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Abstract. This paper presents a novel architecture of a convolutional
neural network designed for the segmentation of intracranial arteries
in contrast-enhanced magnetic resonance angiography (CE-MRA). The
proposed architecture is based on the V-Net model, however, with sub-
stantial modifications in the bottleneck and the decoder part. In order to
leverage multiscale characteristics of the input vessel patterns, we pos-
tulate to pass the network embeddings generated on the encoder path
output through the atrous spatial pyramid pooling block. We motivate
that this mechanism allows the decoder part to rebuild the segmentation
mask based on local features, however, determined at various ranges of
voxels neighborhoods. The ASPP outputs are aggregated using a simple
gated recurrent unit which, on the other hand, facilitates the learning of
feature maps’ relevance with respect to the final output. We also pro-
pose to enrich the global context information provided to the decoder by
including a vessel-enhancement block responsible for filtering out back-
ground tissues. In this study, we also aimed to verify if it is possible to
train an effective deep-learning vessel segmentation model based solely on
synthetic data. For that purpose, we reconstructed 30 realistic cerebral
arterial tree models and used our previously developed MRA simulation
framework.

Keywords: Vessel segmentation · Cerebral arterial models · Contrast-
Enhanced MR angiography · MR angiography simulation.

1 Introduction

Vessel segmentation is a key step in the analysis of angiographic images. It allows
the reconstruction and visualization of the topology of the vascular system of
body organs and helps to detect anatomical malformations such as stenoses,
occlusions, or aneurysms. One of the routinely used techniques in the diagnosis
of cerebral vessels is contrast-enhanced magnetic resonance angiography (CE-
MRA). This method requires the application of a gadolinium-based contrast
agent injected intravenously as a bolus, i.e. a dose of the agent with a volume
of several to 20 ml administered over a short period of time. In the ionized
state, gadolinium is a paramagnetic medium, which effectively shortens the T1
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relaxation time of the penetrated body fluids and tissues. Although gadolinium
itself is toxic, its clinically used form is chelated, which means that a Gd3+

ion is bound by a molecular cage giving the agent the required safety profile.
An advantage of CE-MRI in comparison with non-contrast techniques, such
as Time-of-Flight (ToF) or Phase Contrast Angiography (PCA), is that the
former provides excellent contrast of the vessels with respect to other tissues,
is free from or less pronounced to flow- and motion-related artifacts and allows
good separation of the signal from arteries and veins. The latter is achieved by
proper configuration of scanning times so that the signal is acquired at peak
concentration of the agent bolus in the arteries before it reaches the capillary
bed during its passage through the vascular system. Moreover, CE-MRA does
not suffer from other artifactual signal loss mechanisms characteristic of ToF
and PCA, such as intra-voxel dephasing and blood spins saturation due to slow,
in-plane, recirculating blood flow. On the drawbacks side, one must note that
CE-MRI is not recommended in patients with severe renal impairment or after
kidney replacement therapy, and in those who may develop a hypersensitive
reaction to the gadolinium agent. The risk factors of the latter include multiple
allergies, asthma, and a history of hypersensitive reactions to gadolinium and
iodinated contrast agents.

This paper focuses on CE-MRA in application to the imaging of cerebral ar-
teries. It must be noted that each imaging modality (such as MRI and computed
tomography, e.g.) and a specific method within a given modality (like ToF and
CE-MRA) possess characteristic intensity patterns, both with respect to vessels
and the surrounding tissues. Hence, machine-learning-based vessel segmentation
methods, which rely not only on geometrical features describing tubular elon-
gated shapes of arteries and veins but also on the texture information related to
the vessels’ lumen and surrounding context, must be developed on the training
data corresponding to the target modality. There can be two cases distinguished
in regard to the availability of training examples. If there are sufficient images,
then the development of semantic segmentation models is conceptually straight-
forward. On the other hand, when the training images of the target modality
are scarce, one could use transfer learning—first, pre-train the model using, e.g.
CT data and then fine-tune it with a relatively smaller set of MR images. In any
case, the most tedious work is the data annotation so that the model can learn
how to differentiate vessel pixels (or voxels in 3D) from background tissues.

In order to avoid the effort of manual data annotation, some researchers use
synthetically generated vessel trees. The geometrical tree models are converted
into images and ground-truth annotations. Usually, these images are oversimpli-
fied, both in terms of specific patterns characteristic of a given imaging modality
and the complexity of the vessel system. Hence, the reliability of such models
is limited to cases consisting of only a few straight large-scale branches, such as
e.g. carotid arteries. Therefore the goal of this work is to show that it is possible
to develop a deep-learning multi-scale vessel segmentation model ensuring state-
of-the-art performance using the simulated CE-MRA images reconstructed for
the realistic arterial tree models. The details of our concept are provided in the
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subsequent sections as follows. In Sect. 2, we give a summary of the published
works concerning vessel segmentation, giving focus on deep-learning technology.
This section completes with a list of contributions of our study in light of the pre-
sented SOTA methods. Section 3 presents the proposed architecture of a neural
network dedicated to the segmentation of multi-scale vessel structures. Then we
describe the developed framework for CE-MRA image synthesis which is based
on our previous achievements in non-contrast MRA simulations. The results of
experiments are presented in Sect. 4, and finally, Sect. 5 concludes.

2 Related work

2.1 State-of-the-art methods

The importance of the vessel segmentation problem in the analysis of angio-
graphic images resulted in numerous contributions over the last two decades
and it is still an active research field. Modern approaches are comprehensively
reviewed, e.g., in [20, 13]. Recently, with the advent of deep learning technology,
there is an observed growing trend toward the application of artificial neural net-
works for semantic segmentation of the vascular system. Since it is also an area
of interest in the current study, below some examples most relevant to our re-
search are recalled. For the description of conventional approaches, which utilize
vessel enhancement [6], template matching [28], region growing [1], or level-set
methods [16, 8], the reader is referred to the provided citations.

A large part of published works concerns vessel segmentation in retinal im-
ages. For example, in [22] the authors employed a standard architecture of a
convolutional neural network (CNN), with 3 convolutional layers, each followed
by a max-pool operator, and then a head composed of two consecutive fully
connected layers. The network input is a 61x61 pixel patch cropped from the
original full-resolution OCT image and the output of the last, 2-neuron clas-
sification layer provides the probability estimate that the central patch pixel
belongs either to a vessel or a background tissue. This kind of network is an
example of architecture, where image pixels are classified based on the context
embraced by an image patch. The effectiveness of such an approach is poor due
to the need to iterate through multiple overlapping image patches, thus repeat-
ing the convolution operations for the same image regions. Nonetheless, such
a methodology was utilized in a series of studies, also in the context of other
organs and imaging modalities, e.g. liver (CT) [10], esophagus (NBI microscopy)
[30], or carotid arteries (US) [24].

An extension to regular CNN architecture with a fully connected output
classification layer is the Fully Convolutional Network (FCN) architecture. In-
stead of the fully connected layer, a tensor of deconvolution filters forms the
FCN head, with each filter responsible for activating an individual pixel in the
resulting segmentation mask. This mechanism allows for avoiding repeated pro-
cessing of the overlapping image patches and provides finer delineation of the
vessel walls. However, the output mask resolution is usually lower than that of
the input image. FCN was reported to ensure satisfactory results in application
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to the segmentation of e.g. left ventricle vasculature [29], or cardiovascular and
pulmonary vessels [17] in MRI and CT images.

Advances in encoder-decoder architectures resulted, on other hand, in nu-
merous semantic segmentation network models. The most common architecture
of this kind is the classic U-Net model [23], initially developed for segmenting
neuronal structures in electron microscopic 2D images. In regard to vessel seg-
mentation, this model was applied, e.g. to recognize retinal vessels in scanning
laser ophthalmoscopy images [18], cerebral arteries in TOF-MR angiograms[14]
or renal vasculature in CT data [27]. A 3-dimensional variant of U-Net was
utilized in application to cerebral arteries also in TOF-MR angiograms [5].

Authors not only employ standard U-Net configuration with convolutional
layers in both encoder and decoder paths with skip connections between the
corresponding branch levels but also introduce custom modifications. For exam-
ple, Wang et al. replace some of the convolution layers in the contracting path
with ResNest blocks [9] to increase the saliency of the extracted image embed-
dings. Moreover, the skip connections which in the regular U-Net perform simple
concatenation are enhanced by inserting the frequency channel attention (FCA)
units between the encoding layers output and the corresponding decoder inputs.
The role of the FCA blocks is to compensate for the potential mismatch be-
tween low- and high-level image features. A similar model is proposed in [4] for
segmenting 3D coronary CTA images. Here the attention-guided modules fuse
embeddings generated by adjacent levels of the encoder-decoder hierarchy to
automatically capture the most relevant information inferred by the two paths.
Moreover, the feature map on the output of the network bottleneck, before pass-
ing it on to the decoder, is processed by the scale-aware feature enhancement
layer. This component extracts and selects image embeddings sensitive to various
vessel scales. Eventually, the last layer of the decoder is formed by the multi-
scale aggregation module, capable of adaptive fusing information from various
decoder stages.

The fundamental challenge in any deep-learning task is preparing the rep-
resentative training data set. The number of image-segmentation mask pairs
should be large enough to cover the variability of the input domain. Appar-
ently, according to the review presented in [13], the number of subjects involved
in the DL experiments ranges from just a few scans up to several hundred.
Hence, in most of the experiments, data augmentation techniques are involved
to artificially increase the training set size to thousands of 2D images. In the
study described in [7], more than 18 thousand scans were collected, but such
big data sets are rather scarce, and usually not available for academic research
groups. Therefore, some researchers postulate using synthetic data sets instead
of real ones. Such approaches can be found in [26] and [29] where the image
simulation procedures mimic CT and MR angiography, respectively. The in-
trinsic advantage of simulator-generated training examples is that ground-truth
segmentation masks are automatically available, as the underlying vessel tree
models are needed to synthesize the images. Thus, neither data annotation ef-
fort nor its quality check is required. In the published works, however, no study
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devoted explicitly to realistic contrast-enhance MR angiography is reported. In
[29], where the coreMRI simulation platform [3] was utilized, only the 2D image
slices were generated using a single-shot balanced steady-state free precession
pulse sequence together with the 4D-XCAT whole-body anatomical model, from
which the cardiac vasculature and tissue region was extracted.

2.2 Current contribution

Considering the above-presented state-of-the-art, there are three aspects that
can be distinguished as potential fields of improvement. Firstly, for the need of
vessel segmentation in contrast-enhanced MR angiography images, a dedicated
data set must be collected. Similarly to other researchers, we postulate to create
a database of simulated images. For that purpose, we extended our MR angiog-
raphy simulation framework [12] to the contrast-enhanced acquisition method.
Moreover, as we focus on the intracranial arterial system, we constructed a series
of cerebral vascularity models both normally appearing as well as with various
lesions, such as aneurysms and stenoses. Thus, in contrast to previous works
which used arterial models synthesized according to vessel tree-growth simula-
tion algorithms, our approach is based on realistic anatomies reconstructed from
true patient data. Secondly, in order to better exploit the multi-scale nature of
the vessel system, we introduce a custom modification of the V-Net’s encoder
path. In our model, the last extracted feature map is passed through the atrous
spatial pyramid pooling block, as in the backbone of the DeepLabV3 architecture
[2]. Our solution stems from the observation that features must be extracted at
multiple scales on the initial steps of the processing path and not only at the de-
coder output so that all the subsequent decoding stages can reconstruct coarse
and fine geometrical vessel details. Then, the multi-scale feature maps repre-
senting various levels of geometry are stacked and aggregated with the use of a
GRU module. Thirdly, instead of expanding the network architecture with an
attention mechanism, criticized for the increased computational cost attributed
to the need of learning unimportant features, we propose to enrich the input
context information by manually-engineered image embeddings. This task is re-
alized by the vessel-enhancement block which contains a bank of filters sensitive
to tubular structures [6].

3 Methods and materials

3.1 Vessel segmentation model

Base architecture. The objective of the current study was to develop an effi-
cient vessel segmentation model that would incorporate multiscale image feature
extraction and a robust mechanism to account for the global context of an im-
aged organ vasculature. For that purpose, we propose the architecture visualized
in Figure 1. It is essentially based on the concept of V-Net—a volumetric fully
convolutional network [19]. The main computational units in the encoder path
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Fig. 1. Overview of the proposed vessel segmentation network architecture.

realize 5× 5× 5 convolution with stride=1. At each stage, there are 2 convolu-
tion layers followed by batch normalization and dropout layer (with probability
p = 0.2). The activation function for the convolutional layers is the parameter-
ized ReLU. The number of filters in the first stage equals 64 for both layers and
doubles in consecutive stages. As proposed in the original paper, the input to
each stage is passed over and added to this stage’s output, thus enabling the
learning of a residual function and decreasing the convergence time. The resolu-
tion of image embedding maps is reduced after each stage by a convolution layer
with 2 × 2 × 2 kernel with stride 2. Eventually, the outputs of the contractive
path stages are concatenated with the inputs of the corresponding blocks in the
expansion path.

Multi-scale feature extraction and aggregation. The network embeddings
extracted at the third stage of the encoder already comprise rich semantic infor-
mation. Further reduction of the input resolution poses a risk of hiding varied
geometrical patterns characteristic of vessels at different scales. Hence, instead of
another contractive step, the proposed model contains the atrous spatial pyramid
pooling block, which provides feature encoding at various scales and simultane-
ously leverages high-resolution context information around the vessels. We adopt
the idea of ASPP blocks to 3 dimensions and use 4 kernels of sizes 1 × 1 × 1
(pointwise), and 3× 3× 3 with dilation rates r=2, 4, and 6.
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The feature maps extracted in the ASPP block are then propagated in 4
parallel paths through decoder convolution blocks (kernel size=5 × 5 × 5) and
upscaling deconvolution (2 × 2 × 2, stride=2). Before reaching the last layer,
these 4 feature maps are stacked in a sequence and aggregated using a 1-layer
GRU block, which automatically selects embeddings relevant to segmentation
on each scale.

Vessel-enhancement block. The trend toward discarding conventional im-
age processing methods in favor of deep learning has led to the development
of network architectures of sometimes unnecessarily high complexity. Although
ultimate performance can be satisfactory, it is often attained at the increased
training effort and the size of the model. Moreover, there is a risk of overfitting
since the complex network does not attain the global context information and
cannot generalize to new cases. Hence, we propose to enhance the contextual
information by filtering the input image using a classic multi-scale vessel en-
hancement function [6]. It uses derivatives of Gaussian kernels to analyze local
image contrast in various directions. In our implementation, we configure the
enhancement procedure to five scales, i.e., values of the standard deviation of
the probing Gaussian kernels, which were equal to 0.5, 1, 2, 4, and 8 mm. Such a
filtered image is then concatenated with the aggregated output of the GRU unit
and passed through the last convolution block. Finally, the output of the decoder
is convolved channel-wise with the filter of size 1 × 1 × 1. The obtained values
are consumed by the soft-max function which generates the output segmenta-
tion mask. The network training is accomplished by minimizing the standard
cross-entropy loss function.

3.2 MR angiography simulation

Cerebral arterial models. The input to the simulation algorithm, apart from
the imaging parameters (such as sequence timing parameters, the field of view,
etc.), is the model of the imaged organ. In the case of angiography simulation,
the model comprises the geometry of the arterial tree, its functional description,
i.e. blood flow through the vessel system, and the stationary tissue mimicking the
perfusion volume. The first problem is therefore the reconstruction of a realistic
arterial tree geometrical model.

We approach this challenge by manually annotating cerebral vessels in a high-
resolution CE-MRA image. For the need of this study, we exploit the IXI dataset
[15] - an open database containing 570 MRA images of healthy subjects. Since
this study is a preliminary research directed toward the utilization of synthetic
images for the training of deep-learning segmentation models, we selected a
subset of 30 MRA volumes for the development of training examples. The in-
plane resolution of the images was equal to 0.46875×0.46875 mm2 with the
matrix size=512×512 pixels. The number of axial slices was 100 and the spacing
between slices, as well as slice thickness, was equal to 0.8 mm.

Given the vessel system segmentation, its geometric description can be ob-
tained. Firstly, in our algorithm, the segmentation mask is skeletonized to roughly
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Fig. 2. Reconstruction of a cerebral arterial tree using VesselKnife and Comsol soft-
ware. Manual annotation of arteries in the real CE-MRA volume (a). Skeletonization
of the binary annotation mask and centerline determination (b). Radius estimation
along the centerlines (c). Geometry reconstruction in the Comsol software to simulate
the blood flow.

identify the courses of the vessel centerlines. These centerlines were defined on
the discrete raster, hence they then must be smoothed to obtain a continuous
description. The smoothing process involves minimizing the second derivatives
calculated at the subsequent nodes of centerlines.

Next, the vessel radii are determined along the smoothed centerlines using
the algorithm implemented in the VesselKnife software [25]. For a given node
point on the centerline, a set of rays passing through that point is defined. The
rays are led in multiple directions in order to equally penetrate the space around
the node. The number of rays can be adjusted to the user’s needs and it is a
tradeoff between computational effort and precision of radius estimation. Each
ray intersects the vessel wall which is determined as a boundary between white
and black regions in the segmentation binary mask. The covariance matrix is
then constructed for the distribution of the intersection points. The principal
component decomposition of this covariance matrix indicates the local vessel
orientation (component with the highest eigenvalue) and its radius, which is
approximated as the square root of the smallest eigenvalue multiplied by 2.
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