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Abstract. We propose a method for retrieving solar magnetograms
based on their content. We leverage data collected by the SDO Helio-
seismic and Magnetic Imager using the SunPy and PyTorch libraries
to create a vector-based mathematical representation of the Sun’s mag-
netic field regions. This approach enables us to compare short vectors
instead of comparing full-disk images. To reduce retrieval time, we use a
fully-connected autoencoder to compress the 144-element descriptor to
a 36-element semantic hash. Our experimental results demonstrate the
efficiency of our approach, which achieved the highest precision value
compared to other state-of-the-art methods. Our proposed method is
not only applicable for solar image retrieval but also for classification
tasks.

Keywords: Fast image hash · Solar activity analysis · Solar image de-
scription · CBIR of solar images · Magnetogram Image Descriptor · Mag-
netogram Image Hash.

1 Introduction

Analysing the Sun is crucial for understanding many aspects of our solar system
and the universe. By analysing the Sun’s internal structure and surface features,
we can better understand how the Sun generates and releases energy through
nuclear fusion. This information is essential for predicting and understanding
the Sun’s behaviour, such as the occurrence of solar flares, coronal mass ejec-
tions, and other space weather phenomena that can affect Earth and the space
environment.

Solar activity can cause disturbances in Earth’s magnetic field, leading to
geomagnetic storms that can affect power grids, satellites, and communication
systems. By monitoring the Sun’s activity and predicting space weather, we
can take measures to mitigate these effects. By studying the Sun’s properties,
researchers can better understand the range of conditions that can support life
in other star systems.

⋆ The project financed under the program of the Polish Minister of Science and Higher
Education under the name “Regional Initiative of Excellence” in the years 2019–2023
project number 020/RID/2018/19, the amount of financing 12,000,000.00 PLN.
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NASA’s Living With a Star (LWS) Program has a mission to explore how
solar activity affects Earth, and the Solar Dynamics Observatory (SDO) is a
crucial component of this endeavour. The SDO provides extensive data on the
solar atmosphere at different wavelengths and with high spatial and temporal
resolution, allowing for thorough analysis of the Sun’s impact on our planet.
One of the key instruments on the SDO is the Helioseismic and Magnetic Im-
ager (HMI), which specializes in examining oscillations and the magnetic field
of the solar surface. By generating dopplergrams, continuum filtergrams, and
magnetograms (which are maps of the photospheric magnetic field), the HMI
enables researchers to obtain valuable insights into the Sun’s behaviour.

The magnetograms created by the HMI are particularly important to re-
searchers. However, with the sheer volume of data generated by the SDO space-
craft, it is impossible to manually annotate and search through the entire collec-
tion. Although some image retrieval methods exist, they are primarily designed
for real-life images and do not suit the needs of solar research. Instead, re-
searchers have turned to semantic hashing to reduce dimensionality by creating
short codes that preserve similarity and reflect the content of the input data.
This approach was initially introduced by Salakhutdinov and Hinton [17] and
has since been used to describe any short codes that reflect content-similarity.

The goal of semantic hashing is to produce compact vectors that accurately
reflect the semantic content of objects. This approach enables the retrieval of
similar objects through the search for similar hashes, which is a faster and more
memory-efficient process than working directly with the objects themselves. Pre-
vious works has used multilayer neural networks to generate hashes. Recently,
learned semantic hashes have become popular for image retrieval, as demon-
strated by research such as that by [18].

Initially, we found out that generating hashes from full-disk solar images
would be impractical due to the large size of the image collections in terms of
resolution and quantity. As a result, we developed the hand-crafted intermediate
descriptors discussed earlier.

A full-disk content-based image retrieval system is described in [1]. The au-
thors checked eighteen image similarity measures with various image features
resulting in one hundred and eighty combinations. The experiments shed light
on what metrics are suitable for comparing solar images to retrieve or classify
various phenomena.

In [3], a general-purpose retrieval engine called Lucene is utilized to retrieve
solar images. Each image is treated as a document with 64 elements (represent-
ing the rows of each image), and each image-document is unique. Wild-card
characters are used in query strings to search for similar solar events. While the
Lucene engine is compared to distance-based image retrieval methods in [4], no
clear winner emerged. Each tested method has its advantages and disadvantages
in terms of accuracy, speed, and applicability. There is a significant trade-off
between accuracy and speed, with retrieval times of several minutes required for
accurate results.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_19

https://dx.doi.org/10.1007/978-3-031-36027-5_19
https://dx.doi.org/10.1007/978-3-031-36027-5_19


Sun Magnetograms Retrieval... 3

In [10], a sparse model representation of solar images is presented. The
method utilized the sparse representation technique proposed in [14] and showed
superior performance in both accuracy and speed compared to previous solar im-
age retrieval approaches. The authors of [12] focused on tracking multiple solar
events across images with 6-minute cadence by selecting specific solar image pa-
rameters. Additionally, sparse codes for AIA images were used in [11], where
ten texture-based image parameters were computed for regions determined by a
64×64 grid for nine wavelengths. A dictionary of k elements was learned for each
wavelength, and a sparse representation was then computed using the learned
dictionary. In [13], a new method for image retrieval using fuzzy sets and boost-
ing is proposed. To overcome the curse of dimensionality that affects solar data,
the authors use the Minkowski norm and carefully choose the appropriate value
for the p parameter. They also employ a 256-dimensional descriptor, which has
been shown to be both efficient and accurate compared to previous approaches.

In this paper, we propose a method for automating solar image retrieval
and enabling their fast classification using a solar image hash generated from
one-dimensional hand-crafted features by a fully-connected autoencoder. The
resulting hash is very compact, consisting of only 36 real-valued elements, but
experiments have shown that this is sufficient to accurately describe the images.
In the dataset used, the images are annotated only by their timestamp, making
it difficult to extract any other meaning or interpret the trained system [15]. The
timestamp is treated as a measure of similarity, and after training, the algorithm
allows retrieval of images by their visual similarity, regardless of the timestamp
proximity. The paper is organized into three sections: the proposed method for
generating learned solar hashes is introduced in Section 2; experiments on the
SDO solar image collection are described in Section 3; and finally, the paper
concludes with Section 4.

2 Solar Magnetic Intensity Hash for Solar Image
Retrieval

The Solar Dynamics Observatory’s (SDO) instruments are not only the Atmo-
spheric Imaging Assembly (AIA) but also Helioseismic and Magnetic Imager
(HMI), which allows for creation of magnetograms of the Sun. In active regions,
the magnetic field can be significantly stronger than the average magnetic field of
the Sun, with some regions having magnetic fields over 1,000 times stronger. By
providing information about the magnetic fields of the entire solar disk, magne-
tograms are useful in many areas of solar analysis. Taking into consideration the
noise present in regular active region images due to bright pixels that represent
flares extending beyond the solar disk, the utilization of magnetograms in solar
image description or solar image hashing seems like a viable solution to enhance
the precision of the hash. By providing information about the magnetic fields of
the entire solar disk, magnetograms can effectively reduce the unwanted noise
in solar images. As such, using magnetograms to analyze the Sun’s activity (as
shown in Fig. 1) appears to be a more justifiable approach.
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Fig. 1. Example magnetogram image. As can be seen, the image is difficult to analyze
without any pre-processing.

Solar images are highly similar to each other, and using general-purpose
descriptors for retrieval may not yield accurate results. To address this issue,
we propose a novel solar magnetogram hash for solar image retrieval in large
datasets. Our experimental setup includes a GeForce RTX 2080 Ti 11GB GDDR6
graphics card, which allows us to utilize 11 GB of memory. Initially, we attempted
to design a full-disc autoencoder, but the higher mini-batch values caused out-
of-memory exceptions, and the learning time was several days compared to the
minutes required in our proposed approach. Therefore, we developed a prepro-
cessing stage to calculate the solar magnetogram descriptor, which was then
used to reduce the hand-crafted vectors to x-element real-valued hashes using
the autoencoder (see Sec. 2.3). This approach preserves the significant infor-
mation about active regions while reducing the dimensionality of the data for
efficient retrieval. The presented algorithm is composed of four main stages: ac-
tive region detection, calculating solar image hand-crafted descriptors, encoding
to hash, and retrieval.

2.1 Magnetic Region Detection

In this section, we describe the fundamental steps involved in the hashing pro-
cess. The first step entails adjusting the magnetogram image to more clearly an-
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notate the magnetic regions, as illustrated in Figure 2. We refer to this process as
magnetic region detection, which we conduct by utilizing magnetogram images
obtained via the SunPy library [19, 20]. This step enables us to determine the
intensity of the magnetic field. Figure 1 and Figure 2 both depict the increase

Fig. 2. The magnetic region detection and annotation process. The magnetic regions
can be clearly visible. We can observe the polarities (red and blue) and their intensities.

in magnetic field strength around active regions. To define the magnetic field
strength, we utilize color intensities, as illustrated in Figure 3. Throughout the
solar cycle, the magnetic field undergoes twisting, tangling, and reorganization.
It is important to note that magnetic regions (MR) have a strong correlation
with Coronal Mass Ejections (CMEs) and solar flares, which makes analyzing
them critical for understanding the impact on life on Earth. As illustrated in Fig-
ure 3, magnetic region detection (MRD) enables us to determine the north (red)
or south (blue) polarities, between which CMEs are most likely to originate.
Additionally, tracking and analyzing MRs is valuable for predicting solar flares.
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Fig. 3. A magnification of magnetic regions.

By performing magnetic region detection, we can generate a magnetic region
intensity image (MRII) that is used in the subsequent steps of the algorithm.

2.2 Calculation of Solar Magnetic Intensity Descriptor

This section describes a method for calculating a magnetic intensity descriptor
(MID). After detecting the magnetic fields, as presented in Sec. 2.1, we need to
create a mathematical representation of the magnetic field distribution. Compar-
ing high-resolution images is not efficient, therefore we propose a novel approach
to represent the Magnetic Region Intensity Image (MRII). We slice the MRII like
a pizza, and for each slice, we calculate a magnetic field histogram. The details
of the method are as follows. First, we need to set the coordinates of the image
center, denoted as cc. Fortunately, the radius r is fixed due to the Sun’s fixed
position on the image. Then, we determine the θ angle empirically and found
that 30° provides optimal results. Next, we perform a cropping operation on the
obtained slices using the pseudo-code in Alg. 1. We calculate the arc points of
the slice (sector) aps and ape using the following formulas:

apex = ccx − 1.5 ∗ r ∗ sin θ, (1)
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apey = ccy − 1.5 ∗ r ∗ cos θ, (2)

The trigonometric functions sin and cos are used in these formulas to calculate
the row and column coordinates of two points on the arc. A factor of 1.5 is applied
to extend the arc beyond the circle’s radius slightly. After dividing the MRII into

INPUT: MRII - magnetic region intensity image
r - radius
cc - center coordinates of MRII
θ - angle of the slice
Local Variables:
MC - mask circle matrix
MMRII - mask MRII matrix
ape - coordinates of starting point on the arc
OUTPUT: CMRII - cropped slice of MRII
MS := CreateBooleanCircleMatrix(cc, r)
MMRII := CreatePolygonMatrix([ccx, apsx, apex, ccx],
[ccy, apsy, apey, ccy])
CMRII := CombineMasks(MS,MMRII)

Algorithm 1: Algorithm for cropping the MRII slice.

slices as described in the previous section, the process of cropping is repeated
for each subsequent circle segment (slice) until the entire image is covered. This
results in a list of MRII slices, each containing the magnetic field intensities for
that particular segment. The next step is to create a magnetic field histogram
(MFH) for each slice, which allows us to represent the distribution of magnetic
fields for each segment of the MRII. The histogram is created with the same
scale as the magnetic field intensities, ranging from [-1000;1000] accordingly to
the magnetic field range presented in Fig. 3. Finally, all histograms are combined
into a single vector called the Magnetic Intensity Descriptor (MID). This vector
represents the overall magnetic field distribution for the entire MRII image. The
entire process, including cropping and histogram creation, is illustrated in Figure
4 and described in Algorithm 2.

The proposed method enables the generation of a hand-crafted hash for a
magnetogram input image, called the magnetic intensity descriptor (MID). By
setting θ to 30 deg, the resulting MID vector consists of 144 integer-valued ele-
ments, which is significantly smaller than the full-disc image.

2.3 Hash Generation

This section outlines the hash generation process, which takes as input a Solar
Magnetic Intensity Descriptor (MID) that is later utilized to generate the cor-
responding hash. The goal of this step is to obtain a representative hash that
describes the solar image and, more specifically, the magnetic regions of the
Sun at a given timestamp. This step is crucial because it enables the reduction
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Fig. 4. Steps for calculating the magnetic intensity descriptor (MID).

of data in the retrieval stage (see Section 2.4). To perform this operation, we
utilized a fully-connected autoencoder (AE) to encode the previously acquired
MID. Autoencoders are utilized in various machine learning tasks, such as image
compression, dimensionality reduction, feature extraction, and image reconstruc-
tion [5, 7, 16]. Since autoencoders use unsupervised learning, they are ideal for
generating semantic hashes. We present the autoencoder model architecture in
Table 1. The AE model should be analysed from top to bottom. As shown, the
model is relatively simple but enables the reduction of hash length without a
significant loss of information about magnetic regions of the magnetogram. We
would like to emphasize that only the latent space (encoded) part of the trained
AE is used for hash generation, while the decoding part of AE is solely used
for training purposes. Through a series of experiments, we determined that 40
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INPUT: MI - magnetogram image
Local Variables:
MRII - magnetic region intensity image
SliceList - list of slices
HistogramList - list of histograms
OUTPUT: MID - magnetic Intensity descriptor vector
MRII := MagneticRegionDetection(MI)
SliceList := CroppingTheSlices(MRII)
foreach MRIISlice ∈ SliceList do

MFH := BuildSliceIntanceHist(MRIISlice)
HistogramList.Add(MFH)

end
MID = ConcatHist(HistogramList)

Algorithm 2: Algorithm for calculating a magnetic intensity descriptor.

Table 1. Tabular representation of the fully-connected autoencoder model.

Layer (type) Output Filters Params
(in, out)

Input(InputLayer) [1, 144] 0
Linear 1(Linear) [1, 72] 144, 72 10440

ReLU 1 [1, 72] 0
Linear 2(Linear) [1, 72] 72, 36 2628

ReLU 2 [1, 36] 0
Encoded(latent− space) [1, 36]

Linear 4(Linear) [1, 36] 36, 72 2664
ReLU 4 [1, 72] 0

Linear 5(Linear) [1, 144] 72, 144 10,512
ReLU 5 [1, 144] 0

Decoded(Tanh) [1, 144]

epochs are sufficient to achieve a satisfactory level of generalization without the
overfitting phenomenon.

Table 1 illustrates the use of a convolutional autoencoder for generating
hashes, with the top layer serving as input. A one-dimensional autoencoder was
employed because magnetic intensity descriptors are one-dimensional vectors,
which reduces computational complexity. This process effectively shortens the
hash length while retaining significant information about the active regions of the
solar image. The mean squared error function was utilized as the loss function,
and we discovered that training the model for 40 epochs was adequate for achiev-
ing the necessary level of generalization and preventing network over-fitting.
Following the training process, each image descriptor was fed into the latent
space (encoded) layers of the autoencoder, yielding a 36-element hash (known
as the Solar Magnetic Intensity Hash). This hash can be used for content-based
retrieval applications involving solar images. Moreover, the chosen autoencoder
architecture was specifically chosen to achieve optimal generalization.
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2.4 Retrieval

In the final phase of the proposed method, we employ the previously generated
hashes for solar image retrieval. Following the preceding steps, we assume that
each solar image in our database has an assigned hash. The retrieval process
entails executing an image query by comparing the distances between the hash
of the query image and the hashes created for all images stored in the dataset.
To perform this retrieval, we must have a database of solar images that have
undergone hash generation. In the subsequent step, we compute the distance
(d) between the query image hash and every hash in the database. The cosine
distance measure is utilized for this purpose (see [9] for additional information).

cos(QHj , IHj) =

n∑
j=0

(QHj • IHj)

∥QHj∥ ∥IHj∥
, (3)

where • is dot product, QHj is the query image hash, and IHj a consecutive
image hash. Upon computing the cosine distance, the images in the database
are sorted in ascending order by their distance to the query (query hash). The
final step of the presented technique enables the retrieval of n images closest
to the query, which are then returned to the user. To execute the query, the
user must provide the value of the parameter n. Alg. 3 illustrates the complete
process as pseudo-code. An alternative method involves retrieving images based
on a threshold. To use this approach, a threshold parameter must be supplied
instead of n, and images are retrieved if their cosine distance to the query is
below the threshold. The proposed method can also accommodate this method;
however, the first method is preferable because it is better suited for system
users.

INPUT: ImageHashes, QueryImage, n
OUTPUT: RetrievedImages
foreach ImageHash ∈ ImageHashes do

QueryImageHash = CalculateHash(QueryImage)
D[i] = Cos(QueryImageHash, ImageHash)

end
SortedDistances = SortAscending(D)
RetrievedImages = TakeF irst(n)

Algorithm 3: Image retrieval steps.

3 Experimental Results

This section presents simulation results and a solution for evaluating unlabelled
images. Since there was a lack of labelled data, unsupervised learning was em-
ployed for encoding descriptors. Consequently, evaluating the proposed method
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against state-of-the-art approaches was challenging. To overcome this problem,
we leveraged the Sun’s rotation movement to identify a set of similar images
(SI). We hypothesized that consecutive images captured within a small time
window would exhibit similar active regions, albeit with slight shifts. The pro-
vided solar images at 6-minute intervals, which we could assume were similar
due to the nature of the Sun’s movement. The only requirement was to adjust
the time window difference. Through experimentation, we determined that im-
ages captured within a 48-hour window could be regarded as similar. Let us
take under consideration an image taken at 2015-10-15, 00:00:00. Based on the
above assumptions, we can assume that every image in 24 hours before and in
24 hours after is similar. Only for evaluation purposes, images are identified by
the timestamps. The process of determining similar images is presented in Table
2. We conducted a series of experiments to determine image similarity using the

Table 2. Defining image similarity. Based on experiments, we determined that images
within a 48-hour window can be treated as similar. This allows to evaluate the method.

Timestamp SI (similar image)/ NSI (not similar image)

2015-10-13, 23:54:00 NSI
2015-10-14, 00:00:00 SI
2015-10-14, 00:06:00 SI
2015-10-14, 00:12:00 SI
2015-10-14, 00:18:00 SI
2015-10-14, 00:24:00 SI
2015-10-14, 00:30:00 SI

........ SI
2015-10-15, 00:00:00 QI (query image)

........ SI
2015-10-15, 23:24:00 SI
2015-10-15, 23:30:00 SI
2015-10-15, 23:36:00 SI
2015-10-15, 23:42:00 SI
2015-10-15, 23:48:00 SI
2015-10-15, 23:54:00 SI
2015-10-16, 00:00:00 NSI

proposed method. A single experiment consisted of the following steps:

1. Executing an image query to retrieve images.
2. Comparing the timestamp of each retrieved image with the query image

timestamp.
3. If the timestamp fell within a 48-hour window, the image was deemed similar

to the query.

After defining similar images (SI), we can define performance measures precision
and recall [6] [21] based on following sets:
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– SI - set of similar images,
– RI - set of retrieved images for query,
– PRI(TP ) - set of positive retrieved images (true positive),
– FPRI(FP ) - false positive retrieved images (false positive),
– PNRI(FN) - positive, not retrieved images,
– FNRI(TN) - false, not retrieved images (TN).

Afterwards, we can define precision and recall for CBIR systems

precision =
|PRI|

|PRI + FPRI|
, (4)

recall =
|PRI|

|PRI + PNRI|
. (5)

F1 = 2 ∗ precision ∗ recall
precision + recall

. (6)

We present the results of our experiments in Table 3, which demonstrate the
effectiveness of our method. The experimental outcomes presented in Tab. 3
exhibit promise, as denoted by the mean F1 score and the high precision values.
Our approach yielded an average precision of 0.92581, surpassing the results
of Banda [4] (0.848) and Angryk [2] (0.850). Additionally, we outperformed the
previous works by Grycuk [8]. Our approach achieves a high value of the precision
measure, indicating that most of the images close to the query are correctly
retrieved. However, as images move farther from the query, more positive but
not retrieved images (PNRI) are retrieved. This phenomenon is due to the Sun’s
rotation, which results in missing active regions between consecutive images. In
the 48-hour cadence, significant active regions may change their position, leading
to a significant impact on the hash and an increased distance from the query.
We implemented the simulation environment in Python using PyTorch and ran
it on hardware consisting of an Intel Core i9-9900k 3.6 GHz processor, 32 GB of
RAM, and a GeForce RTX 2080 Ti 11 GB graphics card, all running on Windows
Server 2016. Hash creation for 525,600 images took approximately 35 minutes,
while the encoding stage took approximately 3 hours. On average, the retrieval
time was approximately 350 ms.

4 Conclusions

We introduced a new method for retrieving solar magnetograms that employs a
semantic hash. Our technique uses data from the SDO Helioseismic and Mag-
netic Imager and is implemented using SunPy and PyTorch libraries. We rep-
resent the magnetic regions of the Sun as 144-dimensional vectors, allowing for
faster comparison and retrieval. To further expedite the process, we employ a
fully-connected autoencoder to convert the 144-element magnetic intensity de-
scriptor (MID) to a 36-element solar magnetic intensity hash. Our experiments,
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Table 3. Experiment results for the proposed algorithm. Due to lack of space, we
present only a part of all queries.

Timestamp R
I

S
I
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I(
T

P
)

F
P

R
I(

F
P

)

P
N

R
I(

F
N

)

P
re

ci
si

o
n

R
ec

a
ll

F
1

2018-01-01 00:00:00 238 241 200 38 41 0.84 0.83 0.83
2018-01-04 07:00:00 448 481 401 47 80 0.90 0.83 0.86
2018-01-07 16:00:00 433 481 383 50 98 0.88 0.80 0.84
2018-01-13 07:00:00 403 481 394 9 87 0.98 0.82 0.89
2018-01-20 22:06:00 383 481 377 6 104 0.98 0.78 0.87
2018-01-24 06:12:00 431 481 384 47 97 0.89 0.8 0.84
2018-01-31 11:12:00 436 481 400 36 81 0.92 0.83 0.87
2018-02-05 14:18:00 428 481 391 37 90 0.91 0.81 0.86
2018-02-11 21:24:00 432 481 398 34 83 0.92 0.83 0.87
2018-02-18 10:24:00 417 481 381 36 100 0.91 0.79 0.85
2018-02-21 16:30:00 428 481 395 33 86 0.92 0.82 0.87
2018-02-27 12:36:00 392 481 386 6 95 0.98 0.80 0.88
2018-03-07 19:36:00 434 481 391 43 90 0.90 0.81 0.85
2018-03-08 20:42:00 440 481 394 46 87 0.90 0.82 0.86
2018-03-13 09:42:00 398 481 384 14 97 0.96 0.80 0.87
2018-03-19 11:42:00 448 481 405 43 76 0.90 0.84 0.87
2018-03-24 20:42:00 438 481 401 37 80 0.92 0.83 0.87
2018-03-31 04:42:00 407 481 390 17 91 0.96 0.81 0.88
2018-04-01 14:48:00 392 481 386 6 95 0.98 0.80 0.88
2018-04-09 17:48:00 434 481 398 36 83 0.92 0.83 0.87
2018-04-13 18:48:00 439 481 390 49 91 0.89 0.81 0.85
2018-04-16 20:54:00 435 481 399 36 82 0.92 0.83 0.87
2018-04-19 22:00:00 410 481 394 16 87 0.96 0.82 0.88
2018-04-28 02:00:00 422 481 382 40 99 0.91 0.79 0.85
2018-05-04 07:00:00 432 481 394 38 87 0.91 0.82 0.86
2018-05-09 04:00:00 421 481 395 26 86 0.94 0.82 0.88
2018-05-14 00:06:00 428 481 404 24 77 0.94 0.84 0.89
2018-05-18 16:12:00 452 481 405 47 76 0.90 0.84 0.87
2018-05-22 23:12:00 436 481 398 38 83 0.91 0.83 0.87
2018-05-25 14:18:00 407 481 388 19 93 0.95 0.81 0.87
2018-05-26 21:18:00 410 481 393 17 88 0.96 0.82 0.88
2018-06-01 16:24:00 400 481 391 9 90 0.98 0.81 0.89
2018-06-03 08:24:00 425 481 379 46 102 0.89 0.79 0.84
2018-06-11 10:30:00 425 481 379 46 102 0.89 0.79 0.84
2018-06-13 04:30:00 436 481 396 40 85 0.91 0.82 0.86
2018-06-15 10:30:00 425 481 380 45 101 0.89 0.79 0.84
2018-06-18 18:30:00 426 481 395 31 86 0.93 0.82 0.87
2018-06-23 01:30:00 434 481 400 34 81 0.92 0.83 0.87
2018-06-27 01:36:00 441 481 395 46 86 0.90 0.82 0.86
2018-07-04 09:36:00 437 481 400 37 81 0.92 0.83 0.87
2018-07-08 12:42:00 419 481 406 13 75 0.97 0.84 0.9

Avg. 0.92581 0.81674 0.86720
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as detailed in Tab. 3, demonstrate the superior precision of our approach com-
pared to other state-of-the-art methods. Additionally, this method can also be
used for classification tasks. By utilizing magnetograms instead of images from
the Atmospheric Imaging Assembly, which captures the solar atmosphere in one
or multiple wavelengths, the proposed method is more robust against noise.
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