Typical paradigms from engineering
include gas-turbine and rocket-motor engines, and their configuration requires design
optimization to prevent instabilities [10]. We consider a prototypical time-delayed ther-
moacoustic system with a longitudinal acoustic cavity and a heat source modelled with
a time-delayed model, following the same setup as in [5,6,11]. The system is governed
by the conservation of momentum, mass, and energy. Upon re-arrangement [10], ther-
moacoustic dynamics are governed by the nondimensional partial differential equations

∂u
∂ t

+
∂ p
∂x

= 0,
∂ p
∂ t

+
∂u
∂x

+ζ p− q̇δ (x− x f ) = 0, (4)

where u is the non-dimensional velocity, p the pressure, q̇ the heat-release rate, x∈ [0,1]
the axial coordinate and t the time; ζ is the damping coefficient, which takes into ac-
count all the acoustic dissipation. The heat source is assumed to be small compared to
the acoustic wavelength, and it is modelled as a point in the grid, via the Dirac delta
distribution δ (x− x f ), located at x f = 0.2. The heat-release rate is provided by a mod-
ified King’s law, q̇(t) = β

(√
|1+u f (t− τ)|−1

)
, which is a nonlinear time-delayed

model. For the numerical studies of this paper, we set β = 7.0 for the heat parameter,
and τ = 0.2 for the time delay. Those values ensure chaotic evolution, and encapsulate
all information about the heat source, base velocity and ambient conditions.

As in [5], we transform the time-delayed problem into an initial value problem. This
is mathematically achieved by modelling the advection of a perturbation v with velocity
τ−1 as

∂v
∂ t

+
1
τ

∂v
∂X

= 0, 0≤ X ≤ 1, v(X = 0, t) = u f (t). (5)

We discretise Eqs. (4) by a Galerkin method. First, we separate the acoustic variables
in time and space as u(x, t) = ∑

Ng
j=1 η j(t)cos( jπx), and p(x, t) =−∑

Ng
j=1 µ j(t)sin( jπx),

in which the spatial functions are the acoustic eigenfunctions of the configuration un-
der investigation. Then, we project Eqs. (4) onto the Galerkin spatial basis {cos(πx),
cos(2πx), . . . ,cos(Ngπx)} to obtain

η̇ j− jπµ j = 0, µ̇ j + jπη j +ζ jµ j +2q̇sin( jπx f ) = 0. (6)

The system has 2Ng degrees of freedom. The time-delayed velocity becomes u f (t −
τ) = ∑

Ng
k=1 ηk(t−τ)cos(kπx f ), and the damping, ζ j, is modelled by ζ j = c1 j2 +c2 j1/2,

where c1 = 0.1 and c2 = 0.06. The equation for linear advection, Eq. (5), is discretised
using Nc +1 points with a Chebyshev spectral method. This discretisation adds Nc de-
grees of freedom, thus a total of D = 2Ng +Nc = 30 in our case, as Ng = Nc = 10. We
integrate Eqs. (6) with a fourth order Runge-Kutta scheme and timestep dt = 0.01.

3 Echo State Network

By applying the method of [12] to time-delayed problems, we linearize the Echo State
Network (ESN) [7] to calculate the stability properties of chaotic systems. ESNs are
proven effective for accurate learning of chaotic dynamics (see e.g. [1, 4, 12–14, 17]).
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The ESN is a reservoir computer [7]. It has a sparsely-connected single-layer hidden
state, which is termed “reservoir”. The reservoir weights, W, as well as the input-to-
reservoir weights, Win, are randomly assigned and remain fixed through training and
testing. The reservoir-to-output weights, Wout, are trained via ridge regression. The
evolution equations of the reservoir and output are, respectively

rrr(ti+1) = tanh
(
[ŷin(ti);bin]

T Win + rrr(ti)T W
)
, yp(ti+1) = [rrr(ti+1);1]T Wout, (7)

where at any discrete time ti the input vector, yin(ti) ∈ RNy , is mapped into the reser-
voir state rrr ∈ RNr , by the input matrix, Win, where Nr� Ny [7, 14]. Here, ˆ( ) indicates
normalization by the component-wise maximum-minus-minimum range of the target
in training set, T indicates matrix transposition, and the semicolon indicates array con-
catenation. The dimensions of the weight matrices are Win ∈ R(Ny+1)×Nr , W ∈ RNr×Nr

and Wout ∈ R(Nr+1)×Ny . The hyperparameter input bias, bin = 1, is selected to have the
same order of magnitude as the normalized inputs, ŷin. The dimensions of the input and
output vectors are equal to the dimension of the dynamical system; here described by
Eqs. (6), i.e. Ny ≡ D. Furthermore, Wout is trained via the minimization of the mean
square error MSE = 1

NtrNy
∑

Ntr
i=0 ||yp(ti)−yin(ti)||2 between the outputs and the data over

the training set, where || · || is the L2 norm, Ntr + 1 is the total number of data in the
training set, and yin the input data on which the ESN is trained.

Training the ESN is performed by solving with respect to Wout via ridge regression
of the equation (RRT + β I)Wout = RYT

d . In the previous expression R ∈ R(Nr+1)×Ntr

and Yd ∈ RNy×Ntr are the horizontal concatenation of the reservoir states with bias,
[rrr(ti);1], ti ∈ [0,Ttrain], and of the output data, respectively; I is the identity matrix and
β is the Tikhonov regularization parameter [16]. Therefore the ESN does not require
backpropagation. The ESN can run in two configurations, either open-loop or closed-
loop. In open-loop, which is necessary for the training stage, the input data is given at
each step, allowing for the calculation of the reservoir timeseries rrr(ti), ti ∈ [0,Ttrain].
In closed-loop the output yp at time step ti, is recurrently used as an input at time step
ti+1, allowing for the autonomous temporal evolution of the network. The closed-loop
configuration is used for validation (i.e. hyperparameter tuning) and testing, but not for
training.

Regarding validation, we use the chaotic recycle validation (RVC), as introduced in
[14]. It has proven to be a robust strategy, providing enhanced performance of the ESN,
compared to standard strategies, as recently successfully applied in [12, 15]. Briefly,
in RVC the network is trained only once on the entire training dataset (in open-loop),
and validation is performed on multiple intervals already used for training (but now
in closed-loop). The validation interval simply shifts as a small multiple of the first
Lyapunov exponent, Nval = 3λ1 here. The key hyperparameters that we tune are the
input scaling σin of the input matrix Win, the spectral radius ρ of the matrix W, and the
Tikhonov parameter β . Furthermore, σin and ρ are tuned via Bayesian Optimization
in the hyperparameter space [σin,ρ] = [−1,1]× [0.1,1.4], while for β we perform a
grid search {10−6,10−8,10−10,10−12} within the optimal [σin,ρ]. The reservoir size
is Nr = 300. The connectivity of matrix W is set to d = 80. We further add to the
training and validation data a Gaussian noise with zero mean and standard deviation,
σn = 0.0006σy, where σy is the standard deviation of the data component-wise (noise
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regularizes the problem, see [12, 14, 17] for more details). The ESN is trained on a
training set (open-loop) of size 500τλ , and is tested on a test set (closed-loop) of size
4000τλ , where τλ = 1/λ1 is the Lyapunov time, which is the inverse of the maximal
Lyapunov exponent λ1 ≈ 0.13 in our case.

4 Results

We analyse the statistics produced by the autonomous temporal evolution of the ESN
and the target time-delayed system. The selected observables are the statistics of the sys-
tem’s chaotic variables, the Lyapunov exponents (LEs), and the statistics of the finite-
time Lyapunov exponents (FTLEs).

First, we test the capabilities of the ESN to learn the long-term statistical properties
of the thermoacoustic system by measuring the probability density function (PDF) of
the learned variables, y. In Fig. 1, we show the PDF of the first three components of the
Galerkin modes (see Eq. (6)) ηi, µi for i = 1,2,3, in which the black line corresponds
to the target and the dashed red to the ESN. The ESN predictions are in agreement with
the target, including the variables that are not shown here.
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−10−5 0 5
η3

−5 0 5
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−10−5 0 5 10
µ2

−10−5 0 5
µ3

P
D

F

Fig. 1: Probability density functions (via histograms) of the three first Galerkin modes,
ηi, µi, i = 1,2,3. Black is for target and dashed red for ESN. The statistics for ESN are
collected in autonomous evolution on unseen data, after training and validation.

Testing the accuracy of the calculated LEs in autonomous evolution is a harder
consistency check for the ESN. Indeed, the ESN has been trained only on timeseries
of the variables ηi, µi, and v. Therefore, a good agreement of the LEs means that the
ESN is capable to accurately reproduce intrinsic chaotic properties of the system’s at-
tractor. The LEs of the ESN are calculated following [12], and in Fig. 2 we compare
the first K = 14 LEs. We also add an inner plot showing, in additional detail, the first
6 LEs. Each LE is the average of the measured LEs from seven selected independent
ESNs used for the analysis. We train the ESNs independently on different chaotic target
sets. The shaded region corresponds to the standard deviation per λi from those seven
ESNs. There is close agreement for the first 8 exponents. In particular, we measure the
leading, and only positive, exponent λ

targ
1 ≈ 0.130 and λ ESN

1 ≈ 0.127 for ESN, which
gives a 2.3% absolute error. The ESN also provides an accurate estimate of the neutral
exponent (λ2 = 0) with λ ESN

2 ≈ 0.008. The rest of the exponents, λi, i ≥ 3, are nega-
tive and the ESN achieves a small 5.4% mean absolute percentage error for all. Note
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that a gradual disagreement of the negative exponents, which are sensitive due to the
numerical method, between ESN and target has also been reported in [13, 17] for the
one-dimensional Kuramoto-Sivashinsky equation.

2 4 6 8 10 12 14

i
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0.0

λ
i

Target

ESN

1 2 3 4 5 6
−0.6

−0.3

0.0

Fig. 2: The first 14 (outer plot) and the first 6 (inner plot) Lyapunov exponents. The
shaded red region indicates the error based on the ensemble of 5 ESNs. The statistics
for ESN are collected in closed-loop mode.

Figure 3 shows the PDF of the first 14 FTLEs of the target (black line) and ESN
(dashed red line). We collect the statistics from 7 independently trained ESNs, thus
creating 7 histograms of FTLEs. We then average those histograms bin-wise, and the
standard deviation of each averaged bin is given by the shaded regions. Note that the
mean of each PDF should correspond to each Lyapunov exponent λi (i.e. of Fig. 2),
which is indeed the case. In Fig. 4, we quantify the difference of the estimated FTLE
statistics by computing the Wasserstein distance between the two distributions for each
Λi. The difference is small. We observe a gradual increase in Λi, i ≥ 10, which is in
agreement with the trend of the Lyapunov exponents in Fig. 2.
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Fig. 3: Probability density functions of the first 14 finite-time Lyapunov exponents.
Black is for target and dashed red for ESN.
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We also report the values for the Kaplan-Yorke dimension for both ESN and target.
This dimension is an upper bound of the attractor’s fractal dimension [2]. It is given by

DKY = k+ ∑
k
i=1 λi
|λi+1| , where k is such that the sum of the first k LEs is positive and the sum

of the first k+ 1 LEs is negative. We obtain Dtarg
KY ≈ 3.37 for target and DESN

KY ≈ 3.43
for ESN, which results in a low 1.8% absolute error. This observation further confirms
the ability of the ESN to accurately learn and reproduce the properties of the chaotic
attractor when running in autonomous closed loop mode.
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Fig. 4: Wasserstein distance between the PDFs of target versus ESN of the first 14 finite-
time Lyapunov exponents (see Fig. 3).

5 Conclusion

We propose a method to compute the stability properties of chaotic time-delayed sys-
tems using only data. We use the echo state network (ESN) as a surrogate model for
learning the chaotic dynamics from time series observations of the system and calcu-
late its long-term statistical and stability properties. Viewing the ESN as a discrete dy-
namical system, we linearize the map (7) to derive the tangent evolution of the attractor
through the Jacobian. When running the ESN in a long autonomous mode (closed-loop),
we show that (i) the long-term statistics of the variables are correctly learned, (ii) the
physical portion of the Lyapunov spectrum is correctly predicted, and (iii) the finite-
time Lyapunov exponents and their statistics are correctly inferred. This work opens up
the possibility to infer the stability of nonlinear and time-delayed dynamical systems
from data. Future directions include the application of this approach to experimental
observations with the objective of aiding sensitivity analysis [5, 6].
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