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Abstract. Reverse engineering is one of the classical approaches for
quailty assessment in industrial manufacturing. A key technology in re-
verse engineering is surface reconstruction, which aims at obtaining a dig-
ital model of a physical object from a cloud of 3D data points obtained by
scanning the object. In this paper we address the surface reconstruction
problem for surfaces that can exhibit large smooth bumps. To account
for this type of features, our approach is based on using exponentials of
polynomial functions in two variables as the approximating functions.
In particular, we consider three different models, given by bivariate dis-
tributions obtained by combining a normal univariate distribution with
a normal, Gamma, and Weibull distribution, respectively. The resulting
surfaces depend on some parameters whose values have to be optimized.
This yields a difficult nonlinear continuous optimization problem solved
through an artificial immune systems approach based on the clonal se-
lection theory. The performance of the method is discussed through its
application to a benchmark comprised of three examples of point clouds.

Keywords: Artificial intelligence, reverse engineering, surface reconstruction,
artificial immune systems, bivariate distributions, point clouds, data fitting

1 Introduction

1.1 Motivation

Nowadays, there is a renewed and increasing interest in the fields of artificial in-
telligence (AI) and machine learning (ML). This popularity is due in large part
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to the extraordinary advances of AI and ML in areas such as pattern recognition,
computer vision, robotics, healthcare, self-driving cars, natural language process-
ing, automatic machine translation, and many others. The industrial sector is
at the core of most of these innovations, with initiatives such as Industry 4.0,
and Internet of Things (IoT), paving the way to a new field commonly known as
industrial artificial intelligence. By this term we refer to the application of AI
and ML methods and developments to industrial processes in order to improve
the production and manufacturing systems.

One of the most interesting applications of industrial artificial intelligence
arises in quality assessment, where typically AI methods are applied to analyze
the quality of a digital design or a manufactured workpiece to determine whether
or not certain aesthetic and/or functional objectives are met. In many industrial
settings, quality assessment is carried out through reverse engineering, where the
goal is to obtain a digital replica of a manufactured good. For instance, reverse
engineering is widely used in the design and manufacturing of CAD models for
car bodies in the automotive industry, plane fuselages for the aerospace indus-
try, ship hulls in shipbuilding industry, moulds and lasts in footwear industry,
components for home appliances, cases for consumer electronics, and in many
other fields [32].

A key technology in reverse engineering is surface reconstruction [36]. Starting
with a cloud of 3D data points obtained by 3D scanning of the physical object,
surface reconstruction aims to recover the underlying shape of the real object in
terms of mathematical equations of the surfaces fitting these data points, which
is a much better way to store and manipulate the geometric information than
using the discrete data points directly. These mathematical equations can then be
efficiently used for different computer-assisted quality assessment processes, such
as shape interrogation, shape analysis, failure detection and diagnosis, and many
others. This approach is also used for intellectual property right assessment,
industrial property plagiarism control, and other industrial and legal issues.

A central problem in surface reconstruction is the selection of the approximat-
ing functions. Classical choices are the free-form parametric polynomial surfaces,
such as the Bézier and the B-spline surfaces, which are widely used in computer
graphics and geometric design. However, it has been noticed that depending
on the geometry of the point cloud, other choices might also be adequate. For
instance, exponential functions are particularly suitable to model surfaces with
large smooth bumps, as evidenced by the shape of the Gaussian function. Yet,
it is difficult to manipulate shapes with a simple exponential function. The ex-
ponential of polynomial functions of two variables provides more flexibility, as
it introduces extra degrees of freedom that can be efficiently used to modify the
global shape of the surface while handling local features as well. Owing to these
reasons, this is the approach followed in this paper.

1.2 Aims and structure of this paper

In this paper we address the problem of surface reconstruction from data points
by using exponentials of polynomial functions in two variables as the approximat-
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ing functions. In particular, we consider three different models of exponentials
of polynomial functions, given by bivariate distributions obtained by combining
a normal univariate distribution with a normal, Gamma, and Weibull distri-
bution, respectively. The resulting surfaces depend on some parameters whose
values have to be optimized. This yields a difficult nonlinear continuous optimiza-
tion problem that will be solved through an artificial immune systems approach
called ClonalG. The performance of the method will be discussed through its
application to a benchmark comprised of three examples of point clouds.

The structure of this paper is as follows: Sect. 2 summarizes the previous
work in the field. Sect. 3 describes the optimization problem addressed in this
work. Our method to solve it is described in detail in Sect. 4. The performance of
the method is illustrated through three illustrative examples, which are discussed
in Sect. 5. The paper closes in Sect. 6 with the main conclusions and some ideas
for future work in the field.

2 Previous Work

The issue of surface reconstruction for shape quality assessment has been as topic
of research for decades. Early computational algorithms were introduced the 60s
and 70s, mostly based on numerical methods [11, 33, 34]. Subsequent advances
during the 80s and 90s applied more sophisticated techniques, although they
failed to provided general solutions [3, 10]. From a mathematical standpoint, this
issue can be formulated as a least-squares optimization problem [26, 28, 31]. How-
ever, classical mathematical optimization techniques had little success in solving
it beyond rather simple cases, so the scientific community focused on alternative
approaches, such as error bounds [29], dominant points [30] or curvature-based
squared distance minimization [37]. These methods provide acceptable results
but they need to meet strong conditions such as high differentiability and noise-
less data that are not so common in industrial settings.

More recently, methods based on artificial intelligence and soft computing
are receiving increasing attention. Some approaches are based on neural net-
works [18], self-organizing maps [19], or the hybridization of neural networks
with partial differential equations [2]. These neural approaches have been ex-
tended to functional networks in [20, 27] and hybridized with genetic algorithms
[16]. Other approaches are based on support vector machines [25] and estimation
of distribution algorithms [40]. Other techniques include genetic algorithms [17,
38, 39], particle swarm optimization [12, 13], firefly algorithm [14], cuckoo search
algorithm [22, 24], artificial immune systems [23], and hybrid techniques [15, 21,
35]. It is important to remark that none of the previous approaches addressed
the problem discussed in this paper.

3 The Optimization Problem

As explained above, our approach to the surface reconstruction problem is to
consider exponential of bivariate polynomial functions as the fitting functions.
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A suitable way to proceed in this regards is to consider bivariate distributions
whose conditionals belong to such families of basis functions [4, 5]. In particu-
lar, we consider the combination of a normal univariate distribution with the
normal, Gamma, and Weibull distributions, respectively. In the first case, the
approximating function takes the form:

fpx, yq “ e
C0
2 ´C2 x`C1

x2

2 ´C3
y2

2 ´C4
x2y2

2 `C5xy
2
`C6y`C7x

2y´2C8xy (1)

which is a model depending on 9 parameters. However, these parameters are
not fully free, as they have to fulfill some constraints such as non-negativity and
integrability, leading to the following constraints (see [1] for details):

C4 ą 0 ; C3C4 ą C2
5 ; ´C1C4 ą C2

7 (2)

In the second case, the approximating function is given by:

fpx, yq “ eF`Ay´Cy2
`pG`By´Dy2

qx`pH`Jy´Ky2
qlogpxq (3)

which depends on 9 parameters, with the constraints:

C ą 0 ; D ą 0 ; G ă
´B2

4D
; H ą ´1 ; J “ 0 ; K “ 0 (4)

The third model is given by:

fpx, yq “ eD`Lx`F x2
´pA`B x`Gx2q py´KqC

py ´Kq
C´1 (5)

which is a model depending on 8 parameters with the following constraints:

G ě 0 ; 4GA ě B2 ; C ą 0 ; F ă 0 (6)

Once the approximating function is selected, the surface reconstruction pro-
cedure requires to compute the parameters of the function to obtain an accurate
mathematical representation of the function fpx, yq approximating the point
cloud accurately. This condition can be formulated as the minimization prob-
lem:

min

#

P
ÿ

p“1

“

pxp ´ x̂pq
2 ` pyp ´ ŷpq

2 ` pzp ´ fpx̂p, ŷpqq
2
‰

+

(7)

where pxp, yp, zpq and px̂p, ŷp, ẑpq denote the original and reconstructed data
points, respectively, and x̂p and ŷp can be obtained by projecting the point cloud
onto a flat surface Bpx, yq determined by principal component analysis. Also, our
minimization problem is restricted to the support of the function fpx, yq´Bpx, yq
and subjected to some parametric constraints given by the pairs of Eqs. (1)-(2),
Eqs. (3)-(4), and Eqs. (5)-(6), respectively.

This minimization problem is very difficult to solve, as it becomes a con-
strained, multivariate, nonlinear, multimodal continuous optimization problem.
As a consequence, usual gradient-based mathematical techniques are not suit-
able to solve it. In this paper, we apply a powerful artificial immune systems
algorithm called ClonalG to solve this problem. It is explained in detail in next
section.
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4 The Proposed Method: ClonalG Algorithm

The ClonalG algorithm is a computational method of the family of artificial
immune systems (AIS), which are nature-inspired metaheuristic methods based
on different aspects and features of the natural immune systems of humans and
other mammals [6, 7]. In particular, the ClonalG algorithm is based on the widely
accepted clonal selection theory, used to explain how the immune system reacts
to antigenic stimulus [8, 9]. When a new antigen Ag attacks the human body,
our immune system elicits an immunological response in the form of antibodies
Ab, which are initially only slightly specific to the antigen. A measure of the
affinity between the antibodies and the antigen determines which antibodies will
be selected for proliferation: those with the highest affinity with the antigen,
with the rest being removed from the pool. The selected antibodies undergo an
affinity maturation process that enhances their affinity to the antigen over the
time. A somatic mutation on the selected antibodies promotes higher diversity
of the population of antibodies, so that the affinity improves further during the
process. This mutation process is carried out at a much higher (about five or six
orders of magnitude) rate than normal mutation, and is therefore called somatic
hypermutation.

The ClonalG method was originally envisioned for pattern recognition tasks,
using this natural process of immune response as a metaphor. The patterns to
be learned (or input patterns) play the role of antigens, which are presented
to the computational system (a metaphor of the human body). Whenever a
pattern A is to be recognized, it is presented to a population of antibodies Bi,
and the affinity between the couples pA,Biq is computed based on a measure of
the pattern similarity (for instance, the Hamming distance between images).

The algorithm is population-based, as it maintains a population of antibodies
representing the potential matching patterns, and proceeds iteratively, along
generations. It is summarized as follows (see [8, 9] for further details):

1. An antigen Agj is randomly selected and presented to the collection of anti-
bodies Abi, with i “ 1, . . . ,M , where M is the size of the set of antibodies.

2. A vector affinity f is computed, as fi “ AfpAbi, Agjq where Af represents
the affinity function.

3. The N highest affinity components of f are selected for next step.
4. The selected antibodies are cloned adaptively, with the number of clones

proportional to the affinity.
5. The clones from the previous step undergo somatic hypermutation, with the

maturation rate inversely proportional to the affinity.
6. A new vector affinity f ’ on the new matured clones is computed.
7. The highest affinity antibodies from set of matured clones are selected for a

memory pool. This mechanism is intended as an elitist strategy to preserve
the best individuals for next generations.

8. The antibodies with the lowest affinity are replaced by new random individu-
als and inserted into the whole population along with the memory antibodies.
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Fig. 1. Original point cloud of Example I.

The algorithm is repeated for a given number of generations, Ngen, which is
a parameter of the method. This algorithm has proved to be efficient for pat-
tern recognition tasks. With some modifications, it can also be applied to solve
optimization problems. In short, the main modification is that, for optimiza-
tion problems, there is no pattern to be learned; instead, a fitness function has
to be optimized. In that case, the whole population can be cloned, although it
is convenient to preserve an unmuted copy of the best individuals during the
maturation step to speed up the method convergence.

Regarding the parameter tuning of the method, the only parameters of the
ClonalG algorithm are the population size and the maximum number of itera-
tions. We applied a fully empirical approach for the choice of these values: they
have been determined after conducting several computer simulations for differ-
ent parameter values. After this step, we selected a population of 50 individuals
(antibodies) for the method, and a total number of 500 iterations, which have
been more than enough to reach convergence in all our simulations. The best
solution reached at the final iteration is selected as the optimal solution of the
minimization problem in this work.

5 Experimental Results

The method described in the previous section has been applied to several ex-
amples of point clouds. For limitations of space, we restrict our discussion to
three illustrative examples, fitted according to the models in Eqs. (1), (3), and
(5) for Example I, Example II, and Example III, respectively, as discussed in the
following paragraphs.
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Fig. 2. Example I: (top) Reconstructed surface; (bottom) reconstructed surface and
data points.

5.1 Example I

This example consists of a cloud of R “ 32, 167 three-dimensional data points
displayed in Fig. 1. The data points do not follow a uniform parameterization and
are affected by white noise of low intensity (SNR=10). The point cloud is fitted
with model 1 according to Eq. (1) with the constraints in Eq. (2). Therefore, the
resulting optimization problem consists of minimizing the functional:
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Fig. 3. Original point cloud of Example II.

Ξ “
P
ÿ

p“1

“

pxp ´ x̂pq
2 ` pyp ´ ŷpq

2 ` pzp ´ fpx̂p, ŷpqq
2
‰

for

fpx̂p, ŷpq “ e
C0
2 ´C2 x̂p`C1

x̂p
2

2 ´C3
ŷp

2

2 ´C4
x̂p

2ŷp
2

2 `C5x̂pŷp
2
`C6y`C7x̂p

2ŷp´2C8x̂pŷp

Applying our method to the minimization of the functional Ξ with the con-
straints in Eq. (2) we obtained the values: C0 “ ´3.1815;C1 “ ´0.9936;C2 “

´0.8977;C3 “ 1.0249;C4 “ 0.9892;C5 “ 0.0073;C6 “ 0.9105;C7 “ 0.0104;C8 “

0.0027. For these values, the mean squared error (MSE), denoted in this paper as

∆ and defined as ∆ “
Ξ

P
, becomes: ∆ “ 0.02417, which shows that the method

is pretty accurate in recovering the underlying shape of data.
The best reconstructed surface is displayed in Fig. 2(top), where the bottom

picture shows the superposition of the fitting surface and the original point cloud
for better visualization. From that figure, the good numerical accuracy of the
method is visually confirmed, as the fitting surface reproduces the global shape
of the point cloud with very good visual fidelity. Note also that the shape of the
prominent bump at the center of the surface is faithfully reconstructed.
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Fig. 4. Example II: (top) Reconstructed surface; (bottom) reconstructed surface and
data points.

5.2 Example II

The second example consists of a cloud of R “ 30, 753 three-dimensional data
points shown in Fig. 3. The point cloud is fitted with model 2 according to Eq. (3)
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Fig. 5. Original point cloud of Example III.

with the constraints in Eq. (4). Application of the ClonalG method described in
Sect. 4 yields the values: A “ 2.9782;B “ 2.0273;C “ 4.0792;D “ 2.9885;K “

0.0;F “ 3.9811;G “ ´1.0337;H “ 0.0101; J “ 0.0, for which the mean squared
error takes the value: ∆ “ 0.01352, an excellent indicator of good fitting. Note
also that J “ K “ 0 is not directly obtained from the optimization method but
given as an input to the method via the constraints in Eq. (4).

Fig. 4 shows the optimal reconstructed surface (top) and its superposition
with the point cloud (bottom). Note again the excellent visual quality of the
surface reconstruction from the point cloud in Fig. 3, which confirms our good
numerical results.

5.3 Example III

For the third example, we consider the cloud point depicted in Fig. 5. In this
case, the point cloud consists of R “ 30, 679 data points, which is fitted according
to Eq. (5) with the constraints in Eq. (6).

Application of our method yields the values: A “ 2.0204;B “ ´3.9926;C “
1.9905;D “ 3.0168;L “ 0.0116;F “ ´2.0068;G “ 1.9851;K “ 0.0104, for
which the mean squared error takes the value: ∆ “ 0.09212, which is considered
a satisfactory approximation. The resulting best approximating surface is shown
in Fig. 6 (top) and superimposed by the original point cloud in Fig. 6 (bottom).
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Fig. 6. Example III: (top) Reconstructed surface; (bottom) reconstructed surface and
data points.
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Once again,we remark that the large surface bump at the center is accurately
reconstructed.

5.4 Implementation issues

The computations in this paper have been carried out on a PC desktop with a
processor Intel Core i9 running at 3.7 GHz and with 64 GB of RAM. The source
code has been implemented by the authors in the programming language of the
scientific program Mathematica version 12. About the computational times, our
method is quite fast. Each execution of the method takes only a few seconds of
CPU time, depending on the population size, number of iterations, complexity
of the problem, and other factors. For reference, the executions of the examples
in this paper take about 3–6 seconds.

6 Conclusions and Future Work

This paper addresses the surface reconstruction problem from 3D point clouds
for surfaces that can exhibit large smooth bumps. To account for this type of
features, our approach is based on using exponentials of polynomial functions in
two variables as the approximating functions. Three different models, given by
bivariate distributions obtained by combining a normal univariate distribution
with a normal, Gamma, and Weibull distribution, are considered as fitting func-
tions. Each model leads to surfaces depending on some parameters whose values
have to be optimized. However, this yields a difficult nonlinear continuous opti-
mization problem that cannot be solved by traditional numerical optimization
techniques. To overcome this limitation, we apply an artificial immune systems
approach called ClonalG, which is based on the clonal selection theory. The per-
formance of the method is discussed through its application to a benchmark
comprised of three examples of point clouds. The computational results show
that the method obtains good visual and numerical results, and is able to re-
construct the subtle bump features of the underlying shape of data with good
accuracy.

Regarding the future work in the field, we want to extend this method to other
families of surfaces exhibiting different types of features, such as holes, critical
points, discontinuities, and the like. We also want to apply this methodology to
complex workpieces from manufacturing industries that can typically require to
satisfy other types of functional and/or design constraints. The consideration of
other metaheuristic techniques to solve the optimization problem more efficiently
and the comparison of our results with other state-of-the-art methods described
in the literature are also part of our plans for future work in the field.
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