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Abstract. This paper presents a method for the tracking of multiple
drones in three-dimensional space based on data from a multi-camera
system. It uses the Particle Swarm Optimization (PSO) algorithm and
methods for background/foreground detection. In order to evaluate the
developed tracking algorithm, the dataset consisting of three simula-
tion sequences and two real ones was prepared. The sequences contain
from one to ten drones moving with di�erent �ight patterns. The simu-
lation sequences were created using the Unreal Engine and the AirSim
plugin, whereas the real sequences were registered in the Human Mo-
tion Lab at the Polish-Japanese Academy of Information Technology.
The lab is equipped with the Vicon motion capture system, which was
used to acquire ground truth data. The conducted experiments show the
high e�ciency and accuracy of the proposed method. For the simula-
tion data, tracking errors from 0.086m to 0.197m were obtained, while
for real data, the error was 0.101-0.124m. The system was developed for
augmented reality applications, especially games. The dataset is available
at http://bytom.pja.edu.pl/drones/.
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1 Introduction

Recently, the use of drones (also referred to as Unmanned Aerial Vehicles -
UAVs) has signi�cantly increased, both in civil and military applications. This
is also the reason for the increased interest of researchers in various types of
drone-related issues, including the problems of tracking these �ying vehicles.
The development of drone tracking methods is primarily driven by the need to
develop e�ective systems for detecting, identifying, and disabling drones, which
are currently extremely decent due to the increasing number of vehicles of this
type [4]. These are primarily military and security applications. However, there
are also other applications of drone tracking methods, e.g. augmented reality
(AR) games [2].

There are many methodologies for detecting and tracking drones, but the
most popular are: vision cameras, hyper-spectral images, radars, acoustic sen-
sors, radio frequency techniques (RF), thermal techniques, and hybrid systems
[4]. Among these approaches, optical methods stand out, which are considered
the most convenient way to deal with this challenge due to their robustness,
accuracy, range, and interpretability [17]. For example, Schilling et al. [10] pro-
posed a vision-based detection and tracking algorithm that enables groups of
drones to navigate without communication or visual markers. They equipped
the drones with multiple cameras to provide omnidirectional visual inputs and
utilized the convolutional neural network to detect and localize nearby agents.
Another paper [17], presented an interesting concept of using two cameras (static
wide-angle and low-angle mounted on a rotating turret) for autonomous drone
detection and tracking. The single lightweight YOLO detector was used to detect
drones. In [15], Srigrarom et al. described a multiple-camera real-time system for
detecting, tracking, and localizing multiple moving drones simultaneously in a
3D space. They utilized a hybrid combination of the blob detection method and
the YoloV3 Tiny model to detect drones on images and cross-correlated cameras
to obtain global 3D positions of all the tracked drones. Another approach was
presented by the authors of the study [8]. They introduce a real-time trinocular
system to control rotary wing UAVs based on the 3D information extracted by
cameras positioned on the ground. The drone detection and tracking are based
on color landmarks and are achieved by using the CamShift algorithm. In [14], a
hybrid detecting and tracking system that is made especially for small and fast-
moving drones is proposed. In this method, a discrete-time Extended Kalman
Filter (EKF) is used to track the positions and velocities of detected moving
drones. The Kalman Filter is also used by Son et al. [13]. Sie et al. [12] presented
the use of Correlation Filters and an Integrated Multiple Model (IMM) for �l-
tering the position measurement of fast-moving drones. Another approach was
proposed by Ganti and Kim [3]. They designed a low-cost system for detecting
and tracking small drones. The system used low-cost commercial-o�-the-shelf
devices and open-source software. Moreover, it utilized image-processing algo-
rithms to detect moving objects and the SURF method to distinguish drones
from other objects.
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The review of the literature shows that there is a lack of published studies
devoted to the problems of tracking multiple drones in three-dimensional space.
In addition, no publications were found that measured the accuracy of 3D drone
tracking. As far as we know, the Particle Swarm Optimization (PSO) algorithm
has also not been used to track drones before. Hence, the development of a
method for tracking multiple drones in 3D space and the proposal to use the
PSO algorithm in it, are the main motivations for our work. We also prepared
simulation sequences for testing the proposed drone tracking method.

2 A method for tracking multiple drones

The purpose of tracking is to obtain information about the position of the drone
in the de�ned search space. If the drone is tracked in a two-dimensional image
space, the complexity of the problem is relatively small and in this case, Kalman
Filter [14,1] is often used. However, if the goal is to acquire a 3D position for
many drones, the problem becomes much more complicated. For example, if four
drones are to be tracked, the search space has 12 dimensions, while in the case
of 10 drones, it already has 30 dimensions. In such cases, various optimization
algorithms are used.

The proposed drone tracking method is based on the ordinary Particle Swarm
Optimization algorithm [5], data from multiple cameras, and image processing
methods used to extract the drone from the image. The PSO algorithm and its
modi�cations have many applications, e.g. in signal and image processing, design
and modeling, and robotics, as well as in problems related to motion tracking
[7,6,9]. In the case of drone applications, �ight controllers are the most common
[16]. In order to estimate the exact position of drones in 3D space, the system
requires at least three cameras, placed around the area in which the drones are
moving.

2.1 Dataset

In order to evaluate the developed tracking algorithm, an appropriate dataset
was collected. The dataset consists of three simulation sequences (S1, S2, and
S3) and two real ones (S4 and S5), which di�er in the number of drones and
their pattern of moving on scene. The simulation sequences were created in an
environment based on the Unreal Engine and the AirSim plugin [11], which
is an open-source project created by Microsoft for high-�delity simulation of
autonomous vehicles. The scene for the simulation sequences was prepared using
a model of the Human Motion Lab (HML) at the Polish-Japanese Academy of
Information Technology in Bytom, in which real sequences were registered. The
scene plan is presented in Fig. 1, except that the real lab contains only four
cameras (cam_1, cam_2, cam_3, and cam_4) and the simulated lab contains
all eight cameras. In addition, for the S3 sequence, the scene dimensions were
doubled for the purpose of accommodating a higher amount of drones without
an issue of potential collisions between each other. Statistics of sequences are
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Fig. 1. Top view of the laboratory scene with the position of cameras

Table 1. Sequences metadata

seq. ID #drones #frames length [s] #cameras resolution FPS

S1 2 440 17.6 8 1920x1080 25
S2 4 215 8.6 8 1920x1080 25
S3 10 230 9.2 8 1920x1080 25
S4 1 1415 56.6 4 1924x1082 25
S5 1 2885 115.4 4 1924x1082 25

summarized in Table 1. Ground truth data for real sequences were acquired
using a Vicon motion capture system. Calibration and synchronization of the
motion capture system and video cameras were carried out using software and
hardware provided by Vicon. The dataset can be downloaded from http://

bytom.pja.edu.pl/drones/.

2.2 Particle Swarm Optimization

Particle Swarm Optimization is a metaheuristic method developed by Kennedy
and Eberhart [5,6]. The concept of the method was taken from the social behav-
ior of animals living in groups, such as shoals of �sh, swarms of bees, or �ocks of
birds. In the PSO, the solution is found based on a set of particles, each repre-
senting a hypothetical solution to the problem. Each of the particles remembers
the current position (x), the velocity (v), and the best position it has found so
far (pbest). In addition, the particles have access to the position of the best
particle in the entire swarm (gbest). The velocity vk and xk of the kth particle
in the iteration t are updated using the following equation:

vk
t+1 = ωvk

t + c1r1(pbest
k
t − xk

t ) + c2r2(gbestt − xk
t ), (1)

xk
t+1 = xk

t + vk
t+1, (2)
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where ω = 0.75 is the inertia weight, c1, c2 are the cognitive and social coe�-
cients, respectively, equal to 2.05, and r1, r2 are vectors of random numbers in
the range [0,1]. In subsequent iterations of the algorithm, the particles explore
the search space and exchange information in order to �nd the optimal solution
to the problem. The proposals are evaluated based on the �tness function (see
2.3). The initialization of particles in the �rst frame of the sequence is based on
the known position of the drone. In subsequent frames, the position estimated
in the previous frame is used to initialize the algorithm. The structure of the
particle proposed for the purpose of tracking n drones is shown in Fig. 2.

2.3 Fitness function

The �tness function determines the degree of similarity of the solution proposed
by the algorithm to the actual position of the tracked drones. For drone sil-
houette extraction the background/foreground detection algorithm proposed by
Zivkovic and van der Heijden [18] and implemented in the OpenCV library was
used. In addition, the images obtained in this way are subjected to morpholog-
ical operations to remove noise and improve the extraction of the silhouettes
of drones. In the next step, the hypothetical positions of drones, generated by
the PSO algorithm, are projected into 2D image space, and then the rectangles
(bounding boxes) approximating the size of the drones in the image from a given
camera are determined. Having the bounding boxes representing the drones and
the silhouettes of the real drones, their degree of overlap is calculated, and then
the average overlap value for all drones in the image is established. Finally, the
overlap value is averaged over all cameras. The process of calculating the �tness
function for camera c can be described by the following equation:

fc(x) =
1

n

∑
d∈x

g(Ic(boxc,d))/size(boxc,d), (3)

where Ic is the image with extracted drones for the camera c, n is the number
of tracked drones, d is the drone in the particle x (x contains the positions of all
drones), boxc,d is a bounding box de�ning the drone d on the image of camera c,
and Ic(boxc,d) is part of the image representing the region of interest of boxc,d.
The function g(I) is de�ned as

g(I) =
∑
p

u(I(p)), u(x) =

{
1, if x > 0

0, otherwise
, (4)

where p is the pixel position in the image I.

Fig. 2. The structure of a particle
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3 Experiment results

The developed method for tracking multiple drones was tested on 5 video se-
quences with a di�erent number of drones (see Sec. 2.1). The quality of tracking
was assessed by analyzing both qualitative visual evaluations and using ground
truth data. The experiments took into account di�erent numbers of particles
and iterations of the PSO algorithm. The estimation time of drone position for a
single frame ranged from 0.02 to 1 second depending on algorithm con�guration,
number of drones, and number of cameras. The calculations were performed on
a workstation equipped with Intel(R) Core(TM) i7-11800H and 64GB RAM.

3.1 Simulation dataset

The example tracking results for the simulation sequences are shown in Fig. 3, 4,
and 5, while the obtained errors are presented in Table 2. The mean error value
and the standard deviation calculated for individual sequences, averaged over

(a) S1_65 (b) S1_106

(c) S1_130 (d) S1_165

(e) S1_301 (f) S1_350

Fig. 3. Tracking results for selected frames of sequences S1, number of particles: 100,
number of iterations: 70
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Table 2. Tracking errors for sequences S1, S2, and S3

S1 S2 S3
part. iter. mean [m] std [m] mean [m] std [m] mean [m] std [m]

30
30 0.2525 0.3101 0.3567 0.5006 0.4676 0.3745
50 0.1960 0.2177 0.2207 0.2586 0.3266 0.2463
70 0.0857 0.0337 0.0965 0.1058 0.2670 0.2118

50
30 0.1419 0.1267 0.1972 0.2804 0.4823 0.3980
50 0.1408 0.1261 0.1095 0.1293 0.2917 0.2212
70 0.0859 0.0345 0.1065 0.1359 0.2267 0.1542

100
30 0.1413 0.1263 0.1804 0.2428 0.2970 0.2220
50 0.1407 0.1261 0.0890 0.0925 0.2202 0.1686
70 0.0859 0.0343 0.0784 0.0827 0.1972 0.1138

10 runs of the tracking algorithm are depicted. Depending on the con�guration
of the tracking algorithm and the sequence, the average tracking error obtained
varies from 0.078 m to 0.482 m. As expected, the best results are obtained with
the con�guration with the highest number of particles (100) and iterations (70).
For this con�guration, the estimation time of the drones' positions for a single
frame and sequence with 10 drones was approximately 1 second.

The smallest tracking error of 0.078 m was obtained for sequence S2, in which
4 drones were tracked. The algorithm in this con�guration had 100 particles and
70 iterations. Analyzing the results obtained for the sequence with two drones
(S1), it can be seen that for the con�guration with fewer particles and iterations,
worse results are observed than for the sequence with four drones (S2). This is
due to the fact that in the S1 sequence, there is a situation in which the drones
are very close to each other (Fig. 3(e)) and the algorithm has switched them
in some runs. Increasing the number of iterations solved this problem. It is also
worth noting that for the S2 sequence, the algorithm with the con�guration of
50 particles and 70 iterations achieved an insigni�cantly worse tracking result
than the con�guration with fewer particles (30 particles and 70 iterations). This
is due to the randomness of the algorithm. When analyzing the detailed tracking
results of individual drones, it was observed that drone_1 has a larger tracking
error for the con�guration with more particles. This drone �ies out of the �eld of
view of some cameras, which causes tracking failure. For the con�guration of 50
particles and 70 iterations, the problem occurred in four of 10 algorithm runs,
while for the con�guration of 30 particles and 70 iterations, it was only in three
of 10 trials.

The worst results are obtained for the S3 sequence (0.197�0.482 m), which
is primarily due to the large number of tracked drones, of which there are 10
in this case. Analyzing the detailed results for the con�guration of 100 particles
and 70 iterations (see Tables 3), it can be seen that for most drones the results
are satisfactory (average error below 0.15 m), and the large error value is caused
by di�culties in the tracking of drones number 1, 2, and 9. These are drones
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(a) S2_25 (b) S2_65

(c) S2_95 (d) S2_130

(e) S2_155 (f) S2_210

Fig. 4. Tracking results for selected frames of sequence S2, number of particles: 100,
number of iterations: 70

that move on the edge of the scene, so they are not visible in some cameras,
and at the same time they are far from the cameras on the opposite side of the
scene, so they are smaller and contribute less to the value of the �tness function
for a given camera (losing them has less impact on the value of the �tness func-
tion than in the case of a drone that is closer and therefore larger). In addition,
drone_1 and drone_2 are �ying close to each other (see Fig. 5), which resulted
in substitutions, or the algorithm tracked one of the drones twice. Similar conclu-
sions can be drawn by analyzing the graphs presented in Fig. 6, which shows the
mean error value and standard deviation in subsequent frames of the sequence
determined for 10 repetitions of the tracking algorithm. A large value of the
standard deviation for some drones (drone_1, drone_2, and drone_9) indicates
the occurrence of tracking errors in some of the algorithm runs. It can also be
seen that for some runs the algorithm has temporary problems with tracking
drone_5 around #40 and #110 frames and drone_10 near frame #200.
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(a) S3_25 (b) S3_65

(c) S3_95 (d) S3_130

(e) S3_155 (f) S3_215

Fig. 5. Tracking results for selected frames of sequence S3, number of particles: 100,
number of iterations: 70

Table 3. Detailed error statistics for sequence S3, number of particles: 100, number of
iterations: 70

mean [m] std [m] min [m] 25% [m] 50% [m] 75% [m] max [m]

drone_1 0.3277 0.2116 0.0158 0.1157 0.3848 0.5039 3.7280
drone_2 0.5047 0.3560 0.0265 0.2216 0.4618 0.7104 4.3550
drone_3 0.1258 0.0516 0.0224 0.0904 0.1220 0.1544 0.3648
drone_4 0.1174 0.0507 0.0191 0.0830 0.1100 0.1470 0.3340
drone_5 0.1417 0.0891 0.0171 0.0873 0.1201 0.1680 0.9538
drone_6 0.1358 0.0647 0.0180 0.0896 0.1269 0.1722 0.5953
drone_7 0.1129 0.0471 0.0162 0.0803 0.1092 0.1402 0.4001
drone_8 0.1116 0.0528 0.0197 0.0766 0.1053 0.1353 0.6030
drone_9 0.2599 0.1276 0.0229 0.1776 0.2914 0.3400 1.2981
drone_10 0.1341 0.0866 0.0191 0.0813 0.1138 0.1566 1.2737

Mean 0.1972 0.1138 0.0197 0.1103 0.1945 0.2628 4.3550
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Fig. 6. Average tracking errors in consecutive frames for sequence S3, number of par-
ticles: 100, number of iterations: 70
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3.2 Real dataset

The example tracking results for the real sequences are shown in Fig. 7 and 8,
while the obtained errors are presented in Table 4. In this case, we focused on
the selected con�guration of the algorithm (number of particles: 30, number of
iterations: 20) and presented detailed results for it. For real sequences, a single
drone was tracked, therefore the proposed con�guration is su�cient. The number
of drones has been limited to one due to space constraints in the laboratory, as
well as the risk of collisions or damage to laboratory equipment in the case of a
larger number of drones. These restrictions do not occur in simulation sequences.
The errors obtained are similar to those obtained for the simulation sequences
and range from 0.101 to 0.124m. It would seem that for a single drone, the
errors should be smaller since for the simulation sequences with two and four
drones errors of 0.08m were obtained. However, it should be noted, that in the
case of real sequences, there are additional errors related to the inaccuracy of
the motion capture system, synchronization errors, and calibration errors, which
can be observed in Fig. 7(a), 7(d), 7(e),8(b), 8(c), and 8(e). In these cases, it
may be noted that the position of the drone determined by the motion capture
system (represented by the blue dot) does not coincide with the center of the
drone. Another advantage related to the use of simulation sequences can be seen
here.

4 Conclusions

In the paper, the method for 3D tracking of multiple drones was proposed.
The presented approach uses Particle Swarm Optimization, image processing
methods, and multi-camera data. In order to evaluate the developed algorithm,
the dataset consisting of simulated and real sequences was prepared. The use
of simulation sequences made it possible to evaluate the tracking method on
sequences with a large number of drones (up to 10). The conducted experiments
show the high e�ciency and accuracy of the proposed method.

Despite obtaining satisfactory results, the method has some limitations. The
main problem is tracking the drones at the edge of the scene where camera
coverage is insu�cient. This can lead to a decrease in accuracy or even loss of
the drone. If the drones are close to each other, they can be switched. Another
problem is related to the speci�city of the background/foreground detection
methods used in the objective function. If the drone stops moving, as a result

Table 4. Detailed error statistics for sequence S4 and S5, number of particles: 30,
number of iterations: 20

seq. mean [m] std [m] min [m] 25% [m] 50% [m] 75% [m] max [m]

S4 0.1240 0.0490 0.0091 0.0915 0.1175 0.1488 0.5969
S5 0.1005 0.0362 0.0209 0.0747 0.0945 0.1205 0.4726
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(a) S4_50 (b) S4_175

(c) S4_650 (d) S4_940

(e) S4_1265 (f) S4_1340

Fig. 7. Tracking results for selected frames of sequence S4, number of particles: 30,
number of iterations: 20

of updating the background model, it will be treated as a background element
over time and will disappear from the extracted images. Problems with drone
extraction may also occur if it is similar in color to the background.

Future work will focus on improving the algorithm to remove or eliminate
the described limitations by developing hybrid methods, that use other types of
sensors than just video cameras.
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(a) S5_50 (b) S5_522

(c) S5_778 (d) S5_1101

(e) S5_2415 (f) S5_2830

Fig. 8. Tracking results for selected frames of sequence S5, number of particles: 30,
number of iterations: 20
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