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Abstract. Extreme Learning Machine (ELM) is a feed-forward neural
network with one hidden layer. In its modification called ELM Radial
Basis Function the input data is a priori clustered into a number of sets
represented by their centroids. The matrix of distances between each
sample and centroid is calculated and applied as input data to the neu-
ral network. This work conducts a comparison study of the ELM Radial
Basis Function classification performance upon applying either k-means,
k-medoids or mean shift clustering methods. Generated results are ob-
tained from two datasets i.e. Wine Quality-White and Ionosphere. The
computations are based on full datasets or on the same both sets reduced
by a feature selection algorithm. The parameters of the classifiers such
as number of neurons in hidden layer, the value of k in k-means and
k-medoids, the value of radius in mean shift are optimized through an
iterative procedure upon maximizing an accuracy or minimizing Mean
Square Error and computation time. The different distance metrics for
k-means and k-medoids, and mean shift with Gaussian or flat kernel
function are also compared. The results obtained with Softplus and lin-
ear activation function (applied in most of the computations in this work)
are juxtaposed with the results generated by other activation functions.

Keywords: Neural Networks · Machine Learning · Extreme Learning
Machine · Radial Basis Function · Clustering Algorithms

1 Introduction

The Backpropagation Algorithm (BA) introduced in 1986 by Rumelhart et al.
[21] represents an important component of machine learning. The main problem
of BA stems from the fact that it usually yields local minima of associated net-
work’s residual error function. In addition, BA computational cost and training

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_13

https://dx.doi.org/10.1007/978-3-031-36027-5_13
https://dx.doi.org/10.1007/978-3-031-36027-5_13


2 A. Konopka et al.

time, especially for the large datasets, may preclude its practical application.
The new concept of neural network called Extreme Learning Machine (ELM)
was introduced by Huang et al. in 2004 [7]. ELM converges much faster than
traditional learning schemes as relieved from the time-consuming iterations and
is also more likely to reach a global optimum [10]. ELM is successfully adapted
to various machine learning applications such as classification and regression in
medicine, chemistry, transportation, economy, agriculture, robotics etc. It also
outperforms other methods in training time and approximation ability [9, 18].
ELM is characterized by yielding extremely fast training time in comparison
to other machine learning methods like e.g. Multilayer Perceptron trained with
BA [11]. Currently, ELM still evolves to further improve generalization capac-
ity in case of special applications. One of its variants called Extreme Learning
Machine Radial Basis Function (ELM-RBF), weaving core principles of ELM
with feature space mapping using RBF kernels, yields comparable results to
BA with considerably faster computation time [2]. In the field of ELM-RBF,
the most commonly used clustering method is k-means, although application of
k-medoids is also found in the literature.

In this paper, the performance of ELM-RBF combined with k-means, k-
medoids or mean shift clustering methods is thoroughly investigated. The com-
parison involves manipulating with multiple variables, such as parameter val-
ues of clustering methods, number of neurons or different activation functions
in ELM-RBF. In order to obtain the most significant results a comparison is
conducted on two datasets - Wine Quality-White and Ionosphere [3]. The char-
acteristics of the selected benchmark sets allow to obtain significant results and
compare different algorithms, such as those used for solving k-medoids problem,
as their application relies on the size of the input dataset.

2 Extreme Learning Machine

Extreme Learning Machine consists of input, hidden and output layer aimed
to solve classification and regression tasks by supervised learning [7]. Assume
input data is described as pairs of values η = {(xi, ti)}Ni=1, where xi = {xij}dj=1

forms matrix Xd×N of d features. Here ti is recognized as affiliation to the given
class establishing T . For the classification need ti ∈ [0,M ] ⊆ N, whereas for
regression the target value ti ∈ RM . Here M represents either the number of
classes or dimension of target values. The number of neurons in input, output
and hidden layer is assumed here to be equal to d, M and L, respectively. Here
L is given a priori as there is no universal method for L optimization. Neurons
in ELM are McCulloch-Pitts neurons [14] with identity function on input and
output layers and any activation function f : R → R on hidden layer units.
Matrix of weightsWd×L with coefficients wij ∈ (−1, 1) connecting input neurons
with L hidden layer neurons and bias values bi of b = {bi}Ni=1 are randomly
selected with the aid of uniform distribution function, where i = 1, . . . , d and
j = 1, . . . , L. Thus,H = f(XTW+b) is obtained as an output of the hidden layer.
Wages β between hidden and output layer are computed once using algebraic
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transformations. To calculate β the following matrix equation Hβ = T should
be solved. The matrix H is non-invertible and therefore solving Hβ = T can be
reformulated into the optimization task estimating β̂ based on minimization of
a Mean Square Error (MSE) between H and T [7]. The corresponding solution
reads as β̂ = H†T , where H† is the Moore-Penrose pseudo-inverse operation
[20]. Various methods for H† evaluation can be applied including e.g. Cholesky
factorization of a singular matrix [12].

3 Extreme Learning Machine Radial Basis Function

Extreme Learning Machine Radial Basis Function is a method with training sim-
ilar to its archetype which is based on random generation ofW , b and calculation
of β using generalized inverse of matrix H. The extra component involves input
data transformation with the aid of Radial Basis Function [15]. Specifically, let
Xd×N be a set of d features for N observations. First, a vector quantization tech-
nique is applied as a clustering algorithm. The aim of the latter is to partition N
samples into a certain number (given a priori or designated automatically dur-
ing algorithm’s run) of k clusters using e.g. k-means clustering algorithm. Each
sample xi is assigned to exactly one cluster {cj}kj=1, which in turn is recognized
as the closest centroid to xi in terms of a considered metric. Next, xi is trans-
formed to the new feature space based on a chosen kernel function. Note here
that when k > d then X is mapped to a higher dimension. The definition of the
RBF kernel for ELM-RBF is given as K(xi, cj) = exp{−‖xi−cj‖2

2σ2 }. The matrix
KN×k is computed as a measure of distance between each xi and cj . The σj
value is determined as a σj =

max{dj}√
2k

. Finally, K is treated as an input matrix
to the typical ELM network.

4 Clustering methods

Clustering methods divide samples into disjoint groups. In k-means, k-medoids
and mean shift each cluster is represented by a centroid which is calculated
through an iterative procedure.

4.1 Mean Shift

Mean shift is an unsupervised learning algorithm [5] commonly applied in clus-
tering, tracking and smoothing. This algorithm locates maxima of a density
function with the aid of an iterative procedure upon updating candidates for
centroids. Mean shift requires to specify the bandwidth of a window, which is
shifted until the algorithm converges. The number of clusters is a priori unknown
and depends on the density of input data samples. The points are assigned to
the corresponding local maxima computed by the algorithm.

The input data of the algorithm is a set of n data points Q = {qi}ni=1,
where qi = (qi1 , qi2 , . . . , qid) ∈ Rd. The value of bandwidth b is specified ar-
bitrarily. Let C = {{cij}ni=1}

si
j=1 be the set of all locations of the window
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shifted in the algorithm, where cij = (cij1 , cij2 , . . . , cijd), i = 1, . . . , n is a
number of point that is currently considered and j = 1, . . . , si is a number
of the shift for i’th point. Then first point q1 ∈ Q is selected and it is set
as the first location of window’s center (c11 = q1). Then Euclidean distances
d(cij , qi) =

√
(cij1 − qij1)2 + · · ·+ (cijd − qijd)2 between current cij and each qi

are computed. All qi with d(cij , qi) ≤ b (i.e. inside the window centered at cij)
are selected to the set Q̂ij = {q̂m}

wij

m=1. Subsequently, the new location of the
window is calculated as a mean value of all Q̂ij for each of their d dimensions
ci(j+1) = ( 1

wij

∑wij

m=1 q̂m1
, . . . , 1

wij

∑wij

m=1 q̂md
). Such procedure is repeated for all

Q until they all converge to their corresponding local maxima. An output of this
method is the set of points assigned to each of the generated disjoint clusters.

The above procedure iterates over each of the points from the dataset result-
ing in high computation time for large input data. Despite the fact that shifting
a selected point does not influence other iterations and the process can be par-
allelized it is still very slow. The elapsing computation time is highly correlated
with the size of input matrix of data making this approach inefficient. The mean
shift algorithm can be optimized to render the results with less computation.
The Bart Finkston’s implementation (available on Mathworks [4]) presents an
approach which highly reduces the computational complexity of the algorithm.
The idea is to mark the points which were inside a shifting window (in any of si
iterations) as visited to disregard them in upcoming iterations when new starting
points ci1 are to be selected. We note how many times each of the points is posi-
tioned inside a bandwidth considering all si iterations for i’th starting point until
qi converges to cisi . The procedure is repeated selecting random points from Q
not so-far visited. Subsequently, the matrix with votes for all generated centroids
is used to attach Q to the appropriate clusters applying majority voting.

4.2 K-means

K-means is a common clustering method for which each of the samples is assigned
to one of k disjoint clusters [19]. The number of k is selected arbitrarily. Each
of the clusters is represented by a centroid which is equal to mean value of all
observations within a group. The samples in a given iteration are assigned to
the closest centroid in accordance with a distance metric i.e Euclidean distance.

Let a set of n data points Q = {qi}ni=1, where qi = (qi1 , qi2 , . . . , qid) ∈ Rd
be given. Assume C = {{clj}kl=1}mj=1 is the set of all locations of k centroids-
to-be in the algorithm, where clj = (clj1 , clj2 , . . . , cljd), l = 1, . . . , k and j =
1, . . . ,m is a number of the algorithm’s iteration. Let Cm = {clm}kl=1 be the set
of centroids yielded by the algorithm after reaching termination condition (after
m iterations). The value of m is set a posteriori once the stopping conditions are
met. We start by selecting starting locations of all the k centroids C1 = {cl1}kl=1,
they can be set randomly or upon applying an optimization algorithm (e.g k-
means++ [1]). Then, the samples are assigned to the closest centroid by means of
selected distance metric. In case of Euclidean distance ρE , the respective values
are equal to di,l,j = ρE(qi, clj). Subsequently, new locations of the centroids
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Cj+1 = {cl(j+1)}kl=1 are computed, where the new coordinates of each cl(j+1)

are mean values of all the respective coordinates for data points qi assigned to
a given l’th centroid in j’th iteration. Here cl(j+1) = (c̄lj1 , c̄lj2 , . . . , c̄ljd) with
c̄ljdm = (1/alj)

∑alj
i=1 q̂lji , where dm = 1, . . . , d, alj is a number of points q̂lji

linked to l’th centroid in j’th iteration. The algorithm iterates until one of the
stopping conditions is met i.e. either when computed centroids no longer switch
their location or the distance between clj and cl(j+1) is smaller than prescribed
ε or lastly, if the preselected maximal number of iterations is exceeded.

4.3 K-medoids

K-medoids is a method applied for clustering [8]. The data is assigned to one of
k medoids, where each medoid is a specific point from the dataset and represents
its cluster. The value of k and the dissimilarity measure are arbitrally selected.
In the first step of the algorithm, k points are chosen as starting medoids. The
latter is achieved either in a random manner or upon applying a specific method
(e.g k-means++ [1]) to solve an optimization problem leading to a reduction of
computational time of the algorithm. The k-medoids problem can be solved with
numerous algorithms such as: Partitioning Around Medoids (PAM), Voronoi-
iteration k-medoids, Reynolds’ improvements, FastPAM, FasterPAM algorithms,
CLARA, CLARANS, FastCLARA and FastCLARANS, Lloyd’s iterations [8, 17].

In Partitioning Around Medoids algorithm, once a starting set of medoids
is selected the values of a cost function are evaluated for all possible swaps of
a medoid in a given cluster with another point belonging to the same cluster.
When all the combinations are computed we finally apply only this one which
has the minimal value of evaluated function. Subsequently, the affiliation of all
points to points being set as current medoids is recalculated. This procedure is
repeated for all the medoids as long as the value of the cost function decreases,
otherwise the algorithm terminates. PAM algorithm has a high computation
complexity as it calculates all possible swaps of all the medoids. In such setting,
this algorithm is in practice predominantly applicable to a small amount of input
data. For more complex computations one can apply variants of PAM (such as
FastPAM or FasterPAM).

5 Experiments and Results

The computations were conducted on two sample datasets, namelyWine Quality-
White and Ionosphere [3]. Wine Quality-White comprises of 4898 wine samples
described by eleven features. Each of the wine samples was categorized by experts
to the quality measure (ranging within C = {3, 4, . . . , 9}). In order to perform
computations on this set of features, a Mean Square Error is calculated to verify
how a prediction deviates from an actual class as wine quality is represented by
scale measure from C. We remark here that a misclassification of a wine from
the class 3 to the predicted class 4 is a minor concern as opposite to assigning it
to class 9. The Ionosphere is a dataset describing signals that pass through the
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ionosphere. These signals are classified into two disjoint groups: “good” signals
having evidence of some type of structure and “bad” signals deprived of such a
feature. This dataset consists of 351 samples described by 34 features. In this bi-
nary classification task, the rendered results are compared calculating accuracy
(ACC) representing the percentage of correctly classified samples in the whole
classification process. These datasets are used here for classification with the
aid of ELM-RBF applying a selected clustering method: k-means, k-medoids or
mean shift. All computations described in this work are performed in Matlab.

In preliminary computations, which were carried on Wine Quality-White
dataset, some of the parameters were selected and they are fixed in this work.
The estimation of generalized inverse for ELM-RBF is based on Cholesky fac-
torization of a singular matrix [12] yielding fast computation time and low MSE.
To compare k-means, k-medoids and mean shift, different activation functions
are chosen to obtain the best clustering results. In doing so, a linear activation
function fL(x) = ax is used as it yields prominent classification results while ap-
plying k-means and k-medoids. On the other hand, Softplus activation function
fSP (x) = log(1 + exp(x)) is also applied as it renders the best categorization
results for mean shift.

Our computations exploit Matlab implementations of k-means, k-medoids
and mean shift. Most of the conducted experiments admit in these methods
default parameters unless specified otherwise. More specifically, the k-means and
k-medoids clustering algorithms in Matlab have default distance metric set to
Squared Euclidean distance. In addition, a default method for choosing initial
cluster centroid positions is k-means++ algorithm [1]. In case of k-medoids,
an algorithm to find medoids is available in three variants which are applied
by default depending on number of rows (samples) in the input data. More
specifically, for the number of rows less than 3000 PAM algorithm is applied. For
the number of rows between 3000 and 10000 a variant of the Lloyd’s iterations is
selected. In case of larger datasets, a default algorithm is CLARA [8]. Thus, the
algorithm applied for Wine Quality-White and Ionosphere datasets are Lloyd’s
iterations and PAM, respectively. In this work, the applied mean shift algorithm
[6] allows the implementation of Gaussian or flat kernel for distance calculations.
The classification results were generated for both datasets applying 10 times a
20% cross-validation. Note that the computation results obtained for same values
of parameters can still vary as all three clustering methods rely on randomness.
Such difference is still noticeable even upon applying multiple cross-validations.
The computations are conducted on three computers: K1 - Ryzen 5600G CPU,
16 GB DDR4 3600MHz RAM, K2 - Ryzen 3900X CPU, 64GB DDR4 3600MHz
and K3 - Dell 7750 Xeon W10885M CPU, 128GB DDR4 2933 MHz.

A classification task is performed on Wine Quality-White dataset for ELM-
RBF with k-means and k-medoids for k ranging from 10 to 100 (with step-
size 10) (see Fig. 1). These computations are applied on computer K1. The
number of hidden-layer neurons n varies from 100 to 1000 (with step-size 100).
Lastly, a linear or Softplus activation function is applied. For both k-means
and k-medoids MSE is the highest for k ∈ {10, 20}. The lower value of k gets,
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the worse classification result is rendered. Indeed, in the extreme case MSE
attains the value 4.780 for k-medoids with k = 10 and n = 500 combined with
Softplus activation function. For k > 20 the value of MSE for k-means and k-
medoids stabilizes within the interval [0.619,0.793]. The best MSE result equal
to 0.619 is achieved by k-medoids with linear activation function, k = 100 and
n = 700 rendering the computation time equal to 409 seconds. Slightly worse
result MSE = 0.628 is achieved for k-medoids with k = 40, n = 100 and linear
activation function. Nevertheless, selecting the last set of parameters reduces
computation time to 78 seconds. The best result obtained applying k-means
yields MSE = 0.620 for k = 100, n = 700 and linear activation function, for
which the computation time is equal to 402 seconds.

The mean shift clustering method is combined with ELM-RBF and the results
obtained for Wine Quality-White dataset are based on the following choice of
parameters: the values of the boundary width (radius) r are attuned from 0.3
to 1.3 (with step-size 0.1 - as it generated amounts of clusters from around 2
to 614) with the number of neurons n varying from 100 to 1000 (with step-
size 100) combined with a linear or Softplus activation functions and Gaussian
or flat kernel (see Fig. 2). The best result achieved for ELM-RBF with mean
shift for the tested parameters is MSE = 0.686 for Softplus activation function,
n = 700, r = 0.6 (which renders an averege of 22 clusters in 10 cross-validations)
with flat kernel function applied. This result is worse then the best result for
k-medoids (and k-means) for this dataset for same tested number of neurons.
The computation time is equal to 323 seconds. The best MSE (the lowest) are
achieved for r ∈ {0.6, 0.7} rendering between 10 and 22 clusters. ELM-RBF with
mean shift obtains the worst MSE results for r ≤ 0.5 (when r = 0.5 around 52
clusteres are rendered) applying linear kernel function and reaches even 2.02.

Fig. 1. MSE calculated on classification result for Wine Quality-White dataset for
ELM-RBF with k-means or k-medoids , k varying between 10 and 100, 100-900 neurons
applying linear (left) or Softplus activation function (right).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_13

https://dx.doi.org/10.1007/978-3-031-36027-5_13
https://dx.doi.org/10.1007/978-3-031-36027-5_13


8 A. Konopka et al.

Fig. 2. MSE calculated on classification result for Wine Quality-White dataset for
ELM-RBF with mean shift for r varying between 0.3 and 1.3, 100-900 neurons applying
linear (left) or Softplus activation function (right), and Gaussian (G) or flat kernel (F).

The results generated by ELM-RBF on Wine Quality-White dataset are also
analyzed on higher number of neurons n ranging from 1500 to 5000 (with step-
size 500), for k varying from 10 to 100 (with step-size 10) in k-means and k-
medoids applying linear or Softplus activation function (see Fig. 3). These com-
putations are performed on the computer K2. Top three results are attained
for k-medoids with linear activation function for n = 2000, k = 100, MSE =
0.618, for n = 2000, k = 70, MSE = 0.618 and for n = 2500, k = 70, MSE
= 0.619. These results are equal to the best result for n ranging between 100
and 1000, but their computation time is much longer amounting to 1241, 1239
and 1676 seconds, respectively. Even if these computations were performed on
faster computer, a huge increase in time is noticeable due to the enlarged number
of neurons. The difference in results generated by Softplus and linear activation
function is significant. Indeed, the values of MSE for linear function are in the in-
terval [0.618, 0.788], whereas for Softplus in [0.732, 3.338]. ELM-RBF with mean
shift is also tested on higher values of n admitted to vary between 1500 and
5000 (with step-size 500) (see Fig. 4). The selected values of r range from 0.6
to 1 (with step-size 0.1) yielding the number of clusters between 4 and 22. The
best MSE is equal to 0.688 for n = 2000, Gaussian kernel, Softplus activation
function and r = 0.7 (11 clusters) computed in 1303 seconds.

The classification is also conducted on Ionosphere dataset applying ELM-
RBF combined with k-means and k-medoids as clustering methods. The calcu-
lations were performed on computer K1. The computations were executed for k
ranging from 10 to 100 for a number of neurons n varying from 100 up to 1000
(with step-size 100) (see Fig. 5). The results generated with linear activation
function outperform those rendered with Softplus. The highest accuracy equal
to 0.946 is reached for k-medoids with linear function, n = 100, k = 96 tak-
ing 13 seconds of execution time. The best result for k-means ACC = 0.941 is
obtained for linear function, n = 200, k = 80 in 9 seconds. The accuracy for lin-
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Fig. 3. MSE calculated on classification result for Wine Quality-White dataset for
ELM-RBF with k-means or k-medoids for k varying between 10 and 100, 2000-5000
neurons applying linear (left) or Softplus activation function (right).

Fig. 4. MSE calculated on classification result for Wine Quality-White dataset for
ELM-RBF with mean shift for r varying between 0.6 and 1, 2000-5000 neurons applying
linear (left) or Softplus activation function (right), and Gaussian (G) or flat kernel (F).

ear activation function rapidly increases with k running over k = {1, 2, . . . , 10}.
Once k > 10 the rate of improvement in classification results decelerates. The
best 39 results are generated for n ≤ 200. The lowest ACC for linear function
equal to 0.599 is attained for k-medoids k = 3, n = 900 and the worst overall
result for the considered methods and parameters reads as ACC = 0.587, and is
achieved for k-medoids with Softplus activation function combined with n = 200
and k = 11. ELM-RBF with mean shift is also used as a classification method
on Ionosphere dataset. The considered parameters’ values are: n ranging from
100 to 1000 (with step-size 100), r from 0.5 to 7 (step-size 0.5) rendering from 1
to 216 clusters (see Fig. 6). The highest ACC = 0.808 is registered for Softplus
activation function, n = 100, r = 4.5 rendering around 14 clusters. The 40 best
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results calculated with Softplus function are generated for r = 4.5 or r = 5
yielding around 14 and 4 clusters, respectively.

Fig. 5. ACC calculated on classification result for Ionosphere dataset for ELM-RBF
with k-means or k-medoids for k varying between 1 and 100, 100-900 neurons applying
linear (left) or Softplus activation function (right).

Fig. 6. ACC calculated on classification result for Ionosphere dataset for ELM-RBF
with mean shift for r varying between 0.5 and 7, 100-900 neurons applying linear (left)
or Softplus activation function (right), and Gaussian (G) or flat kernel (F).

K-means and k-medoids applied to ELM-RBF for clustering are tested on
Ionosphere for larger number of neurons in the hidden layer. Tested parameters
are n ranging from 1500 to 5000 (with step-size 500) and k from 1 to 100 (see
Fig. 7). These computations are performed on the computer K3. The best ACC
= 0.937 is attained for k-means with linear function, n = 1500 and k = 49. In
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contrast, the worst ACC equal to 0.602 is obtained for k-medoids with linear
function, n = 3000 and k = 4. The best result for 1500 ≤ n ≤ 5000 equal to
0.937 is lower then the best result for 100 ≤ n ≤ 1000 reading as ACC = 0.946.
The classification process is performed on Ionosphere with ELM-RBF combined
with mean shift testing the values of n ranging from 1500 to 5000 (with step-size
500) (see Fig. 8). The admitted values of r are taken from 0.5 to 7 (with step-size
0.5). The top 32 ACC, which are higher than 0.74, are obtained for r = 4.5 or
r = 5 (around 13 or 4 centroids, respectively). The best ACC = 0.792 is achieved
with Softplus function, n = 3500, r = 4.5 and Gaussian kernel. This result is
worse than the best one calculated for 100 ≤ n ≤ 1000 - ACC = 0.808.

Fig. 7. ACC calculated on classification result for Ionosphere dataset for ELM-RBF
with k-means or k-medoids for k varying between 1 and 100, 2000-5000 neurons apply-
ing linear (left) or Softplus activation function (right).

Feature selection method - Fast Correlation Based Filter (FCBF) [22] - is
applied on Ionosphere to reduce the set of features leaving those that are highly
correlated with affiliation to the class and their correlation between other features
is low. The initial set of features is reduced from 34 to 4 represented by numbers:
5, 6, 28 and 33. The real aim of applying feature selection filtering is the hope to
improve classification result and to reduce computation time. In the next step,
ELM-RBF combined with k-means and k-medoids is tested on the set of features
selected from Ionosphere. These computations are performed on the computer
K2. The parameters involved are n varying between 100 and 1000 (with step-
size 100) and k ranging from 1 to 100 (with step-size 1). The best ACC equal
to 0.910 is obtained for k-means, linear activation function, for n = 200 and
k = 34 and is computed in 11 seconds. This result is worse then the best result
for the whole set of features which is equal to 0.946. The classification is also
conducted on the selected Ionosphere features applying ELM-RBF with mean
shift clustering method for n running from 100 to 1000 (with step-size 100),
r ∈ [0.01, 1.5] (with step-size 0.01) rendering from 1 up to 255 clusters. The best
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Fig. 8. ACC calculated on classification result for Ionosphere dataset for ELM-RBF
with mean shift for r varying between 0.5 and 7, 2000-5000 neurons applying linear
(left) or Softplus activation function (right), and Gaussian (G) or flat kernel (F).

achieved result ACC = 0.892 is obained for linear activation function (on the
whole set of features Softplus activation function gave the best results for mean
shift), flat kernel, n = 100, r = 0.51 rendering 40 clusters and is calculated in
6 seconds outperforming the best result obtained for the whole set of features
applying mean shift clustering method which is equal to 0.808 for Softplus, flat
kernel, n = 100 and r = 4.5 (14 clusters).

A juxtaposition of the best ACC or MSE generated for all the selected ranges
of parameters for ELM-RBF with k-means, k-medoids and mean shift for Wine
Quality-White and Ionosphere is presented in Tab. 1 and Tab. 2.

In previous computations, the default distances for k-means and k-medoids
were applied and the activation functions (Softplus and linear) were selected a
priori as they gave the best classification results for Wine Quality-White dataset.
Subsequently, the parameters that yielded the best ACC for the whole set of fea-
tures in Ionosphere for the three considered clustering methods were selected and
other distance functions for k-means and k-medoids were considered and com-

n rng k rng r rng Method act fun n r k Kernel MSE t
100-1000 10-100 - k-medoids linear 700 - 100.0 - 0.6188 409
100-1000 10-100 - k-means linear 700 - 100.0 - 0.6202 402
100-1000 - 0.3-1.3 mean shift Softplus 700 0.6 21.5 flat 0.6856 323
1500-5000 10-100 - k-means Softplus 4000 - 10.0 - 0.7315 2357
1500-5000 10-100 - k-medoids Softplus 4500 - 10.0 - 0.7368 2566
1500-5000 - 0.6-1 mean shift Softplus 2000 0.7 10.8 Gaussian 0.6882 1303

Table 1. The best classification results (measured with MSE) on Wine Quality-White
dataset applying ELM-RBF for each of the considered clusterization methods (k-means,
k-medoids and mean shift) on analyzed ranges of parameters. Act fun column stands
here for the activation function, t for computation time in seconds and rng for range.
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bined with various activation functions tested for all three clustering methods. In
case of k-means, the tested distances are: cityblock, correlation, cosine and sqeu-
clidean. In case of k-medoids: chebychev, cityblock, correlation, cosine, euclidean,
hamming, jaccard, minkowski, spearman and sqeuclidean were analyzed [13]. For
k-means, k-medoids and mean shift the tested activation functions for ELM-RBF
are: sigmoid, tanh, relu, rbf, linear, swish, ELiSH, HardTanH, TanhRe, ELUs,
Softplus, LReLU and BinaryStep [16]. The best five results obtained for k-means
and k-medoids are presented in Tab. 3. For both k-means and k-medoids the best
classification results are rendered for linear activation function. The highest ACC
is obtained for cityblock (ACC = 0.94) and sqeuclidean distance (ACC = 0.93).
The best five results for mean shift with n = 100, r = 4.5 (rendering 14 or 13
clusters) and flat kernel, which are computed in t ∈ [4.1, 5.1] seconds are ren-
dered for: Softplus, tanh, swish, TanhRe and sigmoid activation functions, and
their ACC are equal to: 0.794, 0.783, 0.780, 0.769 and 0.763, respectively.

6 Conclusions

The best classification results for Wine Quality-White with ELM-RBF are ob-
tained for k-medoids and k-means. The latter is attained for n ∈ N1000 =
{100, 200, . . . , 1000} with MSE = 0.62 which is 0.07 better than the best re-
sult applying mean shift. As it turns out, further enlargement of n (from 1500 to
5000) does not improve the MSE results. The best classification result is achieved
for n = 700. Similarly, the best classification results for Ionosphere dataset are
derived for k-means and k-medoids with n ∈ N1000 for which ACC ∈ [0.94, 0.95].
Again, admitting a higher number of neurons on this dataset does not ameliorate
the classification results - a fenomenon also manifested on Wine Quality-White
data. The best classification result is achieved for n = 100, which is the lower

n rng k rng r rng features Method act fun n r k krn ACC t
100-1000 1-100 - all k-medoids linear 100 - 96 - 0.946 13
100-1000 1-100 - all k-means linear 200 - 80 - 0.941 9
100-1000 - 0.5-7 all mean shift Softplus 100 4.50 14 f 0.808 5
1500-5000 1-100 - all k-means linear 1500 - 49 - 0.938 60
1500-5000 1-100 - all k-medoids linear 4500 - 48 - 0.933 169
1500-5000 - 0.5-7 all mean shift Softplus 3500 4.50 13 g 0.792 155
100-1000 1-100 - selected k-means linear 200 - 34 - 0.910 11
100-1000 1-100 - selected k-medoids linear 200 - 41 - 0.907 14
100-1000 - 0.01-1.5 selected mean shift linear 100 0.51 40 f 0.892 6

Table 2. The best classification results (measured with ACC) on Ionosphere dataset
applying ELM-RBF for each of the considered clustering methods (k-means, k-medoids
and mean shift) on analyzed ranges of parameters. Act fun stands here for the activation
function, rng for range, krn for kernel (f - flat or g - Gaussian) and t for computation
time in seconds. In features column there is an information about whether the compu-
tations were performed on the whole set of features or only on ones selected by FCBF.
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Distance Method activation function n k ACC time
cityblock k-medoids linear 100 96 0.940 11

sqeuclidean k-medoids linear 100 96 0.933 11
cityblock k-medoids TanhRe 100 96 0.929 13
cityblock k-medoids ELUs 100 96 0.927 13
cityblock k-medoids Softplus 100 96 0.927 12
cityblock k-means linear 200 80 0.942 9

sqeuclidean k-means linear 200 80 0.927 9
sqeuclidean k-means relu 200 80 0.850 10
sqeuclidean k-means HardTanH 200 80 0.833 11
cityblock k-means TanhRe 200 80 0.828 11

Table 3. The top 5 ACC on the Ionosphere dataset for k-means, n = 100, k = 96 and
k-medoids, n = 200, k = 80 analyzed for different distances and activation functions.

bound of the analyzed numbers of neurons. For both datasets and lower values
of n the best results for k-means and k-medoids are attained for high values of
k ∈ {80, 81, . . . , 100}. Again, admitting a higher number of neurons n the best
results are obtained for lower values of k, i.e. k = 10 for Wine Quality-White and
k ∈ {48, 49} for Ionosphere. Furthermore, classification conducted on features
selected by FCBF from Ionosphere dataset does not improve the overall best
classification result. Nevertheless, the ACC obtained by ELM-RBF with mean
shift on reduced set of data increases accuracy rate from 0.81 to 0.89 ACC.
For k-means and k-medoids the best results are obtained with the aid of linear
activation function (and cityblock or sqeuclidean distance metrics). Mean shift
rendered in most computations the best results on Softplus activation function;
however, the best outcome achieved with this clustering method on reduced set
of Ionosphere features is attained with linear activation function. In further re-
search, one should verify results rendered applying other parameters especially
when the best classification in this work is observed on their boundary values as
it is expected to obtain in those cases better results. The cityblock metric should
be further analyzed for k-means and k-medoids in ELM-RBF.
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