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Abstract. In the last decade, the scientific community has devolved
its attention to the deployment of data-driven approaches in scientific
research to provide accurate and reliable analysis of a plethora of phe-
nomena. Most notably, Physics-informed Neural Networks and, more re-
cently, Universal Differential Equations (UDEs) proved to be effective
both in system integration and identification. However, there is a lack of
an in-depth analysis of the proposed techniques. In this work, we make a
contribution by testing the UDE framework in the context of Ordinary
Differential Equations (ODEs) discovery. In our analysis, performed on
two case studies, we highlight some of the issues arising when combin-
ing data-driven approaches and numerical solvers, and we investigate the
importance of the data collection process. We believe that our analysis
represents a significant contribution in investigating the capabilities and
limitations of Physics-informed Machine Learning frameworks.

1 Introduction

Physics-informed Machine Learning has gained high attention in the last few
years [5,14,3,18,23,17,16], enabling the integration of physics knowledge into
machine learning models. Purely data-driven methods, like Deep Neural Net-
works (DNNs), have huge representational power and can deal with noisy high
dimensional raw data; however, they may learn observational biases, leading to
physically inconsistent predictions and poor generalization performance. On the
other hand, despite the relentless progress in the field, solving real-world par-
tial differential equations (PDEs) using traditional analytical or computational
approaches requires complex formulations and prohibitive costs. A lot of effort
has been devoted to bridging DNNs with differential equations in end-to-end
trainable frameworks. However, less attention has been paid to analyze the ad-
vantages and limitations of the proposed approaches.

We view the lack of an in-depth analysis of physics-informed techniques as a
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major issue. We make a contribution in this area by performing an analysis on
the Universal Differential Equation (UDE) [17] framework in the context of data-
driven discovery of ODEs. We focus on UDE since its general formulation allows
to express other existing frameworks. In particular, we focus on: 1) evaluating
two training approaches in terms of accuracy and efficiency ; 2) testing the effect
of the numerical solver accuracy in the parameters approximation, 3) analyzing
the impact of the data collection process regarding the approximation accuracy,
and in 4) exploring the effectiveness of UDE in reconstructing a functional de-
pendence between a set of observables and the unknown parameters.

The paper is structured as follows. In Section 2, we provide an overview of
the existing work in physics-informed machine learning and system identifica-
tion. We briefly introduce the UDE framework in Section 3, and we describe our
research questions in Section 4. In Section 5, we present the experiments and
report the results. Finally, in Section 6, we draw some conclusions and discuss
future directions.

2 Related work

In this section, we briefly present some of the most promising trends in Physics-
informed Machine Learning. For an exaustive literature overview, we refer the
reader to [10].

Physics-informed loss function. The most straightforward way to enforce
constraints in Neural Networks is via an additional term in the loss function. In
[11] the authors propose Physics-guided Neural Network, a framework that ex-
ploits physics-based loss functions to increase deep learning models’ performance
and ensure physical consistency of their predictions. Similarly, the work of Chen
et al. [9] generalizes Recurrent Neural Networks adding a regularization loss term
that captures the variation of energy balance over time in the context of lake
temperature simulation. Work of [1] proposes to enforce physics constraints in
Neural Networks by introducing a penalization term in the loss function defined
as the mean squared residuals of the constraints.

Physics-informed neural architectures. Recent works focus on designing
deep learning frameworks that integrate physics knowledge into the architec-
ture of deep learning models [5,14,3,18,23,17,16]. Neural Ordinary Differential
Equations (Neural ODEs) [5] bridge neural networks with differential equations
by defining an end-to-end trainable framework. In a Neural ODE, the deriva-
tive of the hidden state is parameterized by a neural network, and the resulting
differential equation is numerically solved through an ODE solver, treated as a
black-box. Neural ODEs have proven their capacity in time-series modeling, su-
pervised learning, and density estimation. Moreover, recent works adopt Neural
ODEs for system identification by learning the discrepancy between the prior
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knowledge of the physical system and the actual dynamics [14] or by relying
on a two-stage approach to identify unknown parameters of differential equa-
tions [3]. Recently, O’Leary et al. [16] propose a framework that learns hidden
physics and dynamical models of stochastic systems. Their approach is based
on Neural ODEs, moment-matching, and mini-batch gradient descent to ap-
proximate the unknown hidden physics. Another approach is represented by the
Physics-informed Neural Network (PINN) framework [18] which approximates
the hidden state of a physical system through a neural network. The authors
show how to use PINNs both to solve a PDE given the model parameters and to
discover the model parameters from data. Zhang et al. [23] further extend PINNs
by accounting for the uncertainty quantification of the solution. In particular,
the authors focus on the parametric and approximation uncertainty. Universal
Differential Equations (UDEs) [17] represent a generalization of Neural ODE
where part of a differential equation is described by a universal approximator,
such as a neural network. The formulation is general enough to allow the mod-
eling of time-delayed, stochastic, and partial differential equations. Compared
to PINNs, this formalism is more suitable to integrate recent and advanced nu-
merical solvers, providing the basis for a library that supports a wide range of
scientific applications.

System identification. Research towards the automated dynamical system
discovery from data is not new [6]. The seminal works on system identification
through genetic algorithms [2,22] introduce symbolic regression as a method to
discover nonlinear differential equations. However, symbolic regression is lim-
ited in its scalability. Brunton and Lipson [4] propose a sparse regression-based
method for identifying ordinary differential equations, while Rudy et al. [21]
and Schaeffer [8] apply sparse regression to PDEs discovering. Recent works
[15,14,3] focus on applying physics-informed neural architectures to tackle the
system discovery problem. Lu et al. [15] propose a physics-informed variational
autoencoder to learn unknown parameters of dynamical systems governed by
partial differential equations. The work of Lai et al. [14] relies on Neural ODE
for structural-system identification by learning the discrepancy with respect to
the true dynamics, while Bradley at al. [3] propose a two-stage approach to
identify unknown parameters of differential equations employing Neural ODE.

3 Universal Differential Equations

The Universal Differential Equation (UDE) [17] formulation relies on embedded
universal approximators to model forced stochastic delay PDEs in the form:

N [u(t), u(α(t)),W(t), Uθ(u, β(t))] = 0 (1)

where u(t) is the system state at time t, α(t) is a delay function, and W(t)
is the Wiener process. N [·] is a nonlinear operator and Uθ(·) is a universal
approximator parameterized by θ. The UDE framework is general enough to
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express other frameworks that combine physics knowledge and deep learning
models. For example, by considering a one-dimensional UDE defined by a neural
network, namely u′ = Uθ(u(t), t), we retrieve the Neural Ordinary Differential
Equation framework [5,20,12].

UDEs are trained by minimizing a cost function Cθ defined on the current
solution uθ(t) with respect to the parameters θ. The cost function is usually
computed on discrete data points (ti, yi) which represent a set of measurements
of the system state, and the optimization can be achieved via gradient-based
methods like ADAM [13] or Stochastic Gradient Descent (SGD) [19].

4 UDE for data-driven discovery of ODEs

In this section, we present the UDE formulation we adopt, and we describe
four research questions aimed at performing an in-depth analysis of the UDEs
framework in solving data-driven discovery of ODEs.

Formulation We restrict our analysis to dynamical systems described by ODEs
with no stochasticity or time delay. The corresponding UDE formulation is:

u′ = f(u(t), t, Uθ(u(t), t)). (2)

where f(·) is the known dynamics of the system, and Uθ(·, ·) is the universal
approximator for the unknown parameters. As cost function, we adopt the Mean
Squared Error (MSE) between the current approximate solution uθ(t) and the
true measurement y(t), formally:

Cθ =
∑
i

∥uθ(ti)− y(ti)∥22 . (3)

We consider discrete time models, where the differential equation in (2) can be
solved via numerical techniques. Among the available solvers, we rely on the
Euler method, which is fully differentiable and allows for gradient-based opti-
mization. Moreover, the limited accuracy of this first-order method enlightens
the effects of the integration technique on the unknown parameter approxima-
tion. Our analysis starts from a simplified setting, in which we assume that the
unknown parameters are fixed. Therefore, the universal approximator in Equa-
tion (2) reduces to a set of learnable variables, leading to:

u′ = f(u(t), t, Uθ). (4)

Training Procedure Given a set of state measurements y in the discrete inter-
val [t0, tn], we consider two approaches to learn Equation (4), which we analyze
in terms of accuracy and efficiency. The first approach, mentioned by [18] and
named here full-batch, involves 1) applying the Euler method on the whole
temporal series with y(t0) as the initial condition, 2) computing the cost function
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Cθ, and 3) optimizing the parameters θ via full-batch gradient-based methods.
An alternative approach, named mini-batch, consists of splitting the dataset
into pairs of consecutive measurements (y(ti), y(ti+1)), and considering each pair
as a single initial value problem. Then, by applying the Euler method on the
single pair, we can perform a mini-batch training procedure, which helps in
mitigating the gradient vanishing problem [7]. Conversely to the full-batch
approach, which requires data to be ordered and uniform in observations, the
mini-batch method has less strict requirements and can be applied also to par-
tially ordered datasets.

Solver Accuracy In the UDE framework, the model is trained to correctly
predict the system evolution by learning an approximation of the unknown pa-
rameters that minimizes the cost function Cθ. The formulation relies on the
integration method to approximate the system state u(t). However, the numer-
ical solver may introduce approximation errors that affect the whole learning
procedure. Here, we want to investigate the impact of the solver accuracy on
the unknown parameters approximation. Since the Euler method is a first-order
method, its error depends on the number of iterations per time step used to
estimate the value of the integral, and, thus, we can perform our analysis with
direct control on the trade-off between execution time and solver accuracy.

Functional Dependence By relying on the universal approximator in Equa-
tion (2), the UDE framework is able to learn not only fixed values for the un-
known parameters, but also functional relationships between them and the ob-
servable variables. Thus, we add a level of complexity to our analysis by consid-
ering the system parameters as functions of observable variables, and we evaluate
the UDE accuracy in approximating the unknown functional dependence.

Data Sampling Since UDE framework is a data-driven approach, it is impor-
tant to investigate the effectiveness of the UDE framework under different data
samplings. In particular, can we use the known dynamics of the system under
analysis to design the data collection process in order to increase the approxima-
tion accuracy?

5 Empirical Analysis

Here, we report the results of our analysis performed on two case studies: 1) RC
circuit, i.e., estimating the final voltage in a first-order resistor-capacitor circuit;
2) Predictive Epidemiology, i.e., predicting the number of infected people during
a pandemic. We start by describing the two case studies; then, we illustrate
the evaluation procedure and the experimental setup. Finally, we present the
experiments focused on the research questions highlighted in Section 4, and we
report the corresponding results.
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RC Circuit We consider a first-order RC circuit with a constant voltage gen-
erator. The state evolution of the system is described by

dVC(t)

dt
=

1

τ
(Vs − VC(t)) (5)

where VC(t) is the capacitor voltage at time t, Vs is the voltage provided by the
generator, and τ is the time constant which defines the circuit response.

We use the UDE formulation to approximate τ and Vs by writing Equation
(5) as

u′ =
1

Uθ1(t)
(Uθ2(t)− u(t)) (6)

where ut is a short notation for VC(t), Uθ1(t) and Uθ2(t) are the neural networks
approximating τ and Vs respectively. The cost function is defined as

Cθ1,θ2 =
∑
i

(uθ1,θ2(ti)− yi)
2 (7)

where uθ1,θ2(ti) and yi are the current solution and the discrete-time measure-
ments of the capacitor voltage at time ti, respectively.

Predictive Epidemiology Among the different compartmental models used to
describe epidemics, we consider the well-known Susceptible-Infected-Recovered
(SIR) model, where the disease spreads through the interaction between suscep-
tible and infected populations. The dynamics of a SIR model is described by the
following set of differential equations:

dS

dt
= −β

S · I
N

,

dI

dt
= β

S · I
N

− γ I,

dR

dt
= γ I,

(8)

where S, I, and R refer to the number of susceptible, infected, and recovered
individuals in the population. The population is fixed, so N = S + I + R. The
parameter γ ∈ [0, 1] depends on the average recovery time of an infected subject,
while β ∈ [0, 1] is the number of contacts needed per time steps to have a new
infected in the susceptible population. β determines the spreading coefficient of
the epidemic and is strongly affected by different environmental factors (e.g.,
temperature, population density, contact rate, etc.). The introduction of public
health measures that directly intervene on these environmental factors allows to
contain the epidemic spreading.

We rely on the UDE framework to i) perform system identification on a
simulated SIR model, and ii) estimate the impact of Non-Pharmaceutical Inter-
ventions (NPIs) on the epidemic spreading. We define the state of the system at
time t as ut = (St, It, Rt) and we formulate the Equations in (8) as
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An analysis of UDE for data-driven discovery of ODE 7

u′ = f(ut, t, Uθ(ut, t,Xt)) (9)

where Xt is the set of NPIs applied at time t. We assume γ to be fixed and
known, and we approximate the SIR model parameter β with a neural network
Uθ(ut, t,Xt). The cost function for this case study is defined as

Cθ =
∑
i

(uθ(ti)− ŷi)
2 (10)

where uθ(ti) and yi are the current solution and the discrete-time measurements
of the system state at time ti, respectively.

Evaluation and experimental setup. We evaluate the model accuracy by re-
lying on two metrics: the Absolute Error (AE), to evaluate the estimation of the
parameters, and the Root Mean Squared Error (RMSE), to study the approxima-
tion of the state of the dynamic systems. For each experiment, we perform 100 tri-
als, normalize the results, and report mean and standard deviation. All the exper-
iments are run on a Ubuntu virtual environment equipped with 2 Tesla V100S,
both with a VRAM of 32 GB. We work in a Python 3.8.10 environment, and the
neural models are implemented in TensorFlow 2.9.0. The source code is avail-
able at https://github.com/ai-research-disi/ode-discovery-with-ude.

5.1 Training Procedure

We compare full-batch and mini-batch methods to assess which is the most
accurate and efficient. We rely on high-precision simulation to generate data for
both case studies. For the RC circuit, we set Vc(0) = 0, and we sample 100 values
of Vs and τ in the range [5, 10] and [2, 6], respectively. Then, we generate data
by relying on the analytical solution of Equation 5. From each of the resulting
curves, we sample 10 data points (Vc(t), t) equally spaced in the temporal interval
[0, 5τ ]. Concerning the epidemic case study, the data generation process relies
on a highly accurate Euler integration with 10.000 iterations per time step. We
use the same initial condition across all instances, namely 99% of susceptible
and 1% of infected on the entire population, and we assume γ to be equal to 0.1,
meaning that the recovery time of infected individuals is on average 10 days. We
create 100 epidemic curves, each of them determined by the sampled value of
β in the interval [0.2, 0.4]. The resulting curves contain daily data points in the
temporal interval from day 0 to day 100 of the outbreak evolution.

We evaluate the accuracy of UDE in approximating the unknown parameters
and the system state, and we keep track of the total computation time required
to reach convergence. We believe it is relevant to specify that the mini-batch
has an advantage compared to the full-batch. The evaluation of the latter
involves predicting the the whole state evolution given only the initial one u0;
whereas, the first approach reconstructs the state evolution if provided with
intermediate values. Thus, to have a fair comparison, the predictions of the mini-
batch method are fed back to the model to forecast the entire temporal series
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given only u0. As shown in Table 1, for the RC circuit case study, both full-
batch and mini-batch approximate quite accurately Vs and Vc(t), whereas the
approximation of τ has a non-negligible error. However, full-batch requires
almost 3 times the computational time to converge. In the SIR use case (Table 2),
the two training procedures achieve very similar accuracies, but full-batch is
more than 8 times computationally expensive. Since both the methods have
very similar estimation accuracy, we can conclude that mini-batch is a more
efficient method to train the UDE compared to full-batch. Thus, we rely on
the mini-batch method in the remaining experiments.

Table 1: Comparison between mini-batch and full-batch methods in RC
circuit use case. We report the AE of Vs and τ approximation, RMSE for Vc(t)
prediction, and computational time in seconds.

Vs τ Vc(t) Time

mini-batch 0.027± 0.013 0.163± 0.101 0.021± 0.010 9.21± 39.49
full-batch 0.018± 0.021 0.200± 0.081 0.014± 0.020 26.19± 5.69

Table 2: Comparison between mini-batch and full-batch methods in epidemic
use case. We report the AE of β approximation, RMSE for SIR(t) prediction,
and computational time in seconds.

β SIR(t) Time

mini-batch 0.0030± 0.0019 0.017± 0.0046 1.28± 0.23
full-batch 0.0065± 0.0053 0.019± 0.0079 10.23± 2.50

5.2 Solver Accuracy

In the context of ODE discovery, we are interested in approximating the un-
known system parameters. Despite an overall accurate estimation of the system
state, the results of the previous analysis show that UDE framework does not
reach high accuracy in approximating the system parameters. The model inaccu-
racy might be caused by the approximation error introduced by the integration
method. Thus, to investigate the impact of the solver accuracy on the unknown
parameters approximation, we test different levels of solver accuracy by increas-
ing the number of iterations between time steps in the integration process. A
higher number of iterations per time step of the Euler method should lead to
more accurate solutions of the ODE; however, this comes also at the cost of a
higher computational time as shown in Figure 1.
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An analysis of UDE for data-driven discovery of ODE 9

In this experiment, we use the same data generated for Training procedure
experiment. In Figure 2, we report the approximation error of the UDE frame-
work when applying the Euler method with an increasing number of steps. As
expected, in both use cases, by increasing the precision of the Euler method, the
ODE parameters estimation becomes more accurate, until reaching a plateau
after 10 iterations per time step.

Fig. 1: UDE training time as a function of the number of iterations per time step
of the Euler method.

(a) τ and Vs (b) β

Fig. 2: Average and standard deviation of the AE as a function of the number
iterations per time step of the Euler method.

5.3 Functional Dependence and Data Sampling

In a real-world scenario, the dynamical systems that we are analyzing often de-
pend on a set of external variables, or observables, that influence the behaviour of
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the system. These elements can be environmental conditions or control variables
which affect the evolution of the system state. We study the UDE framework
in presence of observables, assuming two kinds of relationship between the inde-
pendent and dependent variable, namely, a linear and a non-linear dependence.

Linear Dependence For the RC circuit, we consider a simple and controlled
setup where τ is a linear function of a continuous input variable x changing
over time, namely τ(x) = ax, where a and x are scalar values. Conversely to the
previous experiments, we assume Vs to be known and equal to 1; we perform this
design choice to focus our analysis on the approximation accuracy of the linear
relationship solely. Since the value of τ changes over time, we can not rely on the
analytic solution of Equation (5) to generate data. Thus, we generate samples
from one timestep to the successive one by running a high-resolution integration
method, namely the Euler method with 10, 000 iterations per time step. In the
generation process, the linear coefficient a is randomly sampled from a uniform
probability distribution in the interval [2, 6], and the observable x is initialized
to 1, and updated at each time step as follows:

x(t) = x(t− 1) + ϵ, with ϵ ∼ U[0,1].

This procedure allows to have reasonable variations of τ to prevent physically
implausible data. During the learning process, as a consequence of the results
obtained in the Solver Accuracy experiment (Section 5.2), we use 10 iterations
per time step in the Euler method as a trade-off between numerical error and
computational efficiency.

In this experiment, we are interested in evaluating the UDE accuracy in
approximating the unknown linear dependence. The resulting absolute error of
the approximation of the linear coefficient a is 0.24 ± 0.27. Since the UDE is a
data-driven approach, the estimation error may be due to the data quality. Since
we simulate the RC circuit using a highly accurate integration method resolution,
we can assume that data points are not affected by noise. However, the sampling
procedure may have a relevant impact on the learning process. The time constant
τ determines how quickly Vc(t) reaches the generator voltage Vs, and its impact
is less evident in the latest stage of the charging curve. Thus, sampling data
in different time intervals may affect the functional dependence approximation.
To investigate how data sampling affects the linear coefficient estimation, we
generate 10 data points in different temporal regions of the charging curve. We
consider intervals of the form [0, EOH], where EOH ∈ (0, 5τ ] refers to the
end-of-horizon of the measurements; since τ changes over time, we consider the
maximum as a reference value to compute the EOH.

As shown in Figure 3, the linear model approximation is more accurate if
the data points are sampled in an interval with EOH ∈ [1.5τ, 3τ ], where Vc(t)
approximately reaches respectively the 77% and 95% of Vs. With higher values
of EOH, the sampled data points are closer to the regime value Vs, and the
impact of τ is less relevant in the system state evolution. Thus, the learning
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Fig. 3: Linear coefficients and predictions error and a function of the EOH.

model can achieve high prediction accuracy of Vc(t) without correctly learning
the functional dependence.

Non-Linear Dependence Here, we test the UDE framework under the as-
sumption of a non-linear dependence between the observable and the β parame-
ter of the epidemic model. The observable is a set of Non-Pharmaceutical Inter-
ventions (NPIs), which affects the virus spreading at each time step. To generate
the epidemic data, we define the following time series representing the variation
at time t of the inherent infection rate of the disease, β̂, under the effect of two
different NPIs per time instance:

β(t,xt, e, β̂) = β̂ · ex
t
1

1 · ex
t
2

2 (11)

where xt ∈ {0, 1}2 is the binary vector indicating whether the corresponding
NPIs are active at time t. The vector e ∈ [0, 1]

2 represents the effects of the two
NPIs in reducing the infection rate. We compute 100 different time-series for β
by assuming that the vector of NPIs, xt, randomly changes each week. For each
of the resulting time series, we generate 20 data points equally spaced from day
0 to day 140 of the outbreak evolution. The generation process relies on a highly
accurate Euler integration with 10.000 iterations per time step and uses the same
initial condition and γ value described in the Training Procedure experiment
(Section 5.1). To approximate the non-linear dependence in Equation (11), we
rely on a DNN which forecasts the value of β based on xt and the state of
the system at time t−1. Thus, the resulting universal approximator of the UDE
framework is a black-box model able to capture complex functional dependencies,
but lacking interpretability.

The experimental results show that the UDE framework is able to estimate
the dynamic system state with high accuracy (the RMSE of the state prediction
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Fig. 4: Non-Linear dependence: β and prediction errors with different sampling
frequencies.

is 0.037±0.013); however, the model is unable to provide an accurate estimation
of the β time-series, which RMSE is equal to 0.37 ± 0.17. Similarly to the RC
circuit, we investigate the effect of the data sampling frequency to the parameter
approximation accuracy of the UDE. We consider 4 different time horizons,
namely 5, 10, 15, and 20 weeks of the outbreak evolution, in which we sample
20 equally spaced data points. We train the model on the resulting data, and
we compute the reconstruction error (RMSE) on the complete epidemic curve
of 20 weeks. We report both the parameter approximation error and the curve
reconstruction error in Figure 4.

Conversely to RC circuit, the sampling process does not seem to a have a
significant impact on the model accuracy. The reason for this result may be found
in the complexity of the function to be approximated, and in the impact of β
parameter to the epidemic curve. In the RC-circuit, the system state evolution
is an exponential function of the unknown parameter τ , and we can design the
collection process to cover the temporal interval where the impact of τ is more
relevant. In the SIR model, we do not have a closed-form of the epidemic curve,
and thus it is harder to select the most relevant temporal horizon.

6 Conclusions

In this paper, we perform an in-depth analysis of the UDEs framework in solv-
ing data-driven discovery of ODEs. We experimentally probe that mini-batch
gradient descent is faster than the full-batch version without compromising
the final performances. We highlight some issues arising when combining data-
driven approaches and numerical integration methods, like the discrepancy in
accuracy between state evolution prediction and system parameter approxima-
tions. We investigated the integration method precision as a possible source of
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error, and we discuss the trade-off between approximation accuracy and compu-
tational time. Moreover, we study the importance of the data collection process
in reaching higher parameter approximation accuracy.

We believe that our analysis can foster the scientific community to further
investigate the capabilities and limitations of Physics-informed machine learning
frameworks in the context of differential equation discovery.

In the future we plan to extend our analysis by i) testing different numerical
integration solvers (e.g., higher-order Runge-Kutta or adjoint-state methods), ii)
considering the unknown parameters to be stochastic, rather than deterministic,
iii) extending the analysis to PDEs.

Acknowledgements Research partly supported by European ICT-48-2020 Project
TAILOR - g.a. 952215.
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