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Abstract. The reconstruction of gap-free signals from observation data is
a critical challenge for numerous application domains, such as geoscience
and space-based earth observation, when the available sensors or the
data collection processes lead to irregularly-sampled and noisy observa-
tions. Optimal interpolation (OI), also referred to as kriging, provides
a theoretical framework to solve interpolation problems for Gaussian
processes (GP). The associated computational complexity being rapidly
intractable for n-dimensional tensors and increasing numbers of observa-
tions, a rich literature has emerged to address this issue using ensemble
methods, sparse schemes or iterative approaches. Here, we introduce a
neural OI scheme. It exploits a variational formulation with convolutional
auto-encoders and a trainable iterative gradient-based solver. Theoreti-
cally equivalent to the OI formulation, the trainable solver asymptotically
converges to the OI solution when dealing with both stationary and non-
stationary linear spatio-temporal GPs. Through a bi-level optimization
formulation, we relate the learning step and the selection of the training
loss to the theoretical properties of the OI, which is an unbiased estimator
with minimal error variance. Numerical experiments for 2d+t synthetic
GP datasets demonstrate the relevance of the proposed scheme to learn
computationally-efficient and scalable OI models and solvers from data.
As illustrated for a real-world interpolation problems for satellite-derived
geophysical dynamics, the proposed framework also extends to non-linear
and multimodal interpolation problems and significantly outperforms
state-of-the-art interpolation methods, when dealing with very high miss-
ing data rates.

Keywords: optimal interpolation, differentiable framework, variational
model, optimizer learning

1 Introduction

Interpolation problems are critical challenges when dealing with irregularly-
sampled observations. Among others, Space earth observation, geoscience,
ecology, fisheries generally monitor a process of interest through partial ob-
servations due to the characteristics of the sensors and/or the data collection
process. As illustrated in Fig.3 for satellite-based earth observation, missing
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data rates may be greater than 90%, which makes the interpolation problem
highly challenging.

Optimal Interpolation (OI) also referred to as kriging [6], provides a theoret-
ical framework to address such interpolation problems for Gaussian processes.
Given the covariance structure of the process of interest along with the covari-
ance of the observation noise, one can derive the analytical OI solution. For
high-dimensional states, such as space-time processes, the computation of this
analytical solution rapidly becomes intractable as it involves the inversion of a
N × N matrix with N the number of observation points. When dealing with
space-time processes, OI also relates to data assimilation [2]. In this context,
Kalman methods, including ensemble-based extensions, exploit the sequential
nature of the problem to solve the OI problem allowing for dynamical flow
propagation of the uncertainties.

Data-driven and learning-based approaches have also received a growing
interest to address interpolation problems [3, 15], while Image and video in-
painting are popular interpolation problems in computer vision [22]. As they
typically relate to object removal applications or restoration problems, they
usually involve much lower missing data rates than the ones to be delt with
in natural images, which are likely not representative of space-time dynamics
addressed in geoscience, meteorology, ecology. . . A recent literature has also
emerged to exploit deep learning methods to solve inverse problems classi-
cally stated as the minimization of a variational cost. This includes neural
architectures based on the unrolling of minimization algorithms [17, 21].

Here, we introduce a neural OI framework. Inspired by the neural method
introduced in [8] for data assimilation, we develop a variational formulation
based on convolutional auto-encoders and introduce an associated trainable
iterative gradient-based solver. Our key contributions are four-fold:

■ We show that our variational formulation is equivalent to OI when dealing
with Gaussian processes driven by linear dynamics. Under these assumptions,
our trainable iterative gradient-based solver converges asymptotically towards
the OI solution;

■ Regarding the definition of the training losses, we relate the learning step of
the proposed neural architecture to the properties of the OI solution as an
unbiased estimator with minimal error variance;

■ Our framework extends to learning optimal interpolation models and solvers
for non-linear/non-Gaussian processes and multimodal observation data;

■ Numerical experiments for a 2d+t Gaussian process support the theoret-
ical equivalence between OI and our neural scheme for linear Gaussian
case-studies. They also illustrate the targeted scalable acceleration of the
interpolation.

■ We report a real-world application to the interpolation of sea surface dynam-
ics from satellite-derived observations. Our neural OI scheme significantly
outperforms the state-of-the-art methods and can benefit from multimodal
observation data to further improve the reconstruction performance.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_28

https://dx.doi.org/10.1007/978-3-031-36027-5_28
https://dx.doi.org/10.1007/978-3-031-36027-5_28


Learning Neural Optimal Interpolation Models and Solvers 3

To make easier the reproduction of our results, an open-source version of our
code is available 1.

This paper is organized as follows. Section 2 formally introduces optimal
interpolation and related work. We present the proposed neural OI framework
in Section 3. Section 4 reports numerical experiments for both synthetic GP
datasets and real-world altimetric sea surface observations. We discuss further
our main contributions in Section 5.

2 Problem statement and Related work

For a n-dimensional Gaussian process x with mean µ and covariance P, the
optimal interpolation states the reconstruction of state x from noisy and partial
observations y as the minimization of a variational cost:

x̂ = arg min
x
∥y− HΩ · x∥2

R + ∥x− µ∥2
P (1)

with HΩ denotes the observation matrix to map state x over domain D to the
observed domain Ω. ∥ · ∥2

R is the Mahanalobis norm w.r.t the covariance of the
observation noise R and ∥ · ∥2

P the Mahanalobis distance with a priori covariance
P. The latter decomposes as a 2-by-2 block matrix [PΩ,ΩPΩ,Ω; PΩ,ΩPT

Ω,Ω
] with

PA,A′ the covariance between subdomains A and A of domain D.
The OI variational cost (1) being linear quadratic, the solution of the optimal

interpolation problem is given by:

x̂ = µ + K · y (2)

with K referred to as the Kalman gain PHT
Ω(HΩPHT

Ω + R)−1, where PHT
Ω is

the (grid,obs) prior covariance matrix, HΩPHT
Ω is the (obs,obs) prior covariance

matrix. For high-dimensional states, such as nd and nd+t states, and large
observation domains, the computation of the Kalman gain becomes rapidly
intractable due to the inversion of a |Ω| × |Ω| covariance matrix. This has
led to a rich literature to solve minimization (1) without requiring the above-
mentioned |Ω| × |Ω| matrix inversion, among others gradient-based solvers
using matrix-vector multiplication (MVMs) reformulation [18], methods based
on sparse matrix decomposition with tapering [19] or precision-based matrix
parameterizations [16].

Variational formulations have also been widely explored to solve inverse
problems. Similarly to (1), the general formulation involves the sum of a data
fidelity term and of a prior term [2]. In a model-driven approach, the latter
derives from the governing equations of the considered processes. For instance,
data assimilation in geoscience generally exploits PDE-based terms to state

1 To be made available in a final version
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the prior on some hidden dynamics from observations. In signal processing
and computational imaging, similar formulations cover a wide range of inverse
problems, including inpainting issues [4]:

x̂ = arg min
x
JΦ(x, y, Ω) = arg min

x
J o(x, y) + λ ∥x−Φ(x)∥2

J o(x, y) is the data fidelity term which is problem-dependent. The prior reg-
ularization term ∥x− Φ(x)∥2 can be regarded as a projection operator. This
parameterization of the prior comprises both gradient-based priors using finite-
difference approximations, proximal operators as well as plug-and-play priors
[17]. As mentioned above, these formualtions have also gained interest in the
deep learning literature for the definition of deep learning schemes based on the
unrolling of minimization algorithms [1] for (??). Here, we further explore the
latter category of approaches to solve optimal problems stated as (1), including
when covariance P is not known a priori.

3 Neural OI framework

This Section presents the proposed trainable OI framework. We first introduce
the proposed neural OI solver (Section 3.1) and the associated learning set-
ting (Section 3.2). We then describe extensions to non-linear and multimodal
interpolation problems.

3.1 Neural OI model and solver

Let us introduce the following variational formulation to reconstruct state x
from partial observations y:

x̂ = arg min
x
JΦ(x, y, Ω) = arg min

x
∥y− HΩ · x∥2 + λ ∥x−Φ(x)∥2 (3)

where λ is a positive scalar to balance the data fidelity term and the prior
regularization. Φ(·) is a linear neural auto-encoder which states the prior onto
the solution.

Variational formulation (3) is equivalent to optimal interpolation problem
(1) when considering a matrix parameterization of the prior Φ(x) = (I− L)x
with L the square-root (as a Cholesky decomposition) of P and a spherical
observation covariance, i.e. R = σ2

1. The proof comes immediately when
noting that the regularization term of the variational cost also writes: xTP−1x =
xTLTLx = ||Lx||2 = ||x−Φx||2.

Lemma 1. For a stationary Gaussian process and a Gaussian observation noise with
R = σ2I, we can restate the associated optimal interpolation problem (1) as minimiza-
tion problem (3) with neural operator Φ(·) being a linear convolutional network.
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The proof results from the translation-invariant property of the covariance of
stationary Gaussian processes. Computationally, we can derive Φ as the inverse
Fourier transform of the square-root of the Fourier transform of covariance P
in (1) as exploited in Gaussian texture synthesis [10].

Lemma 1 provides the basis to learn a solver of variational formulation
(3) and address optimal interpolation problem (1). We benefit from automatic
differentiation tools associated with neural operators to investigate iterative
gradient-based solvers as introduced in meta-learning [12], see Algorithm 1.
The latter relies on an iterative gradient-based update where neural operator G
combines an LSTM cell [20] and a linear layer to map the hidden state of the
LSTM cell to the space spanned by state x. Through the LSTM may capture long-
term dependencies, operator G defines a momentum-based gradient descent.
Overall, this class of generic learning-based methods was explored and referred
to as 4DVarNet schemes in [8] for data assimilation problems. Here, as stated
in Lemma 2, we parameterize weighting factors a(·) and ω(·) such that the
LSTM-based contribution dominates for the first iterations while for a greater
number of iterations the iterative update reduces to a simple gradient descent.
Hereafter, we refer to the proposed neural OI framework as 4DVarNet-OI.

Algorithm 1 Iterative gradient-based solver for (3) given initial condition x(0),
observation y and sampled domain Ω. Let a(·) and ω(·) be positive scalar
functions and G a LSTM-based neural operator.

x← x(0)

i← 0
while i ≤ K do

i← i + 1
g← ∇xJΦ

(
x(i), y, Ω

)
x← x− a(i) · [ω(i) · g + (1−ω(i)) · G (g)]

end while

Lemma 2. Let us consider the following parameterizations for functions a(·) and ω(·)

a(i) =
ν · K0

K0 + i
; ω(i) = tanh (α · (i− K1)) (4)

where ν and α are positive scalars, and K0,1 positive integers. If G(·) is a bounded
operator and Φ(·) is a linear operator given by I− P1/2, then Algorithm 1 converges
towards the solution (2) of the minimization of optimal interpolation cost (3).

The proof of this lemma derives as follows. As G(·) is bounded, the considered
parameterization of the gradient step in Algorithm 1 is asymptotically equiv-
alent to a simple gradient descent with a decreasing step size. Therefore, it
satisfies the convergence conditions towards the global minimum for a linear-
quadratic variational cost [5]. We may highlight that the same applies with a
stochastic version of Algorithm 1 and a convex variational cost [5].

The boundedness of operator G derives from that of the LSTM cell. Therefore,
Lemma 2 guarantees that Algorithm 1 with a LSTM-based parameterization
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for operator G converges to the minimum of optimal interpolation cost (3)
whatever the parameters of G.

In this setting, operator G aims at accelerating the convergence rate of the
gradient descent towards analytical solution (2). Overall, we define Θ = {Φ,G}
and ΨK

Θ(x
(0), y, Ω) the interpolated state resulting from the application of

Algorithm 1 with K iterations from initial condition x(0) given observation data
{y, Ω}.

3.2 Learning setting

Formally, we state the training of the considered neural OI scheme (3) according
to a bi-level optimization problem

Θ̂ = arg min
Θ
L (xk, yk, Ωk, x̂k) s.t. x̂k = arg min

xk
JΦ (xk, yk, Ωk) (5)

where L({xk, yk, x̂k}) defines a training loss and k denotes the time index along
the data assimilation window (DAW) [t− k∆t; t + k∆t].

Let us consider Optimal Interpolation problem (1) with a spherical observa-
tion covariance R = σ2 · I and prior covariance P. Let us parameterize trainable
operator Φ in (3) as a linear convolution operator. Optimal interpolation (2) is
then solution of a bi-level optimization problem (5) with Φ = I− P1/2 for each
of the following training losses:

L1 (xk, , x̂k) =
N

∑
k=1
∥xk − x̂k∥2

L2 (xk, yk, x̂k) =
N

∑
k=1
∥yk − HΩ · xk∥2

R + ∥xk∥2
P (6)

where L1 denotes the mean squared error (MSE) w.r.t true states and L2 stands
for the OI variational cost. This results from the equivalence between variational
formulations (1) and (3) under parameterization Φ = I− P1/2 and the property
that OI solution (2) is a minimum-variance unbiased estimator.
Such a formulation motivates the following training setting for the proposed
scheme:

Θ̂ = arg min
Θ
L (xk, yk, x̂k) s.t. x̂k = ΨK

Θ

(
x(0)k , yk, Ωk

)
(7)

where L is either L1 or L2 and x(0)k is an initial condition. Let stress that
L2 relates to unsupervised learning but requires the explicit definition and
parameterization of prior covariance P. In such situations, the proposed training
framework aims at delivering a fast and scalable computation of (2). If using
training loss L1, it only relies on the true states with no additional hypothesis on
the underlying covariance, which makes it more appealing for most supervised
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learning-based applications, see the experimental conclusions of Section 4. To
train jointly the solver component G and operator Φ, we vary initial conditions
between some initialization x(0)k of the state and detached outputs of Algorithm
1 for a predefined number of total iteration steps. This strategy also provides a
practical solution to the memory requirement, which rapidly increases with the
number of iterations during the training phase due to the resulting depth of the
computational graph. In all the reported experiments, we use Adam optimizer
over 200 epochs.

3.3 Extension to non-linear and multimodal optimal interpolation

While the analytical derivation of solution (2) requires to consider a linear-
quadratic formulation in both (1) and (3), Algorithm 1 applies to any differen-
tiable parameterization of operator Φ. This provides the basis to investigate
optimal interpolation models and solvers for non-linear and/or non-Gaussian
processes through a non-linear parameterization for operator Φ. Here, we ben-
efit from the variety of neural auto-encoder architectures introduced in the
deep learning literature, such as simple convolutional auto-encoders, U-Nets
[7], ResNets [11]... For such parameterization, the existence of a unique global
minimum for minimization (3) may not be guaranteed and Algorithm 1 will
converge to a local minimum depending on the considered initial condition.

Multimodal interpolation represents another appealing extension of the
proposed framework. Let us assume that some additional gap-free observation
data z is available such that z is expected to partially inform state x. We then
introduce the following multimodal variational cost:

x̂ = arg min
x

λ1 ∥y− HΩ · x∥2 + λ2 ∥g(z)− h(x)∥2 + λ3 ∥x−Φ(x)∥2 (8)

where g(·) and h(·) are trainable neural operators which respectively extract
features from state x and observation z. In this multimodal setting, Θ in
(7) comprises the trainable parameters of operators Φ, G, g and h. Given
this reparameterization of the variational cost, we can exploit the exact same
architecture for the neural solver defined by Algorithm 1 and the same learning
setting.

4 Experiments

We report numerical experiments for the interpolation of 2d+t Gaussian process
(GP) for which we can compute the analytical OI solution (2), as well as a
real-world case-study for the reconstruction of sea surface dynamics from
irregularly-sampled satellite-derived observations.

4.1 2d+t GP case-study

We use as synthetic dataset the stochastic partial differential equation (SPDE)
approach introduced by [16] to generate a spatio-temporal Gaussian Process
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(GP). Let x denote the SPDE solution, we draw from the classic isotropic
formulation to introduce some diffusion in the general fractional operator:{ ∂

∂t
+

{
κ2(s, t)−∇ ·H(s, t)∇

}α/2 }
x(s, t) = τz(s, t) (9)

with parameters κ = 0.33 and regularization variance τ = 1. To ensure the GP
to be smooth enough, we use a value of α = 4. Such a formulation enables to
generate GPs driven by local anisotropies in space leading to non stationary
spatio-temporal fields with eddy patterns. Let denote this experiment GP-DIFF2
where H is a 2-dimensional diffusion tensor. We introduce a generic decom-
position of H(s, t), see e.g. [9], through the equation H = γI2 + βv(s)Tv(s)
with γ = 1, β = 25 and v(s) = (v1(s), v2(s))T using a periodic formulation
of its two vector fields components: it decomposes the diffusion tensor as the
sum of an isotropic and anisotropic effects, the latter being described by its
amplitude and magnitude. This is a valid decomposition for any symmetric
positive-definite 2× 2 matrix.
We use the Finite Difference Method (FDM) in space coupled with an Implicit
Euler scheme (IES) in time to solve for the equation. Let D = [0, 100]× [0, 100]
be the square spatial domain of simulation and T = [0, 500] the temporal do-
main. Both spatial and temporal domains are discretized so that the simulation
is made on a uniform Cartesian grid consisting of points (xi, yj, tk) where
xi=i∆x, yj=j∆j, tk=k∆t with ∆x, ∆y and ∆t all set to one.
To be consistent with the second dataset produced in Section 4.2, we sam-
ple pseudo-observations similar to along-track patterns produced by satellite
datasets, with a periodic sampling leading to spatial observational rate similar
to the along-track case-study. Observational noise is negligible and taken as
R = σ2I with σ2 = 1E− 3 to compute the observational term of the variational
cost.

For the dataset GP-DIFF2, we involve spatio-temporal sequences of length 5
as data assimilation window (DAW) to apply our framework and benchmark
the following methods: analytical OI, as a solution of the linear system, the
gradient descent OI solution, a direct CNN/UNet interpolation using a zero-
filling initialization and different flavors of 4DVarnet using either a UNet
trainable prior or a known precision-based prior coupled with LSTM-based
solvers. As already stated in Section 3.2, we use two training losses: the mean
squared error (MSE) w.r.t to the groundtruth and the OI variational cost of
Eq. 1. Regarding the performance metrics, we assess the quality of a model
based on both OI cost value for the known SPDE precision matrix and the MSE
score w.r.t to the groundtruth. We also provide the computational GPU time
of all the benchmarked models on the test period. For training-free models
(analytical and gradient-based OI), there is no training time. The training period
goes from timestep 100 to 400 and the optimization is made on 20 epochs with
Adam optimizer, with no significant improvements if trained longer. During
the training procedure, we select the best model according to metrics computed
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over the validation period from timestep 30 to 80. Overall, the set of metrics
is computed on a test period going from timestep 450 to 470. Let note that by
construction, the analytical OI solution is optimal regarding the OI variational
cost.

Fig. 1: SPDE-based GP spatio-temporal field (Ground Truth) and its reconstruc-
tions based on a 5 time lag assimilation window

Table 1 displays the performance evaluation for the experiment GP-DIFF2.
Figure 1 shows the interpolation obtained at the middle of the test period
for all the benchmarked models. Because we use spatio-temporal assimilation
windows of length 5, we only display the reconstructions at the center of the
DAW. We also provide in Figure 2a) the scatterplot of the global MSE w.r.t
OI variational cost throughout the iteration process, and in Figure 2b) the
OI variational cost vs the number of iterations of the algorithm. Both figures
represent how the methods behaves once the training phase is finished: for
learning-based gradient-descent approaches, their corresponding line plot then
illustrates how the trained recurrent schemes is efficient to mimic and speed
up the traditional gradient descent. The mapping clearly indicates that direct
inversion by CNN schemes is not efficient for this reconstruction task. On
the opposite, LSTM-based iterative solvers are all consistent with the optimal
solution, with potential variations that can be explained by the training loss
used. While using MSE w.r.t true states quickly converges in a very few number
of iterations, 20 typically, involving the OI variational cost as a training loss
implies to increase the number of gradient steps, up to about a hundred, to
reach satisfactory performance. This makes sense because using global MSE
relates to supervised learning while the variational cost-based training is not.

In addition, when a similar LSTM-based solver is used, the trainable prior
considerably speeds up the convergence towards the optimal solution compared
to the known precision matrix-based prior. This leads to three key conclusions:
■ using MSE as training loss with trainable neural priors is enough for a

reconstruction task and can even speed up the iterative convergence compared
to the known statistical prior parametrization;

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_28

https://dx.doi.org/10.1007/978-3-031-36027-5_28
https://dx.doi.org/10.1007/978-3-031-36027-5_28


10 M. Beauchamp et al.

■ the GP-based experiments demonstrates the relevance of an LSTM-based
solver to speed up and accurate iterative solutions of minimization problems;

■ looking for an optimal solution within the bi-level neural optimization of
prior and solver may lead to deviate from the original variational cost to
minimize.

Table 1: Interpolation performance for the synthetic 2D+T GP case-study: For
each benchmarked model, we report the considered performance metrics for
the three training loss strategies (MSE w.r.t true states and OI variational cost)

GP Approach Prior Training loss MSEx OI-score Comp. time
(mins)

GP-DIFF2 OI Covariance 2.72 9.8E+03 2.41

UNet N/A
MSE loss 3.50 6.10E+05 0.08
OI loss 5.99 1.08E+05 0.49

4DVarNet-LSTM

Covariance
MSE loss 2.84 4.52E+04 2.4
OI loss 3.26 1.06E+04 2.68

UNet
MSE loss 2.74 1.04E+05 0.25
OI loss 3.17 1.27E+04 0.48

(a) OI cost vs MSE (b) OI cost vs number of iterations

Fig. 2: Optimal Interpolation derived variational cost vs Mean Squared Error
(MSE) loss (a) and OI variational cost vs number of iterations (b) for all the
benchmarked methods at timestep 16 of the test period throughout their itera-
tions process. For the analytical Optimal Interpolation and direct UNet neural
formulations, there is no iteration, so a single point is displayed. Direct UNet
trained with MSE loss does not appear in the Figures because it does not scale
properly compared to the other methods

4.2 Satellite altimetry dataset

We also apply our neural OI scheme to a real-world dataset, namely the inter-
polaton of sea surface height (SSH) fields from irregularly-sampled satellite
altimetry observations. The SSH relates to sea surface dynamics and satel-
lite altimetry data which are characterized by an average missing data rate
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above 90%. We exploit the experimental setting defined in [14] 2. It relies on
a groundtruthed dataset given by the simulation of realistic satellite altimetry
observations from numerical ocean simulations. Overall, this dataset refers
to 2d+t states for a 10◦ × 10◦ domain with 1/20◦ resolution corresponding
to a small area in the Western part of the Gulf Stream. Regarding the evalu-
ation framework, we refer the reader to SSH mapping data challenge above
mentioned for a detailed presentation of the datasets and evaluation metrics.
The latter comprises the average RMSE-scores µ(RMSE) (the higher the better),
the minimal spatial scales resolved λx (degree) (the lower the better) and the
minimal temporal scales resolved λt (days) (the lower the better). We also
look for the relative gains τSSH (%) and τ∇SSH (%) w.r.t DUACS OI for SSH
and its gradient. For learning-based approaches, the training dataset spans
from mid-February 2013 to October 2013, while the validation period refers to
January 2013. All methods are tested on the test period from October 22, 2012
to December 2, 2012.

For benchmarking purposes, we consider the operational baseline (DUACS)
based on an optimal interpolation, multi-scale OI scheme MIOST, model-driven
interpolation schemes BFN and DYMOST. We also include a state-of-the-art
UNet architecture to train a direct inversion scheme. For all neural schemes,
we consider 29-day space-time sequences to account for time scales consid-
ered in state-of-the-art OI schemes. Regarding the parameterization of our
framework, we consider a bilinear residual architecture for prior Φ, a classic
UNet flavor as well as a simple linear convolutional prior. Similarly to the GP
case-study, we use a 2d convolutional LSTM cell with 150-dimensional hidden
states. Besides the interpolation scheme using only altimetry data, we also
implement a multimodal version of our interpolation framework. It uses sea
surface temperature (SST) field as complementary gap-free observations. SST
fields are widely acknowledge to convey information on sea surface dynamics
though the derivation of an explicit relationship between SSH and SST fields
remain a challenge, except for specific dynamical regimes [13]. Our multimodal
extension exploits simple ConvnNets for the parameterization of operators g(·)
and h(·) in Eq.8.

Figure 3 displays the reconstructions of the SSH field and the corresponding
gradients on 2012-11-05 for all the benchmarked models. It clearly stresses
how our scheme improves the reconstruction when considering a non-linear
prior. Especially, we greatly sharpen the gradient along the main meander of
the Gulf Stream compared with other interpolation schemes. Oceanic eddies
are also better retrieved. Table 2 further highlights the performance gain of
the proposed scheme. The relative gain is greater than 50% compared to the
operational satellite altimetry processing. We outperform by more than 20% in
terms of relative gain to the baseline MIOST and UNet schemes, which are the
second best interpolation schemes. Interestingly, our scheme is the only one to
retrieve time scales below 10 days when considering only altimetry data.

2 SSH Mapping Data Challenge 2020a: https://github.com/
ocean-data-challenges/2020a_SSH_mapping_NATL60
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Fig. 3: Gradient SSH reconstructions (2012-11-05) for all benchmarked models
based on 4 along-track nadirs pseudo-observations in the Gulf Stream domain.
Trom top left to bottom right: Ground Truth, Observations, naive OI, DUACS,
BFN, DYMOST, MIOST, UNet, 4DVarNet with a linear CNN-based prior, 4DVar-
Net with UNet prior, 4DVarNet with BiLin-Res prior and multimodal 4DVarNet
with BiLin-Res prior embedding SSH-SST synergies in the variational cost

Table 2: Interpolation performance for the satellite altimetry case-study: For
each benchmarked models, we report the considered performance metrics aver-
aged on the test period when learning-based methods are trained on the MSE
loss (true states and its gradient). Metrics obtained from SOTA DA methods
(top lines in the Table) can be found in the BOOST-SWOT 2020a SSH Map-
ping Data Challenge: https://github.com/ocean-data-challenges/2020a_
SSH_mapping_NATL60

Approach Prior MSE λx
(degree) λt (days) τSSH (%) τ∇SSH (%)

DUACS - 0.92 1.42 12.13 - -
BFN - 0.92 1.23 10.82 7.93 23.69

DYMOST - 0.91 1.36 11.91 -10.88 0.38
MIOST - 0.93 1.35 10.41 25.63 11.16

UNet - 0.924 1.25 11.33 20.13 26.16

4DVarNet-LSTM
Linear CNN 0.89 1.46 12.63 -84.14 -10.24

UNet 0.89 1.4 12.45 0.24 0.01
BiLin-Res 0.94 1.17 6.86 54.79 55.14

Multimodal interpolation models (SSH+SST)

UNet - 0.55 2.36 35.72 -2741.29 -355.24
4DVarNet-LSTM BiLin-Res 0.96 0.66 2.97 79.80 75.71
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As stressed by last line and map of Table 2 and Figure 3, the multimodal
version of the proposed interpolation scheme further improves the interpolation
performance. Our trainable OI solver learns how to extract fine-scale features
from SST fields to best reconstruct the fine-scale structure of SSH fields and
brings a significant improvement on all performance metrics.

5 Conclusion

This paper addresses the end-to-end learning of neural schemes for optimal
interpolation. We extend the neural scheme introduced in [8] for data assimila-
tion to optimal interpolation with theoretical guarantees so that the considered
trainable solvers asymptotically converge towards the analytical OI solution.
The computation of the analytical OI solution is challenging when dealing with
high-dimensional states. Whereas classic gradient-based iterative methods may
suffer from a relatively low convergence rate, our experiments support the
relevance of the proposed trainable solvers to speed up the convergence and
reach good interpolation performance with only 10 to 100 gradient steps. Im-
portantly, the convolutional architecture of the trainable solver also guarantees
their scalability and a linear complexity with respect to the size of the spatial
domain as well as the number of observations. Our GP experiment highlight
the relevance of the bi-level formulation of the OI problem.We greatly speed
up the interpolation time, when considering a UNet-based parameterization
of the inner cost and the interpolation error as the outer performance metrics.
The latter strategy greatly simplifies the application of the proposed frame-
work to real datasets, where the underlying covariance model is not known
and/or a Gaussian process approximation does not apply. As illustrated for
our application to ocean remote sensing data, the proposed framework greatly
outperforms all SOTA techniques, especially when benefitting from additional
multimodal observations. Whereas in the GP case, we know the variational OI
cost to be the optimal variational formulation to solve the interpolation, no such
theoretical result exists in most non-Gaussian/non-linear cases. The proposed
end-to-end learning framework provides new means to explore the reduction
of estimation biases in Bayesian setting. Especially, our experiments on ocean
remote sensing data suggest that the prior term in the inner variational formu-
lation shall be adapted to the observation configuration rather than considering
generic plug-and-play priors. This works also supports new avenues thanks
to the connection made between neural Optimal Interpolation and trainable
solvers. Indeed, while the GP experiment used in the paper is entirely con-
trolled, in the sense that the parameters of the stochastic PDE driving the GP
are known, future works may consider to also train the SPDE parameters so
that the prior operator Φ would be linear, though stochastic. It would open the
gate to uncertainty quantification and fast huge ensemble-based formulations.
In addition, it would pave the way to a full stochastic neural formulation of the
framework, when making the explicit link between diffusion-based generative
models and SPDE that are in fact linear diffusion models.
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