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Abstract. Regression of potential energy functions is one of the most
popular applications of machine learning within the field of materials
simulation since it would allow accelerating molecular dynamics sim-
ulations. Recently, graph-based architectures have been proven to be
especially suitable for molecular systems. However, the construction of
robust and transferable potentials, resulting in stable dynamical trajec-
tories, still needs to be researched. In this work, we design and compare
several neural architectures with different graph convolutional layers to
predict the energy of water cluster anions, a system of fundamental in-
terest in chemistry and biology. After identifying the best aggregation
procedures for this problem, we have obtained accurate, fast-evaluated
and easy-to-implement graph neural network models which could be em-
ployed in dynamical simulations in the future.
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1 Introduction

Calculating macroscopic properties (mechanical, thermodynamic, electronic...)
of materials through simulation of their microscopic components is a very active
field with high impact in science and engineering. This process is usually done
employing statistical physics by taking averages of the instantaneous properties
on the phase space (in which all possible states of a system are represented),
sampled with a suitable distribution. One of the most powerful and widely used
technique to sample the phase space and obtain dynamical trajectories is molec-
ular dynamics (MD). In a few words, MD is an algorithm that receives an initial
state as input and produces an output state at the following time-step by solving
the motion equations. Another popular approach is Monte Carlo (MC), where
the phase space is sampled by generating random moves which are accepted or
rejected following the Metropolis algorithm. In both MC and MD methods, the
potential energy function describes the underlying interactions of the system
and is a key ingredient for the quality of a simulation. The most time-consuming
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part of a simulation is the evaluation of the energy for MC and both energy and
forces for MD. Forces acting on each atom are computed as derivatives of the po-
tential energy with respect to the atomic positions and are necessary to update
the state. Accurate first principles potentials require significant computational
resources and it is challenging for simulations to converge when the system size
increases.

Different machine learning (ML) architectures have been proposed in recent
years as a powerful tool for predicting material properties and molecular inter-
actions [9,2]. In particular, graph neural networks (GNNs) have shown to be
especially helpful for evaluating energy and forces of molecular systems, which
can reduce the computational cost of molecular dynamics by multiple orders of
magnitude [6,7]. Graphs are non-Euclidean data structures able to model sys-
tems with complex interactions, such as molecules, as well as respect symmetries
like permutational, rotational and translational invariance.

Although the accuracy of complex architectures for predicting static proper-
ties has been extensively proven on benchmark datasets [11,6], the robustness of
GNN potentials when employed in real MD simulations has still to be improved
[10]. Therefore, further investigations are necessary to obtain stable and trans-
ferable potentials based on GNNs. Flexible and complex architectures equipped
with physics constraints could be a good direction to explore in future work.

In this work, we analyze the performance of different GNN architectures on a
dataset of water cluster anions, with chemical formula (H2O)−N . This system has
been intensively investigated as model for the hydrated electron in bulk water,
a species of fundamental interest, which is involved in important chemical and
biological electron transfer processes [1,3]. However, despite the huge experimen-
tal and theoretical effort made to understand how the excess electron or other
negatively-charge species are bound to water clusters [8], there are still open
questions.

This paper is organized as follows. The system under study is presented in
section 2, together with the basis of graph neural networks. Some methodological
details are explained in section 3, while the main results are exposed in section 4.
Lastly, some conclusions and possible future work are pointed out in section 5.

2 Background

The properties of a material are determined by its underlying interactions, which
can be codified into the potential energy function V (r1, . . . , rN ), a quantity de-
pendent on the atomic position coordinates r = (x, y, z). The knowledge of the
forces acting on each atom (computed as derivatives of the potential energy
function with respect to the atomic positions) of the system would allow to nu-
merically integrate the motion equations and obtain the updated positions. If
this process is repeated iteratively, one generates a dynamical trajectory of the
system which can be employed to compute macroscopic properties.

In water cluster anions, the excess electron is not attached to a specific water
molecule, but is bound globally to several water molecules or to the whole clus-
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Fig. 1. Schemes of surface (a) and interior (b) states of the excess electron of two water
clusters anions.

ter. Depending on the position of the excess electron we can distinguish surface
and interior states, see Figure 1. The exact description of the interactions is unaf-
fordable, but is not necessary for our purposes. The neutral water molecules are
approximated as classical entities interacting through a SPC/F effective poten-
tial, while the excess electron is represented by its wave function as a quantum
particle living in the pseudopotential generated by the atoms [1,3]. This way,
the total potential energy can be considered as the sum of two terms, the first
one describing the atomic interactions and the second one taking account the
electronic contribution of the excess electron:

E(r1, . . . , rN ) = VSPC/F(r1, . . . , rN ) + E0(r1, . . . , rN ). (1)

While the atomic term is evaluated very fast, the electronic contribution involves
the numerical resolution of a 3D single-particle Schrödinger equation3, which is
time-expensive and frequently becomes a bottleneck to converge MD simulations
and therefore to compute macroscopic properties.

Graphs serve to model a set of objects (nodes) and their interactions (edges).
When applied to molecules, each atom is considered a node and edges are usually
assigned to chemical bonds. Both nodes and edges are defined by their features,
xi and ei,j , respectively. Deep learning (DL) methods can be applied to graph-
structured data to perform classification and regression tasks, among others, to
give rise to graph neural networks, able to learn about local relations among
nodes through the exchange of messages carrying information on the environ-
ment of each node [5]. A convolutional (Conv) or message passing (MP) layer

3 The 3D one-particle Schrödinger equation yields:

Hψe(r1, . . . , rN ; re) = E0ψe(r1, . . . , rN ; re),

where the hamiltonian operator is H = −∇2/2me + VW−e(r1, . . . , rN ; re).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_25

https://dx.doi.org/10.1007/978-3-031-36027-5_25
https://dx.doi.org/10.1007/978-3-031-36027-5_25


4 A. Gijón et al.

updates the node features taking into account information from neighbor nodes
and edges:

x′
i = UPDATE

[
xi, AGGREGATEj∈N (i) (xi,xj , eij)

]
(2)

= γ
(
xi,□j∈N (i) ϕ (xi,xj , eij)

)
= Conv(xi,xj , eij). (3)

Symbol □ denotes a differentiable, permutation invariant function (sum, mean
or max), γ and ϕ represent differentiable functions such as MLP (multilayer
perceptron) or a different operation involving node and edge features, and N (i)
represents the set of nodes connected to node i. There are plenty of different con-
volutional layers which could be used to construct a GNN model, so we perform
a systematic study of six of them in next section. Apart from the architecture
of a GNN, the embedding process is crucial for the goodness of a model. That
is, the encoding of the original data into a graph structure should capture the
important features and relations among nodes.

3 Methods

We employ a database of water cluster structures with size ranging from 20 to
237 water molecules. Each element of the database consists of the Cartesian
position coordinates of all atoms composing the cluster, along with the atomic
and electronic contributions of the total energy associated to that geometry.
The geometries are extracted from previous MD equilibrium simulations at 50,
100, 150 and 200K of temperature, carried out with a software available at
https://github.com/alfonsogijon/WaterClusters_PIMD. Finally, the database is
formed by 1280 cluster geometries, splitted in 80 % for training and 20% for
testing purposes. Throughout this work, we employ atomic units for energy and
distance, unless the opposite is explicitly said.

Each cluster geometry is encoded into a graph structure, where nodes repre-
sent atoms and edges represent chemical bonds. Each node contains 4 features,
describing the chemical properties of each atom: the first one identifies the atom
type through its atomic number (8 for oxygen and 1 for hydrogen) and the 3 re-
maining features correspond to the atom’s position, that is, xi = (Zi, xi, yi, zi).
Only one edge feature is considered, as the distance between two connected
atoms:

eij =

{
rij i and j are connected,

0 elsewhere.
(4)

Each atom is connected to all atoms inside a cutoff sphere (if rij < rc). The
cutoff radius is a tunable parameter, which is set to 6, which implies an average
number of 5 neighbor or connected atoms. The cutoff rc was chosen as the
minimum value so that a bigger value does not affect significantly the accuracy
of the model. Together with the edge features, for some convolutional layers is
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convenient to define a binary adjacency matrix, non-zero when two atoms are
connected and zero elsewhere:

Aij =

{
1 i and j are connected,

0 elsewhere.
(5)

Our GNN models receive a graph as input and provide a value of the energy as
output. The model architecture is summarized in 3 steps:

(i) 2 convolutional layers:

xk+1
i = Conv

(
xk
i ,x

k
j , e

k
ij

)
j∈N (i)

.

(ii) Global sum pooling:

xF = GlobalSumPool
(
x2
1, . . . ,x

2
N

)
=

N∑
i=1

x2
i .

(iii) 2 fully connected layers:
E = NN

(
xF

)
.

First, two convolution layers are applied to the node features, which are updated
to account for each node environment. Then, the node features are pooled into
a final vector of node features. Finally, a fully connected neural network with
2 hidden layers predicts the energy from the final feature vector. We fixed the
number of convolutional and hidden layers to 2 because more layers do not
produce an important improvement in the final performance. For each hidden
layer of the dense neural network, we used 128 units.

In the results section, the performance of several available types of convo-
lutional layers is tested, while keeping constant the rest of the architecture. To
define and train the graph-models the Spektral software [4] was employed, an
open-source project freely available on https://graphneural.network/.

4 Results and Discussion

To analyze the performance of different convolutional layers for the energy re-
gression task, up to 6 types of Conv layers were used, namely CrystalConv,
GATConv, GCSConv, ECCConv, AGNNCong and GeneralConv. Specific de-
tails on each architecture can be consulted on the official Spektral website. For
each architecture, two different networks were used to predict each contribution
to the total energy, remind Equation 1. Each model was trained until the loss
function (set as MAE) converged to a constant value, which typically occurred
between 100 and 150 epochs.

The accuracy of the models on the test dataset is shown in Table 1. As can be
seen observing the MAPE columns, the regression of the atomic energy is better
than the electronic contribution. This was expected because the atomic term
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Atomic Energy Electronic Energy

MAE (Ha) MSE (Ha²) MAPE (%) MAE (Ha) MSE (Ha²) MAPE (%)

CrystalConv 0.10 0.0232 8.0 0.110 0.06571 101.8

GATConv 0.02 0.0008 1.6 0.005 0.00005 7.6

GCSConv 0.04 0.0027 2.9 0.007 0.00007 10.2

ECCConv 0.25 0.1569 16.1 0.018 0.00053 36.5

AGNNConv 0.06 0.0063 4.2 0.017 0.00059 23.9

GeneralConv 0.03 0.0015 2.2 0.014 0.00028 26.9

Table 1. Accuracy of different models with respect to different metrics.

Fig. 2. Comparison between predicted and true energies for (a) atomic and (b) elec-
tronic contributions on the test dataset, for the GATConv model.

comes from a simple potential (the SPC/F model is sum of two-body terms) while
the electronic term has a more complex nature, such as a Schrödinger equation.
Comparing the convolutional layers, GATConv is the best architecture, obtainig
a MAPE of 1.6% for the atomic contribution and 7.6 % for the electronic one.
The energy predictions for that architecture can be visualized in Figure 2, where
predicted energies are compared to the true values.

GATConv layer uses an attention mechanism to weight the adjacency matrix
that seems to learn very well different connections of each node (O-O, O-H, H-H
bonds). It is remarkable that CrystalConv layer, specially designed for material
properties [11], does yield poor results, but this can be explained by the fact that
our system is finite as we are working with clusters, and CrystalConv layer was
designed to represent crystal, that is, infinite periodical systems. As a matter
of fact, only GATConv and GCSConv produces acceptable results for both the
atomic and the electronic energies. The former weights the adjacency matrix and
the latter has a trainable skip connection layer.
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Fig. 3. Evaluation time of the total energy for the standard numerical method (a) and
the optimal GNN model (b).

Regarding computational time, GNN models have enormous advantages against
standard potentials. First, whilst the evaluation of the total energy is quadratic
with the system size (number of water molecules) for the original numerical
method, GNN models follow a linear relation, see Figure 3. Second and most
important, the time necessary to evaluate the energy of a water cluster anion is
in the scale of seconds for the numerical method, whereas the GNN model spend
milliseconds, so that is 3 orders of magnitude faster.

5 Conclusions

As a first step, we have identified an optimum architecture to construct a GNN
model able to predict accurate energies for water cluster anions. Besides, the
model is easily implemented, in contrast to the numerical method needed to
solve the one-electron Schrödinger equation to obtain the energy via standard
numerical methods. Our GNN model is also much more faster to evaluate and
could make possible to converge long simulations involving many atoms, which
are necessary to compute some macroscopic properties.

Our results prove the importance of choosing an appropriate architecture,
specially a suitable convolutional scheme, when constructing a GNN model for
finite molecular systems as water cluster anions. GATConv and GCSConv layers
yield good results and could be improved including more node features (atomic
charge, atomic mass...) and edge features (type of bond, angular and dihedrical
information...).

As future work, we plan to implement the calculation of the forces in a con-
sistent way, as derivatives of the energy with respect to the atomic coordinates.
This would allow to carry out molecular dynamics simulations, as long as im-
proving the learning process and obtain more robust energy potentials.
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