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Abstract. Let a three-dimensional ball intersect a three-dimensional
polyhedron given by its triangulated boundary with outward unit nor-
mals. We propose a numerical method for approximate computation of
the intersection volume by using voxelization of the interior of the poly-
hedron. The approximation error is verified by comparison with the ex-
act volume of the polyhedron provided by the Gauss divergence theorem.
Voxelization of the polyhedron interior is achieved by the aid of an indica-
tor function, which is very similar to the signed distance to the boundary
of the polyhedron. The proposed numerical method can be used in 3D
quantification of glenoid bone loss.
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1 Introduction

Studies show that about 90% of shoulder joints with recurrent anterior shoulder
dislocation have an abnormal glenoid shape [13]. The preoperative assessment
of anterior glenoid bone loss is a critical step in surgical planning for patients
with recurrent anterior glenohumeral instability. The currently accepted gold
standard for glenoid structural assessment among most orthopaedic surgeons
is the use of 3-dimensional reconstructed computed tomography images with
the humeral head digitally subtracted, yielding an en face sagittal oblique view
of the glenoid. Several methods have been reported to quantify the amount of
glenoid bone loss [4]. One of the most commonly used concepts described in
the literature uses the diameter of the “best-fit circle” circumscribed around
the inferior glenoid. To quantify the amount of glenoid bone loss, reported as
a percentage of either total surface area or diameter, the following measures
are used for the diameter-based method and surface area method, respectively:
Percent bone loss = (Defect width/Diameter of inferior glenoid circle) x 100%
and Percent bone loss = (Defect surface area/Surface area of inferior glenoid
circle) x 100%. Comparison of the diameter-based method and surface area
method is carried out in Table 1 in [4].
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To measure glenoid bone loss, surgeons typically use radiographs and 2D
CT scans and apply the surface area method, where certain part of the glenoid
bone is positioned within the best-fit circle and the missing area in the circle
represents size of the bone defect; see Fig. 1(a).

(a)

Fig. 1. (a) Best-fit circle method for evaluation of glenoid bone defect. (b) 3D volume
measurement of a glenoid bone

Magnetic resonance imaging (MRI) has been the gold standard for visual-
izing soft tissue lesions, but it has also proven to be an accurate modality for
measuring glenoid bone loss in recent clinical studies [3,12,15]. With the de-
velopment of three-dimensional bone reconstruction technologies, more accurate
measurements are being explored, for example, using the best-fit spherical vol-
ume instead of the circle area method. By placing the evaluated bone area inside
a sphere and measuring the difference between the reconstructed bone and the
interior of the sphere, the bone defect is evaluated in terms of 3D volume instead
of 2D area; see Fig. 1(b).

In the present paper, we describe a numerical method for measuring the
volume portion of a bone inside a given 3D sphere. Our contribution is a careful
selection of fast and robust algorithms for this method and a posteriori accuracy
test for the computed result. The design of the numerical method was inspired
by [6] and can be considered as a simpler alternative to the algorithm in [1]
equipped with the accuracy test.

2 Statement of the Problem

We are given a three-dimensional solid object B, such as the glenoid bone, em-
bedded into a three-dimensional parallelepiped (2. The boundary 9B of B is
assumed to be a two-dimensional triangulated surface without boundary, i.e. it
consists of plane triangles and is watertight. The triangulation of 0B is given
in the STL format by means of three matrices P, T' and F, which denote re-
spectively the set of vertices, the triangulation connectivity list and the set of
outward unit face normals. The i-th row of the real N x 3 matrix P contains
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the coordinates of vertex i. The k-th row of the integer K x 3 matrix T" contains
the vertex numbers for the k-th triangle. The k-th row of the real K x 3 matrix
F' contains the outward unit normal nj to the k-th triangle. Orientation of the
k-th triangle given by the row k of T' is consistent with the direction of the nor-
mal vector ng. Recall that a solid object inside a triangulated surface is usually
referred to as a polyhedron.

Intersection of a polyhedron with a ball. Consider a three-dimensional open ball
C = {z € R? |z — a|la < r}, where a € R? is a center, r > 0 is a radius and
lv]l2 = /v? + v3 + v3 is the Euclidean vector norm.

Our main problem is how to compute the volume of the intersection B N C.
It is worth emphasizing here that we do not need to evaluate this volume exactly
or with high accuracy. For example, a relative error not exceeding one percent
may be quite satisfactory.

3 Volume of a Polyhedron via the Gauss Formula

The Gauss-Ostrogradsky divergence theorem for a function f(v) = (f1, fo, f3)©
of v = (z1,22,73)T reads

0 0 0
/B ((’hﬁ+£+£) dv:/aB (fin1 + fang + fang)ds, (1)

where n = (n1,n2,n3)7 is the outward unit normal to the surface B and

ds is the surface area element. If f = (0,0,x3), then fB dv = faB x3nsds. Each

triangle () in OB is given by a sequence of vertex vectors pgk) , pék) , pgk) ordered

consistently with the outward unit normal n(*). Let us denote by mgk) the third

component of the mean vector (p(lk) —|—pék) —|—p§k))/3. It follows that [, z3nsds =

>k mgk)nék)area(T(k)). The vector product w®) = (wgk),wé’c),wék))T of the
vectors pgk) —pgk) and pgk) - pék) satisfies w®) = ||w® ||;n®*) and |Jw®)], =

2area(T™*)). Hence the volume of B equals

1
V= / dv = 3 Zmék)wék). (2)
B k

More formulas derived by means of the divergence theorem are found in [10].

4 The Voxelization Approach

The ideal (exact) method could be to describe the boundary of the intersection
B N C exactly and apply a variant of the Gauss divergence formula similar to
(2). However, theoretical derivation of this method seems to be too involved.
Alternatively, one can try to use results from the advanced theory of boolean
operations with polyhedra, see e.g. [5,14, 16, 8].
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Since we admit approximate evaluation of the volume of B N C, we follow a
much simpler approach based on the so called voxelization of the solid object.
Namely, having defined a uniform 3-D mesh M in the parallelepiped {2 contain-
ing the object B, we find the set M; of all interior points of M, i.e. the mesh
points belonging to B. Let us denote the number of interior points by |M,].
Assume that a single voxel in M is a cube with the side length h so that its
volume equals h®. Then the product h3|M;| approximates the volume of object
B. The approximation error converges to zero as area(0B)O(h) at most, where
area(0B) is the surface area of 9B. Note that the voxelization approach is also
used for more complicated problems such as boolean operations with polyhedra,
see e.g. [11].

The volume of BN C is approximated by h3|M; N C|, where |M; N C| is the
number of interior mesh points inside the ball C.

The main problem in our voxelization approach is the 3-D point location
problem that is the determination whether x € B or not for any point x € 2.
There exist efficient combinatorial solutions such as the method developed in
[7]. We choose the more widespread tools based on the distance maps and the
closest neighbor maps combined with the outward surface normals. Namely, we
take advantage of the indicator function from Section 5. This indicator function
has been used, for instance, in [1, 6].

5 Description of Our Numerical Method

We use the level set method, in which the surface OB is represented by the 0-
level set of a function u(z), i.e. 0B = {x € 2:u(x) = 0}. Moreover, we want to
construct u(z) such that u(x) < 0 inside B and u(x) > 0 outside B. Let us call
a function u(x) satisfying these properties an indicator function.

The numerical method consists of the following steps:

— Read the STL data for the surface 0B.

— Sample (discretize) the surface 0B into a 3D point cloud P with outward
normals.

— Determine a 3D parallelepiped (2 enclosing the point cloud P and choose a
uniform grid M in §2 of voxel size h.

— Downsample the point cloud P onto the grid points of M.

— Compute the closest point map for all grid points of M with the closest
points in the downsampled point cloud.

— Compute the distance map to the downsampled point cloud for all grid points
of M.

— Compute the indicator function u(x).

— Remove (possible) impulse noise by the median filter or by the TVG-L1
filter.

— Determine the interior grid points in B by zero thresholding u(z).

— Compute the volume of B as the number of interior points times h* and
compare it with the volume defined by the divergence theorem.
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— Determine the number of interior points lying in C' and calculate the volume
of the intersection BN C.

Let us look at these steps in more detail below.

5.1 Randomized Sampling of the Surface

In contrast to [1], where the Euclidean distance map is computed with respect to
the triangulated surface, we sample the triangulated surface into a point cloud.
Such decision is mainly due to the further use of standard efficient algorithms
for computation of the distance map.

We simply choose several points randomly on each triangle T®) of the tri-
angulation and use the same normal vector n(*) for all of them. The number of
chosen points depends on the precomputed area of T*) in order to get sufficiently
dense sampling of the surface.

5.2 Downsampling the Point Cloud

The continuous solid object is discretized on a uniform regular 3D grid M. We
specify a grid number for the space direction that has the largest range and the
other two will be determined by their related range. The voxels are cubes with
the side length h.

To speed up the computation, a simple downsampling preprocessing based
on the interpolation to the closest neighbor on the grid M is applied. By such a
preprocessing, the quality of the resulting point cloud does not change when h
is sufficiently small.

5.3 Distance Function and Closest Point Map

The distance function, or the distance map, of a point x € 2 to a point set
P = {p;}, is defined as

d(z) = Inl_in Il — pill. (3)

We use the Euclidean norm in (3). Note that d(z) > 0 and d(z) is exactly 0 at
the point cloud. The function bwdist in MATLAB implements the algorithm
from [9] for computation of d(x).

A very useful byproduct of the distance function is the closest point map. At
a point & € {2, we denote by cp(z) the point p; € P that is closest to x,

cp(z) = argmin [z — pi]. (4)
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5.4 Indicator Function

Assume that all points in the cloud P have a unit outward normal. For any
x € {2, we define the indicator function

f(@) = (z = cp(x)) - n(cp(x)), (5)

which equals the dot product of the vector z—cp(x) with the unit outward normal
n(cp(x)) at cp(x). The indicator function f(z) is negative when z is inside B
and positive when z is outside B. The function (5) is called the inner product
field in [6]. The function sign(f(z))d(x) is computed exactly for polyhedra in [1]
and called the signed distance function there.

5.5 Denoising

The indicator function f(z) in (5) is not stably defined when the vectors x—cp(x)
and n(cp(x)) are orthogonal or almost orthogonal. Therefore, f(z) can be subject
to impulse noise in such locations x. The noise is removed by the median filter.

More expensive denoising filter TVG-L1 is proposed in [2]. It produces a
smoother 0-level set of f(z) than the median filter. We remark that the median
filter provides a quite satisfactory result because our goal is computing the vol-
ume of B, not the boundary dB. Moreover, the use of f(x) without denoising is
often satisfactory. A test of accuracy is given in Section 5.6.

The TVG-L1 filter applied to f(x) is a solution u(z) of the variational model

min | (o) Vu(o)| + Mo - fldz, ©)
2

where g(z) > 0 is a weight function and A is a suitable smoothing parameter.
Solving (6) directly is not easy, therefore, it is often approximated by the easier
variational model

min/ <g(x)|Vu| ]+ = fu v — f|2) da, (7)
wo fo 260

which converges to (6) for sufficiently small § > 0. We use g(z) = d(z). A
numerical algorithm for solving (7) is found in [2, 6]. In our implementation, the
distance function and indicator function are scaled to be ranged over the interval
[0,1] and then we set A = 0.01 and 6 = 0.05 as in [6].

5.6 Test of Accuracy

The set of interior grid points of M in B is M; = {& € M: f(z) < 0}, or
M; = {x € M:u(x) < 0} after denoising. An approximate volume of B equals
h3|M;|, where |M;] is the number of points in M;. We compare h®|M;| with
the exact volume computed by (2). If the relative error is not small enough, the
computation of f(z) and u(x) is repeated with a smaller voxel size h.

Finally, we can calculate the number of points from M, that belong to the
ball B and multiply it by A% in order to get the volume of the intersection BNC.
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6 Numerical Illustration

Two examples have been computed in MATLAB to examine the proposed nu-
merical method: one for a normal glenoid bone and another for a defective one.
The examples are quite similar so we present only results for a defective glenoid
bone. The exact volume of the whole bone evaluated from the STL data by the
Gauss formula equals 1.99161. The exact area of the bone surface equals 25.6750.
The computed approximate volume of the bone amounts to 1.99281 before de-
noising, to 1.98723 after denoising with the median filter and to 1.99284 after
denoising with the TVG-L1 filter. The uniform grid M is of size 161 x 225 x 283
and has the voxel size h = 0.0169. The number of cloud points on the boundary
after downsampling is 124190. Arithmetical complexity of the proposed numer-
ical method is O(]STL|) + O(|M]), where |STL| is the length of all STL data
and |M| is the number of voxels in (2.

LN

Fig. 2. 0-level of the denoised indicator function computed by the MATLAB function
isosurface

7 Conclusion

We have developed a simple method for computing the volume of the intersection
of a three-dimensional ball with a polyhedron given by a triangulated closed
surface and outward unit normals. The method is based on voxelization of the
interior of the polyhedron and uses the closest point map to a sufficiently fine
sampling of the triangulated surface. Arithmetic complexity of the method is
linear with respect to the number of voxels in a parallelepiped containing the
polyhedron. The computed volume is approximate but its accuracy is guaranteed
by a posteriori estimate calculated with the help of the Gauss-Ostrogradsky
divergence theorem.
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