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Abstract. This paper presents a new method for estimating the radius
of blood vessels using vesselness functions computed at multiple scales.
The multiscale vesselness technique is commonly used to enhance blood
vessels and reduce noise in angiographic images. The corrected and bina-
rized image resulting from this technique is then used to construct a 3D
vector model of the blood vessel tree. However, the accuracy of the model
and consequently the accuracy of radii estimated from the model may be
limited by the image voxel spacing. To improve the accuracy of the esti-
mated vessel radii, the method proposed in this study makes use of the
vesselness functions that are already availabe as by-products of the pre-
ceding enhancement procedure. This approach speeds up the estimation
process and maintains sub-voxel accuracy. The proposed method was
validated and compared with two other state-of-the-art methods. The
quantitative comparison involved artificially generated images of tubes
with known geometries, while the qualitative assessment involved analyz-
ing a real magnetic resonance angiogram. The results obtained demon-
strate the high accuracy and usefulness of the proposed method. The
presented algorithm was implemented, and the source code was made
freely available to support further research.
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1 Introduction

One of the key challenges in angiographic image analysis is to accurately estimate
the radius of veins and arteries [3, 6]. These estimated radii form an input data
for three-dimensional modeling of vessel structures [6, 37, 27, 4, 30, 11] which are
used for data visualization, surgical planning, and medical diagnosis support [30,
18, 17, 29, 13]. Analyzing the radii along the blood vessels facilitates the detection
of lesions such as stenosis and aneurysm.

Angiograms, MRA or CT scans, are raster images of voxels arranged in three-
dimensional arrays, which are difficult to quantify directly for medical diagnosis.
They need to be converted into a more convenient vector representation. One
common way to represent image objects in vector form is by surfaces of triangu-
lar meshes that define approximate boundaries between anatomical structures
[26, 8, 7]. Alternatively, elongated, tubular structures can be described by their
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centerlines and radii functions defined along these centerlines [37, 40, 20]. Both
approaches can be used as vector models for the blood vessel system. As blood
flows under certain pressure, the vessel walls are inflated and adopt a circular
cross-sectional shape. Therefore, the second representation with centerlines and
radii is reasonable, and what’s more, it directly facilitates quantitative morpho-
logical attributes for stenosis or aneurysm detection.

Converting the angiographic raster data to a vector representation involves
several processing steps. The first step is filtering the raster image with multi-
scale vesselness, which enhances blood vessels and reduces image noise [15, 10,
5, 33]. Next, the image is binarized [23, 32, 35, 43] to assign each voxel a label
indicating its location inside or outside the blood vessel. Image binarization can
be performed using algorithms such as active contours [42, 44] , level-set meth-
ods [8, 39] , or deep learning neural networks [25, 12, 31, 24, 34], There are two
alternative methods for producing centerlines from the binary image. The first
approach is to apply marching cubes or a similar algorithm to find the polygonal
mesh of the vessel’s surface, which is then smoothed and collapsed to form the
centerline [29, 23, 14]. The other method is skeletonization [13, 22, 41] of the bi-
nary image, which thins the structures of blood vessels consisting of white voxels
to form a single-voxel-thick line. The resulting centerline may appear rough and
requires smoothing in the next step through low-pass filtering of voxel chain
coordinates.

This paper presents an original algorithm for radius estimation from multi-
scale vesselness (REMV), assuming that centerlines and sub-results of multiscale
vesselness computation are available. The proposed method is validated and com-
pared with two state-of-the-art methods, one extracting information from the
binary image and the other estimating the radius from the original gray-scale
image with presumably sub-voxel accuracy. The experiments use artificially gen-
erated images of tubes with known geometries for quantitative comparison and
a real magnetic resonance angiogram for practical yet qualitative assessment of
the results.

2 Methods

2.1 Vesselness-radius relationship

The vesselness function algorithm [15, 10, 5, 33, 21, 1] is used to identify tubu-
lar structures in a raster image, and it is particularly useful in the analysis of
angiograms. This algorithm enhances the contrast between blood vessels and
surrounding tissues, reduces image noise, and conceals anatomical structures
that are not cylindrical in shape.

The computation of the vesselness function involves several steps. First, the
image is blurred using the Gaussian kernel function with a standard deviation
σ. The value of σ should be adjusted according to the radius of the vessel.
Second, the Hessian matrices, which are square matrices of second-order partial
derivatives of the image intensity function, are computed at every voxel of the
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image. The matrices are eigen-decomposed, and it has been observed [10] that
the relations between eigenvalues determine the shape of the structures that are
locally present in the image. In tubular structures, one of the eigenvalues is close
to zero, while the absolute values of the other two eigenvalues are significantly
greater and their values are close to each other.

Several formulas have been proposed to compute the vesselness function from
these eigenvalues, including those developed by Erdt [5] , Frangi [10, 9] and
Sato [33]. In this context, we will discuss the formula developed by Sato. In his
approach, the eigenvalues are ordered from the largest to the smallest λ1 ≥ λ2
≥ λ3. The vesselness formula proposed by Sato has a form similar to equation
(1). However, the equation presented below includes an additional factor σ2.

F = σ2


λc exp

(
− λ2

1
2(α1λc)2

)
: λ1 ≤ 0, λc ̸= 0

λc exp
(

− λ2
1

2(α2λc)2

)
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0 : λc = 0

(1)

λc = min(−λ2, −λ2) α1 = 0.5 α2 = 2

Setting a proper value of the standard deviation σ is essential for correct
enhancement of structures having a particular radius. This parameter should be
set according to the actual radius of the blood vessels being enhanced. Fig. 1
illustrates this principle using cross-section of an example cylinder for which the
vesselness was computed for various values of σ. If this parameter is significantly
smaller than the radius of the cylinder, only the elements near the walls are
exposed. If it is much larger than the radius, the vesselness appears blurry. The
vessel is bright and properly exposed if the σ value is close to the actual radius
of the cylinder. Because different values of σ allow for proper enhancement of
structures with different radii, σ is sometimes referred to as the scale of the
vesselness function. The dependence of the vesselness function on the value of σ
is essential for the proposed in here radius estimation algorithm.

Fig. 1. A cross-section of a cylindrical structure and its vesselness function for various
standard deviations of the Gaussian blurring.

If an angiogram consists of a number of vessels having different radii, sev-
eral vesselness functions can be computed for varying values of the σ parameter.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_17

https://dx.doi.org/10.1007/978-3-031-36027-5_17
https://dx.doi.org/10.1007/978-3-031-36027-5_17


4 Piotr M. Szczypiński

The range of σ variability should cover the range of radii variability. The result-
ing images obtained for different values of σ are then combined in a so-called
multiscale vesselness function.

Fig. 2. The vesselness computed at centers of cylinders of various radii as a function
of the standard deviation.

An experiment was carried out to compute the vesselness along cylinders of
various radii (r = 1, 2, 3, 5, 8, 13). Ten cylinder images with random orientation
were synthesized for each radius. The vesselness functions were computed for the
images using standard deviations σ ranging from 1 to 21. The resulting plots of
vesselness obtained at the centers of the cylinders are shown in Fig. 2. It was
observed that the plots reached their maxima at the σ argument equal to the
radius of the cylinder. This property leads to the conclusion that the radius of a
blood vessel can be estimated from such a plot by finding the maximum. Thus,
the proposed algorithm consists of computing the vesselness function (1) as a
function of the standard deviation of the Gaussian blurring filter. The argument
σ at the maximum of the function becomes an estimate of the radius.

2.2 Curve fitting to estimate vessel radius

To indicate the maximum of the vesselness function with sufficiently high accu-
racy, the function should be computed for densely distributed values of the σ
parameter. Such the approach requires numerous computations of the vesselness
functions which is computationally demanding and thus time consuming. What
is more, the multiscale vesselness function intended for image enhancement is
usually computed for a limited number of scales. To keep the method computa-
tionally efficient and accurate, a limited number of vesselness measurements can
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be approximated with a curve. The σ argument at the maximum of the curve
would then estimate the radius of the vessel.

Vesselness computation is a complex procedure, and furthermore, raster im-
ages cannot be defined in an analytic form. Therefore, it is infeasible to derive
an equation or mathematical model that would accurately define such the curve.
Instead, in order to find a suitable equation to define the curve, a number of uni-
modal function formulas were reviewed. As a result, a formula (2) inspired by
the transfer functions of analog filters was selected, which most closely matched
all the plots. The equation consists of two factors. The first one, with parameters
A and κ, is responsible for modeling the falling slope of the curve for σ > r. The
second factor, with parameter η, models the rising slope of the curve for σ < r.

f(σ; A, r) = Aωrκ√
1 + κ2

(
σ

ωr − ωr
σ

)2

( (
σ

ωr

)2

1 +
(

σ
ωr

)2

)η

(2)

The values of parameters κ, ω and η were optimized to adjust the formula
to fit the family of functions in Fig. 2. As a result, the three constants were
established: κ = 17.289, ω = 0.03411 and η = 432. The other two parameters,
A and r, allow for adjusting the mathematical model to specific data. The A
parameter scales the function’s value, while r scales it in the argument domain.
Such the model facilitates a near-perfect mapping of the empirical data, with
the mean square error not exceeding 0.28. It should be noted that the function
(2) obtains the maximum when σ equals r. Therefore, after fitting the formula,
the parameter r becomes an estimator of the radius.

2.3 Reference methods

Our goal is to compute the radii of vessels along their centerlines. Typically, radii
are estimated for a number of evenly spaced points along the centerline. For each
of these points, the local direction of the centerline can be estimated, taking into
account the location of neighboring points. Therefore, it is possible to determine
the plane perpendicular to this direction, which contains the considered point.
This reduces the problem of radius computation in the three-dimensional image
space to the two-dimensional space of the vessel’s cross-section [3, 13, 23, 38].

In the 2D cross-sectional image, radius estimation consists of determining
the distance between the centerline point and the vessel wall. A number of such
distances are sampled around the point along concentrically distributed direc-
tions, or rays, which are evenly distributed with equal angular intervals. The
local radius may be computed by averaging the distances. Typically, the radius
is computed as the square root of the averaged squares of the distances. Thus,
the resulting radius corresponds to a circle with an area equal to the area of the
actual cross-section of the vessel.

Finding the location of the vessel wall along the ray can be accomplished in
several ways. One approach involves using a binary image as input, with white
voxels representing the inside of the blood vessel and black voxels representing
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the surrounding tissue. Assuming that the voxels have the shape of small cuboids,
the border between the black and white voxels approximates the shape of the wall
with accuracy determined by the image raster. The distance sample is defined
as the distance between the centerline’s point and the point of ray intersection
with the nearest boundary between white and black voxels.

The algorithm for locating vessel wall samples in a binary image is compu-
tationally efficient and robust. It should be noted that the algorithm operates
on binary images, which are visually verified and corrected by human expert
to ensure that they accurately reflect the real anatomical structure. While this
method accurately reflects the real topology of the blood vessel system, its accu-
racy is still limited by the resolution of the image. To achieve greater accuracy,
information about the brightness distribution in the original image should be uti-
lized. By incorporating this information into the search procedure, it is possible
to locate anatomical structures with sub-voxel accuracy.

To find the position of the vessel wall with higher accuracy, a brightness pro-
file along the ray is considered. The profile should be determined to a distance
two times longer than the expected radius. This way, the profile equally repre-
sents the brightness of the inner and outer regions of the vessel. The profile is
characterized by higher brightnesses in areas belonging to the inside of the vessel
and significantly lower brightnesses representing the surrounding tissue. There-
fore, a distinct slope in the brightness function, where the brightness suddenly
drops, should indicate the localization of the vessel’s wall.

The brightness profile is affected by various phenomena, including blurring
caused by imperfections in the imaging devices. These phenomena can be mod-
eled using the point spread function, which describes the response of the imag-
ing system to a point source signal. Another factor that affects the brightness
profile is the partial volume effect. Each voxel occupies a certain volume of
three-dimensional space, and if it lies on the edge of two regions, it partially
covers a piece of each region. As a result, its brightness is a weighted average
of the brightness of both regions, taking into account the partial volumes of
these regions covered by the voxel. One acceptable simplification is to model
the point spread function of the device with a linear Gaussian blur filter. This
allows the shape of the brightness profile near the border to be approximated
with a complementary error function (erfc). The erfc function can be fitted to
the brightness profile using formula (3), by adjusting the values of its four pa-
rameters (∆V, ∆R, V 0 and r) to minimize the mean squared error between the
model and the brightness profile [3, 27]. After fitting the model to the brightness
profile, the parameter r , which determines the shift in the function’s domain,
indicates the position of the blood vessel wall (Fig. 3).

u(d; ∆V , ∆R, V0,r) = V0 + ∆V erfc
(

(d − r)
∆R

)
(3)

In the following experiment, the proposed procedure, which applies the ves-
selness function for radius estimation, is compared with ray-casting methods.
Two alternative approaches for vessel wall localization are used as reference
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Fig. 3. Matching the complementary error function to the brightness profile.

methods: one to locate the wall in a binary image and the other to approximate
the brightness profile with the complementary error function.

3 Results

The three algorithms: radius estimation from multiscale vesselness (REMV),
cross-sectional ray-casting in binary image (CRB) and cross-sectional ray-casting
with erfc matching (CREM) were tested on artificially generated images of tubes
and on real magnetic resonance angiogram (MRA). Artificial images of structures
of known geometries enabled quantitative comparison and MRA image enabled
qualitative, visual assessment. In ray-casting 360 directions were used. In CREM,
the erfc was fitted to the brightness profiles consisting of 100 points each, linearly
interpolated from the original image. In REMV, the vesselness function was
calculated for geometric sequence of 7 scales of σ ranging from 0.5 to 15.

3.1 Radius estimation results in images of cylinders

In the first experiment, similarly to [3, 27, 19], synthetic images of cylinders (two
examples are in Fig. 4) with dimensions 100×100×100 voxels and 256 gray levels
were generated. Each cylinder was positioned at the center of the image. Cylin-
ders had varying radii of 1, 2, 3, 5, 8, and 13. For each radius value, 10 images
were produced, each showing the cylinder in a different orientation. It was ob-
served that for blood vessels located on the verge of two volumes with different
brightness levels it is difficult to segment the image and accurately determine
the radius of the vessel. Therefore, in every image, a sphere with a radius of 150,
representing an internal organ, was located in such a way that its surface passed
through the center of the image. The cylinders were set to a gray-level of 192,
the sphere to 128, and the background to a dark gray value of 64. Partial volume
effect was simulated. Finally, Gaussian noise with standard deviation values of
1, 2, 3, 5, 8, and 13 was added to the images. For the CRB procedure, the images
were pre-binarized using a brightness threshold of 160, which is a value between
the brightness of the sphere and the cylinder.

Fig. 4 shows the estimated radii profiles for selected cases of cylinders with
real radii of 2 and 5. The radius estimations were computed at 80 points along the
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Fig. 4. Example cylinder images with radii of 2 and 5, and their estimated radii profiles.

centerline. First 40 measurements correspond to the cylinder fragment outside
the sphere, the other measurements are from the inside.

CREM overestimates the radius in the dark region near the surface of the
sphere, which is more pronounced in the thinner cylinder and less so in the thicker
one. Both CREM and CRB underestimate the radius inside the bright sphere.
The estimated radius plots in CRB are jittery, suggesting vulnerability to noise.
In comparison, REMV seems insensitive to changes in the background gray level
in the thinner cylinder, but in the thicker one, the radius is overestimated on
one side and underestimated on the other side, similar to the results produced
by the reference methods.

To make a quantitative comparison of the algorithms, the averages and stan-
dard deviations of radius estimates were computed for images with the same
noise level and cylinders of the same radius. Table 1 presents these statistics for
each algorithm with respect to the real radii and noise levels. The table also
shows the total computation time for each algorithm.

Table 1. Average radius estimates and their standard deviations (in brackets) for the
selected radii and noise levels.

Radius Noise CREM CRB REMV
1 1 1.52 (0.90) 0.92 (0.20) 1.02 (0.08)
1 5 1.51 (0.88) 0.93 (0.20) 1.03 (0.09)
1 13 1.44 (0.74) 0.94 (0.21) 1.06 (0.13)
5 1 5.01 (0.08) 4.91 (0.11) 4.85 (0.19)
5 5 5.01 (0.08) 4.91 (0.11) 4.86 (0.19)
5 13 5.01 (0.10) 4.90 (0.12) 4.86 (0.20)

13 1 12.94 (0.10) 12.91 (0.09) 12.63 (0.53)
13 5 12.44 (0.53) 12.91 (0.09) 12.64 (0.53)
13 13 8.21 (2.00) 12.90 (0.09) 12.64 (0.53)

Time 02:06:41 00:00:39 00:18:36
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In CREM, radii are overestimated for thin cylinders with radii similar to the
size of the voxel, and the results show a relatively large standard deviation, in-
dicating scattered results. Conversely, for thick cylinders and with the presence
of noise, this method highly underestimates radii. CRB produces slightly under-
estimated values with moderate standard deviations, whereas REMV produces
the most accurate estimates for thin cylinders and slightly underestimates radii
for thicker ones. The computation time required for CREM was the highest,
but it can be reduced by reducing the number of rays, which in this experiment
was set high. CRB is the most efficient, and the computation time for REMV is
moderate. However, the time for REMV includes the computation of multiscale
vesselness, results of which can be shared by the REMV and image enhancement
algorithms.

3.2 Radius estimation results in bifurcation image

In the next experiment, an image of a bifurcation (Fig. 5) was synthesized,
which is a structure that often appears in a blood vessel system and is difficult to
analyze, estimate radii, and model [3, 15, 19]. Bifurcations involve three branches
of varying diameters, with one usually larger than the other two thinner ones
positioned opposite to each other to enable undistorted blood flow. The cross-
section of the structure is not circular and becomes increasingly elongated as
the cross-section moves towards the two thinner vessels, eventually taking on a
shape similar to the digit 8 before splitting into two circular contours. Estimating
the radius of a bifurcation using methods that assume a circular cross-sectional
shape is difficult due to this non-circularity. Additionally, it is not possible to
unambiguously determine the orientation of the vessel at the branching point,
as the three vessels that meet there have different orientations.

Fig. 5. The synthesized image of bifurcation and its estimated radii profiles.

The image of the bifurcation was synthesized with a background brightness of
64 and a structure brightness of 192, accounting for partial volume effects, and
with additive Gaussian noise with a standard deviation of 1. Before applying
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the radius estimation procedures, the image was binarized using a gray-level
threshold of 128 and then skeletonized to extract centerlines [13, 22, 41]. The
binary image was used for radius estimation by CRB, while the other methods
estimated radii from the original gray-level image.

When comparing the results (Fig. 5), it can be observed that both CRB
and CREM overestimate the radii of the thin blood vessels, and the estimated
values near the bifurcation point exceed the radius of the thick vessel. In CRB,
the estimated value is over three times higher than the actual one. Moreover,
both methods exhibit a discontinuity in the radius estimation function at the
branching point. The most accurate mapping of the radius near the bifurcation
was obtained by REMV. Although the radii of thinner vessels are overestimated
in the vicinity of the bifurcation point, the obtained values do not exceed the
radii of the thicker vessel.

3.3 Radius estimation in MRA

No artificially generated model can capture all the properties and complexities
of real angiograms. Therefore, it is necessary to verify if algorithms are capable
of correctly estimating radii from genuine medical data. In the case of real im-
ages, no ground truth is available on the accurate values of blood vessels’ radii.
Therefore, the results presented in this section are visually inspected, and the
evaluation is qualitative.

In this experiment, courtesy of Prof. Jürgen R. Reichenbach from University
Hospital Jena, Germany, a 3D magnetic resonance angiogram (MRA) of a head
is used (Fig. 6). The image was previously presented and used for validation
of image processing algorithms in other publications [20, 16]. It was acquired
using the Time of Flight (ToF) Multiple Overlapping Thin Slab Acquisition
(MOTSA) [28, 2] procedure. The contrast between the flowing blood and the
surrounding tissue is achieved without the use of a contrast agent, exclusively
due to the dynamics of the flowing blood. In this technique, the stationary
tissue is magnetically saturated and does not emit an electromagnetic echo.
Fresh blood flowing into the saturated area, agitated by a radio frequency pulse,
can emit this signal in contrast to the surrounding tissue. This imaging modality
is minimally invasive and relatively comfortable and safe for patients. However,
it may expose artifacts such as limited contrast if blood travels a long way in
the saturation region, travels parallel to the slabs, or it may expose uneven
brightness at the places where the slabs overlap. These artifacts make the image
difficult to analyze.

The angiogram is characterized by relatively low spatial resolution. The voxel
spacing is 0.42×0.42×1.2 mm. This means that blood vessels less than 0.42 mm
in diameter are poorly represented. Moreover, if vessels are located close to each
other, at a distance of less than 0.42 mm, they may create false connections or
merge into a single trace. The image shows vessels of various diameters, partly
straight or curved, running close to each other or close to other structures. In
addition, the occipital part of the image is brighter than the fronto-facial part.
This data was deliberately selected as it is difficult to interpret and analyze,
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Fig. 6. The input MRA image and the resulting vessel system models.

which should enable the identification of shortcomings and potential limitations
of the proposed algorithm.

The image was first enhanced and then binarized using a threshold value
that was selected to extract blood vessels from other structures. A flood-fill
algorithm was then applied to one of the main arteries to identify all vessels
connected to it. The resulting volume was skeletonized to extract centerlines.
In REMV, the vesselness function was computed for seven scales of σ ranging
from 0.5 to 2.5. Fig. 6 displays the resulting models of blood vessel trees, which
consist of tubes created around the centerlines. The tube radius varies locally
based on the estimations generated by the algorithms under consideration.

There are two types of errors that can be visually identified. The first type
of errors consists of moderate discrepancies scattered along the longer fragments
of vessels. The second type consists of focal, yet distinct, radius overestimations,
which appear as discs transversely oriented with respect to the course of the
vessel. In the REMV model, most of the tube fragments appear smooth in com-
parison to the CRB or CREM models. Therefore, REMV does not have many
visible errors of the first type. However, the number of second type of errors is
the most pronounced in this method.

One of the unique structures of the blood vessel system in the brain are the
two anterior cerebral arteries, which run close to each other. In the angiogram,
the two arteries merge in the section where the distance between them is less
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than the voxel size. The resulting single centerline is therefore incorrect since in
reality there are two separate arteries. In CRB and CREM, the radius of the tube
covering both arteries is small, and its surface is fairly smooth. In REMV, the
radius is larger and uneven, which highlights the incorrectly extracted centerline.

4 Summary and conclusions

The paper presents an original REMV algorithm for estimating the radii of
tubular structures in three-dimensional raster images, particularly medical an-
giographic images. The standard deviation of the Gaussian window at the max-
imum of the vesselness function, is a good estimator for vessel radius. A formula
to approximate the function from a limited number of scales was found, mak-
ing REMV computationally effective. Unlike CRB or CREM algorithms, which
operate in the cross-sectional plane perpendicular to the vessel, REMV does
not require prior information on the vessel’s orientation. Moreover, the proposed
method estimates the radius from the original grayscale image and does not
require the image to be binarized, making it the method with the least require-
ments for initial input data.

Quantitative results from comparisons with reference methods show that
REMV is the most accurate in estimating thin vessels. In comparison with
CREM, another method that does not require image binarization, REMV seems
to be immune to image noise and it is computationally more efficient. Further-
more, REMV yields the most accurate results in radius estimation in bifurca-
tion, with radius overestimation being significantly smaller than in the other
methods. Models derived from the real MRA were qualitatively assessed, and
the REMV-based model is smooth; however, it exposes a few focal yet evident
radius overestimations.

Table 2. Properties of the radius estimation algorithms.

CRB CREM REMV
Input data requirements:

Centerline orientation Yes Yes No
Binary image Yes No No

Estimation accuracy Good Fair Good
Immunity to noise N/A Low High
Computation speed Fast Slow Moderate

Table 2 presents an overview comparison of the presented algorithms, taking
into account three aspects: input data required by the method, accuracy of ra-
dius estimation for artificial images of cylinders, and computation time. It must
be noted that immunity to noise of CRB depends on the preceding image seg-
mentation method and is not an intrinsic property of this particular algorithm.
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All the compared radius estimation algorithms were implemented in the Ves-
selknife program [36], which enables the visualization of three-dimensional raster
images, their segmentation, extraction of blood vessel centerlines, estimation of
radii, and visualization of the resulting models.
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