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Abstract. Processing of deforming shapes represented by sequences of
triangle meshes with connectivity varying in time is difficult, because of
the lack of temporal correspondence information, which makes it hard
to exploit the temporal coherence. Establishing surface correspondence
is not an easy task either, especially since some surface patches may
have no corresponding counterpart in some frames, due to self-contact.
Previously, it has been shown that establishing sparse correspondence
via tracking volume elements might be feasible, however, previous meth-
ods suffer from severe drawbacks, which lead to tracking artifacts that
compromise the applicability of the results. In this paper, we propose a
new, temporally global optimisation step, which allows to improve the
intermediate results obtained via forward tracking. Together with an
improved formulation of volume element affinity and a robust means of
identifying and removing tracking irregularities, the procedure yields a
substantially better model of temporal volume correspondence.

Keywords: Time-varying mesh · model · animation · tracking · analysis
· surface.

1 Introduction

Sequences of triangle meshes are becoming more common in computer graph-
ics due to a recent boom in both image acquisition hardware and reconstruc-
tion techniques aimed at estimating a static shape from a set of views. Since
the most common data source is a reconstruction from video sequences, which
treats each frame as an independent reconstruction problem, the most com-
mon type of resulting mesh sequences is the Time-Varying Mesh (TVM), i.e.
a sequence, where both the geometry (vertex coordinates) and the connectivity
(triangles/polygons) are different in each frame. Effort has been put previously
into converting this data into a more convenient form, e.g. a dynamic mesh,
where the connectivity is shared by all the frames and implicitly captures inter-
frame surface correspondence. Not only is such a representation more efficient
for storage and transmission, because of the shared connectivity, it is also much
more convenient for processing, since common procedures, such as texturing,
editing or movement analysis can exploit the known surface correspondence. On
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the other hand, current state of the art approaches to converting a TVM into a
dynamic mesh suffer from many problems and work robustly only under rather
constraining conditions.

Working directly with TVMs provides a much greater versatility, however,
for many tasks, such as compression, time-consistent editing and others, it is nec-
essary to build an auxiliary model that captures the temporal correspondence
that is present in the data. It has been observed previously that it is often diffi-
cult to establish correspondence of surface elements, since such correspondence
loses bijectivity even in the common case of self-contact of objects in the input
data. Volume correspondence, on the other hand, is bijective for a wider variety
of possible inputs, limited by the requirement of approximately constant overall
volume. Therefore, some recent methods have focused on establishing correspon-
dence of volume elements by means of tracking, achieving partial success and
applicability in certain scenarios.

One of the drawbacks of the current approaches is that they rely on a frame-
by-frame processing procedure, gathering information about the nature of the
objects captured in the data in chronological order. This approach prevents in-
formation from frames that appear later in the sequence to influence the tracking
results (and the induced correspondence information) of preceding frames. This
leads to certain artifacts in the tracking results, which in turn hinder applica-
tion of the tracking in scenarios that are sensitive to tracking errors, such as
compression or time-consistent editing.

In particular, when tracking volume elements through time, it is necessary to
capture information on which elements are tightly bound together - in previous
works, this binding has been termed affinity. When processing the sequence
forwards in time, the affinity gets constantly updated, as parts of the objects
separate or come into contact. The updating may in turn lead to volume ele-
ments transitioning between separate components (we refer to such centers as
irregular), due to temporary self contact, as illustrated in Fig. 1. Also, even when
the qualitative change of separating a volume element from its component does
not occur, the continuously updated affinity constantly lags behind the actual
shape changes, leading to sub-optimal tracking results.

In this paper, we address these issues by proposing an improved tracking pro-
cedure, which efficiently eliminates most of the problems encountered previously.
Our main contributions are:

– an improved approach to evaluating volume element affinity, which elimi-
nates reconnecting of previously separated components caused by the infinite
impulse response (IIR) filter used in the state of the art,

– a robust measure capable of identifying incorrectly tracked volume elements,
which allows removing them from the intermediate result,

– a new post-processing phase that optimises tracking criteria globally, taking
the whole sequence into account, allowing temporal propagation of informa-
tion in both directions.
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Fig. 1: Example of irregularly tracked centers. Consistent colouring of legs of
the subject reveals two yellow coloured centers transitioning to the red coloured
part.

The global optimisation step allows for correcting the tracking imperfections
caused by the removal of incorrectly tracked elements. We demonstrate the su-
periority of the proposed tracking strategy both quantitatively and qualitatively.

2 Related work

The most popular way of obtaining a temporal model to represent TVMs is
surface tracking. Usually, a certain template surface is sequentially aligned to all
the frames using non-rigid registration [15,13]. The simplest methods rely on the
template surface given prior and an assumption that it reflects the ground-truth
topological information. Such methods usually fail in the presence of frequent
erroneous self-contact in the input. This issue might be mitigated to some extent
by subdividing the surfaces into patches [5,11], or by identifying frames with
significant change in appearance and working with subsequences between such
frames [9,6,17,14]. Bojsen-Hansen et al. [2] were able to detect topology changes
and adjust the template shape accordingly, however, they incorrectly assume
surface correspondences to be bijective outside of the adjusted parts. Budd et
al. [4] build a shape similarity tree, which allows alignment of the more similar
rather than subsequent frames.

In the presence of self-contacts, the volume correspondences are more likely
bijective than the surface correspondences. This has been already utilised by
Huang et al. [10,12], who proposed non-rigid registration of centroidal Voronoi
tessellations (CVTs). However, their approach does not consider that volume el-
ements move coherently together. Dvořák et al. [7] proposed to track volume ele-
ments called centers, which are not inherently CVTs, but instead are regularised
to achieve coherence of the movement, considering a spatial neighbourhood of
each center. This approach was improved [8] by introducing a more appropriate
notion of center neighbourhood based on similarity of motion in already tracked
frames and motion regularisation, which works better for rigidly moving parts.
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Since our proposed approach builds on this method, it will be described in more
detail in Section 3.

Recently, machine learning models became popular for representing temporal
sequences. These are especially successful on sparse data (e.g., single-view RGBD
video). Relevant to our work is, for example, OccupancyFlow [16], a learned
occupancy function deformed by a neural vector field, as well as the work of
Božič et al. [3] who train a neural deformation graph. The main limitation of
neural models is, however, that working with them is less intuitive and thus their
application is limited for example in time-consistent editing.

The rest of the paper is organised as follows. First, we will describe the key
concepts of volume tracking relevant to this paper. In Section 4, we formulate
improved affinity weights based on the maximum distances of centers and motion
dissimilarities encountered in the already processed frames. These weights are a
drop-in replacement for the original IIR filter based affinity. While significantly
reducing the tracking error, these weights still do not prevent the occurrence
of irregular centers. To this end, in Section 5 we discuss an irregularity mea-
sure based on the distance to the trajectory of the nearest center, which allows
identifying centers to be removed from the tracking results. In Section 6, we dis-
cuss a postprocessing of the centers to attenuate the influence of irregular center
removal.

3 As-rigid-as-possible volume tracking

In this section, we briefly review the principles of a state-of-the-art method for
volume tracking of TVMs, focusing on parts that are relevant to this paper. For
a full description of the method, we refer the reader to the original paper [8]. The
input to the method is a sequence of triangle meshes, denoted frames, with no
assumption on the coherence of their connectivity. The method finds a fixed set
C of N points (denoted centers), each representing a small volume surrounding
it, whose positions vary in time. Each center follows a certain trajectory ci =[
c
(0)
i , c

(1)
i , . . . , c

(F−1)
i

]
∈ R3F , where F is the number of frames and c

(f)
i is the

position of the i-th center in the f-th frame. The method aims to uniformly
distribute the centers inside the enclosed volume of each frame, while ensuring
that each center moves coherently with its neighbouring centers.

First, each frame is converted into a dense regular square voxel grid by sam-
pling the indicator function IF (x), which returns 1 in the interior and 0 oth-
erwise. Alternatively, the method can also accept the sequence of voxel grids
directly as input, which means that it can be applied to any sequence of shapes
for which it is possible to determine the inside/outside information with accept-
able amount of certainty (e.g., implicit representations, point clouds, etc.).

Center positions in the first frame are obtained by sampling n random oc-
cupied voxels and uniform distribution of centers is achieved by the Lloyd’s
algorithm: For each center, its Voronoi cell V 0

i of occupied voxel positions is
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iteratively evaluated, such as

V
(f)
i =

{
x : IF (x) = 1 ∧ ∥x− c

(f)
i ∥ ≤ ∥x− c

(f)
j ∥

}
,

for every j, and the center is moved to the centroid x̄
(0)
i of such cell.

For each subsequent frame, the method first obtains an initial distribution of
the centers by linear extrapolation from the previous frame. Then, the positions
are adjusted in an optimisation process, in which a tracking energy E = Es+βEu

is minimised, where β is a weighting constant (β = 1 by default). The uniformity
energy term Eu enforces uniform distribution of the centers inside the volume. It
is formulated as a sum of squared distances between the centers and the centroids
of their corresponding Voronoi cells:

Eu =
1

2

∑
ci∈C

∥c(f)i − x̄
(f)
i ∥2.

The smoothness of the movement measured in Es is evaluated as

Es =
1

2

∑
ci∈C

∥c(f)i − p
(f)
i ∥2,

where p
(f)
i is a prediction of the center position obtained using rigid transforma-

tion estimated from the movement of neighbouring centers and affinity weights
from the previous frame w(f−1):

p
(f)
i = A(f)

i|w(f−1)(c
(f−1)
i ) = R

(f)

i|w(f−1)c
(f−1)
i + t

(f)

i|w(f−1) .

Considering center positions fixed, the rigid transformation A(f)
i|w = (R

(f)
i|w, t

(f)
i|w)

at a frame f given a certain set of weights w can be found minimising

(R
(f)
i|w, t

(f)
i|w) = argmin

R∈SO(3),t∈R3

∑
w(i,j)≥µ

w(i, j)
∥∥∥c(f)j − (Rc

(f−1)
j + t)

∥∥∥2 ,
where µ = 0.001 is a threshold parameter to speedup the computation process
by considering only relevant weights. Such transformation can be found in closed
form using singular-value decomposition [18].

To optimise the energy E, the method interleaves between calculating the
predictions x̄

(f)
i and p

(f)
i with fixed positions of centers and then updating the

positions with fixed predictions:

c
(f)
i =

p
(f)
i + βx̄

(f)
i

1 + β
.

The optimisation process is terminated when the change in c
(f)
i is sufficiently

small or a fixed number of iterations has been reached.
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Once the final positions in the current frame are obtained, the affinity weights
are updated, so that they reflect the observed changes in the relations between
centers in the currently processed frame. The method considers center relations
based on spatial proximity in a single frame

a(f)p (i, j) = exp(−σp ·
∥∥∥c(f)i − c

(f)
j

∥∥∥2),
where σp is a parameter controlling the width of the Gaussian function.

The method also attempts to separate topologically distant parts by com-
bining the spatial proximity with motion dissimilarity that is measured as:

a(f)m (i, j) = exp(−σm · d(f)i (A(f)

i|w(f−1) ,A
(f)

j|w(f−1))
2),

where σm is another Gaussian width parameter and d
(f)
i (A,B) is the distance

between two rigid transformations that is evaluated by measuring distances of
points around c

(f)
i (voxel positions in V

(f)
i in our case) transformed by both A

and B
d
(f)
i (A,B) = 1

|V (f)
i |

∑
vk∈V

(f)
i

∥A(vk)− B(vk)∥ .

Instead of setting the Gaussian width parameters σ directly, they are calculated
from parameters ρ with clearer geometric meaning: σ = − ln(0.5)/ρ2, which
determine at which distance the Gaussian function drops to 0.5.

To propagate the already observed information throughout the sequence, an
IIR filter with falloff parameter α is applied on motion dissimilarity:

a
(f)
IIR(i, j) = αa(f)m (i, j) + (1− α)a

(f−1)
IIR (i, j).

Finally, the spatial proximity a
(f)
p (i, j) is combined with the IIR filtered motion

dissimilarity a
(f)
IIR(i, j) to form the weights w(f)(i, j) that will be used to optimise

the positions in the next frame:

w(f)(i, j) = a(f)p (i, j) · a(f)IIR(i, j). (1)

With this knowledge, we can proceed with discussing the contributions of
this paper.

4 Maximum distance based affinity

Similarly to the original weight formulation in Eq. 1, the new weight is also
computed as a product of spatial proximity and motion dissimilarity:

w̃(f)(i, j) = ã(f)p (i, j) · ã(f)m (i, j).

The difference is how the center proximity ã
(f)
p (i, j) and the motion dissimilarity

ã
(f)
p (i, j) are formulated.
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The previous method measured the spatial center proximity using the Eu-
clidean distance of centers in a single frame, ignoring the information from pre-
vious frames. The main limitation of such approach is the fact that as two topo-
logically distant or separated parts come to near proximity, the affinity between
their centers increases. Assuming the tracked sequence represents piecewise rigid
objects, it could be more appropriate to use geodesic distance inside the volume,
which, ideally, should be roughly constant throughout the sequence. However,
due to self contact present in real-world data, the topological information in a
given frame might be incorrect, resulting in introduction of erroneous decrease in
such a measure. Additionally, geodesic distance is computationally expensive to
evaluate at the frequency required by the tracking pipeline. We instead propose
to approximate this quantity by the largest Euclidean distance encountered in
all frames up to and including the current frame:

ã(f)p (i, j) = exp

(
−σp · max

0≤k≤f

∥∥∥c(f)i − c
(f)
j

∥∥∥2) .

When examining relative positions of a certain pair of centers in time, we ob-
serve that the Euclidean distance between them fluctuates, but it is never larger
than their geodesic distance. Note that our goal is not to evaluate this quantity
precisely, but to correctly differentiate between the true connected neighbours of
a center and the topologically distant centers in near proximity (see Figure 2).

Fig. 2: Spatial proximity in a single frame might not reflect the underlying topol-
ogy of the represented object. Left: Two topologically distant points in near
proximity. Right: Examining a different frame reveals that they should not be
considered as neighbouring/affine.

An analogous observations can be made about the similarity of the move-
ment. If a pair of centers moved significantly differently in the past, then they
cannot both belong to the same rigid part, even when the movement has been
almost identical in several previous frames. Instead of an IIR filter, we thus pro-
pose to also use the maximum dissimilarity over all already processed frames:

ã(f)m (i, j) =

{
1, f = 0

exp
(
−σm ·max1≤k≤f d

(f)
i (A(f)

i|w̃(f−1) ,A
(f)

j|w̃(f−1))
2
)
, otherwise .
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In the first frame, we have no information about the movement, therefore we
assume there is no difference and instead solely rely on ã

(0)
p (i, j) when computing

the affinity weights.
Setting Gaussian widths σm and σp (resp. ρm and ρp) to obtain satisfactory

results is a task specific to the scale of the data and complexity of the motion.
In our experiments, we have obtained best results with ρp = ρm = 0.125 for
human performance capture. For synthetic datasets, where the bounding box
was significantly larger and the motion was mainly rigid, we have determined
that best results were obtained with ρp = 0.2 and ρm = 0.05.

The previous IIR-filter-based affinity depends on a falloff parameter α, which
controls how the affinity reacts to occurring changes. Setting α too low results
in slow reactions. On the other hand, too high α means that the affinity forgets
faster the separation that occurred in the past. Our new formulation of affinity
reacts more dynamically to changes and also reflects every observed separation.

5 Irregular center detection

Once the frame-by-frame tracking is finished (regardless of the affinity weights
used), we can analyse the achieved results and detect the irregular centers. To
this end, we evaluate an irregularity measure Ii = minj ∥ci − cj∥22 , where ci
is the center trajectory and ∥·∥22 is the squared Euclidean norm. If a center is
correctly tracked, there should exist another center with a similar trajectory
in the near proximity. Since an irregular center changes suddenly its relative
position to its neighbouring centers, even the distance to the closest center to
its trajectory is expected to be higher than for the correctly tracked centers (see
Figure 3).

Fig. 3: Irregular center detection using
distance to closest trajectory. Arrows
indicate distances that contributed to
the computation. Red trajectory has
a much higher Ii and is correctly de-
tected as irregular.

Fig. 4: Example comparison of two ir-
regularity curves. The Result B out-
performs the Result A as its curve
drops faster to satisfying values of Ii.
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The value of Ii must be considered in the context of the values of all centers,
as it depends on various factors, e.g., center count, scale of the data and the
dynamics of the movement. We can also use this measure to quantify the success
of tracking in terms of the presence of irregular centers, by sorting all the values
in descending order and plotting them as a curve. By comparing the curves
resulting from different tracking methods, we can determine which results are less
influenced by the presence of irregular centers (see Figure 4), as long as the results
were tracked in the same input sequence and the center count is similar (although
not necessarily equal). When attempting to improve the tracking results, one of
our goals is to narrow or eliminate the part of the curve with Ii significantly
higher than the correctly tracked centers, while not significantly increasing the
irregularity of such centers.

6 Global optimisation

Simply removing a certain number of centers with the highest Ii actually does
not lead to an improvement in terms of flattening the irregularity curve. The
uniformity of the centers distribution is violated, since removed centers leave an
uncovered volume. Re-running the frame-by-frame tracking with the irregular
centers removed might still not prevent new irregular centers from appearing,
even when the final affinity weights obtained in the initial tracking are utilised.
Instead, we propose to follow the irregular center removal with adjustment of
the remaining tracked trajectories of centers in a global optimisation process.

6.1 Global tracking energy

The objectives of the global optimisation are identical to the frame-by-frame
tracking. We optimise a global energy Ê consisting of uniformity and motion
smoothness energy terms Ê = Ês + β̂Êu.

The uniformity term is the same as in the frame-by-frame tracking, except
for that it is evaluated for all the frames in the sequence at once:

Êu =
1

2

∑
ci∈C

F−1∑
f=0

∥c(f)i − x̄
(f)
i ∥2.

If we consider the centroids x̄(f)
i fixed, we can approximate the gradient by these

partial derivatives:

∂Êu

∂c
(f)
i

≈ c
(f)
i − x̄

(f)
i .
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The global smoothness energy is evaluated as

Ês =
1

2

∑
ci∈C

F−1∑
f=1

∥∥∥c(f)i − p
(f)
i

∥∥∥2 + ∑
ci∈C

F−2∑
f=0

∥∥∥c(f)i − q
(f)
i

∥∥∥2
 ,

p
(f)
i = A(f)

i|ω

(
c
(f−1)
i

)
,

q
(f)
i = A(f+1)

i|ω
−1 (

c
(f+1)
i

)
,

where p
(f)
i and q

(f)
i are forward and backward rigid motion predictions of the

center position at frame f , using rigid transformations estimated given over-
all movement-based affinity weights ω (see Eq. 2). Considering such predictions
fixed, the partial derivatives, which form the approximated gradient, are as fol-
lows:

∂Ês

∂c
(f)
i

≈


c
(f)
i − q

(f)
i , f = 0

c
(f)
i − p

(f)
i − q

(f)
i , 1 ≤ f ≤ F − 2

c
(f)
i − p

(f)
i , f = F − 1

6.2 Optimisation strategy

The optimisation process is iterative, working with a set of trajectories C, whose
initial values are given by the original tracking results with irregular centers
removed. In each iteration, we evaluate the energy Ê(C) and the approximated
gradient ∇Ê, and construct a candidate set of trajectories C̄, where the center
positions are calculated as

c̄
(f)
i = c

(f)
i − λ

(
∂Ês

∂c
(f)
i

+ β̂
∂Êu

∂c
(f)
i

)
.

First, lambda is set to λ = 0.1 and then it is iteratively scaled by 1
2 until Ê(C̄)

is smaller than Ê(C), or a specified number of attempts has been reached. If an
improvement in terms of energy is achieved, we set C = C̄ and continue to the
next iteration. Otherwise, the process is terminated and C is the resulting set
of trajectories. The optimisation process can also be terminated after a specified
number of iterations (20 in our experiments).

Such an optimisation strategy does not necessarily converge to a global op-
timum. If an irregular center was left in the initial set C, the local steps in the
gradient direction will not straighten its trajectory in order to eliminate the tran-
sition between disconnected components. The locality of the changes is, however,
also an advantage, since the local trajectory adjustments ensure that the objec-
tives are met, while not introducing any large sudden changes, and therefore no
new irregular centers can appear.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_9

https://dx.doi.org/10.1007/978-3-031-36027-5_9
https://dx.doi.org/10.1007/978-3-031-36027-5_9


Global optimisation for improved volume tracking of time-varying meshes 11

6.3 Global movement-based affinity

The affinity utilised in the global optimisation process directly considers only
the dissimilarity of motion:

ω(i, j) = exp

(
−σgm · max

0≤f<F
d
(f)
i

(
A(f)

i|ωmax
,A(f)

j|ωmax

)2)
, (2)

where σgm is a parameter controlling the tolerance of the affinity to dissimilar
motions. The overall spatial proximity ωmax(i, j) of centers is also considered,
but only for estimating the transformations A(f)

i|ωmax
:

ωmax(i, j) = exp

(
−σgp · max

0≤f<F

∥∥∥c(f)i − c
(f)
j

∥∥∥2) .

The motivation to mainly rely on the motion information instead of using
both motion and proximity combined is the following: If a center belongs to
a large rigidly moving part of the object, we want it to be influenced by the
whole part rather than only a certain small neighbourhood around it. Having
all the positions in each frame at hand, we can confidently rely solely on this
information without worrying about the rigid part suddenly splitting in a later
frame.

7 Experimental results

7.1 Influence of the proposed affinity

To evaluate how the previous forward tracking pipeline benefits from the pro-
posed maximum distance based affinity, we have compared the new tracking
results with those reported previously [8] using default configurations for both
methods. The comparison included all the previously studied datasets (includ-
ing selected sequences from D-FAUST dataset [1]) except for pentagonal_prism
and collision datasets, which we believe were already tracked correctly with the
previous method. The tracking quality was evaluated using the metrics PCAC,
which measures the complexity of the tracked trajectories (lower is assumed bet-
ter, although lowering below a certain threshold given by the true complexity
of the movement is not desirable) and DFU, which measures relative standard
deviation of Voronoi cell sizes (a lower value indicates a more uniform covering).
For details on the measures, see the original paper [8]. The results are shown in
Table 1.

Incorporating the newly proposed affinity results in a considerable improve-
ment over the original affinity on all the sequences. Visually, the results contain
less irregular centers, which can be seen when assigning each center a consis-
tent color by interpreting the first three PCA coefficients of its trajectory as
RGB values, and the centers achieve better coverage over problematic parts (see
Figure 5a). This is also reflected by the irregularity curves (see Figure 5b).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_9

https://dx.doi.org/10.1007/978-3-031-36027-5_9
https://dx.doi.org/10.1007/978-3-031-36027-5_9
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Table 1: Comparison of forward-tracked results using proposed and original (IIR)
affinity. Highlighted are the best results for a given dataset.

F Proposed IIR

PCAC DFU PCAC DFU

gears 60 1.785 0.070 1.816 0.071
casual_man 545 10.587 0.127 12.289 0.206
samba 175 5.060 0.215 5.547 0.262
DF_50020_knees 515 5.117 0.111 6.764 0.179
DF_50009_chicken_wings 212 2.855 0.116 3.583 0.155
DF_50004_jumping_jacks 360 6.040 0.130 7.826 0.175

(a) Visual comparison.
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(b) Largest 100 values of Ii.

Fig. 5: Tracking results for casual_man dataset.

7.2 Irregular center removal

In this experiment, we have studied the effects of various strategies for removing
20 irregular centers from tracking results obtained through forward tracking
with our proposed affinity on the casual_man dataset from Section 7.1. The
strategies differed in the number of global optimisations performed ngo and in
number of removed centers each optimisation nrem. Parameters of the global
optimisation were as follows: ρgp = 0.125, ρgm = 0.03 and β̂ = 0.5. Note that
these values were selected empirically and slightly different values yield similar
results. Table 2 shows the measured PCAC and DFU values and the irregularity
curves are shown in Fig. 6. For comparison, we also include results for center
removal without global optimisation.

With growing ngo, the improvement process achieves better coverage of vol-
ume, which is reflected in the DFU measure. However, we can also see a negative
trend in terms of irregularity. Best values of PCAC were achieved with ngo = 5.
This is also reflected in a visual inspection of results (see Fig. 7). Fig. 7a shows
centers that were detected as irregular. It can be seen that the detected centers
indeed travel across different body parts. The increased irregularity with growing
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Table 2: Comparison of PCAC and DFU measures for various irregular center
removal strategies on casual_man dataset forward tracked using our proposed
affinity.

nrem 20 20 4 1
ngo — 1 5 20

PCAC 10.154 8.760 8.578 8.869
DFU 0.160 0.149 0.144 0.134

ngo is reflected by certain number of centers oscillating to cover a larger volume,
which is unfortunately visible only when the tracked centers are animated.
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Fig. 6: Comparison of first 100 Ii after center removal.

8 Conclusions

In this paper, we have shown that the forward volume tracking results can be
further considerably improved by incorporating volume element filtering followed
by a global optimisation, which assures volume coverage without introducing
new irregularly tracked centers. The experiments show that it is beneficial to
remove centers in small batches, rather than all at once or each center separately.
The novel affinity for the forward tracking method, which we also proposed,
considerably reduces tracking imperfections, which is reflected in all considered
tracking quality metrics.

Our approach shares the limitations of the previous volume tracking methods,
as it also cannot handle sequences without sufficient notion of inside/outside
information. Additionally, it might be more sensitive to noise, since any error
introduced in computing the affinity might result in incorrect split of two affine
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(a) Irregular centers (b) Without optimisation

(c) nrem = 20, ngo = 1 (d) nrem = 4, ngo = 5 (e) nrem = 1, ngo = 20

Fig. 7: Results for various irregular center removal strategies for casual_man
dataset with target of 20 centers to be removed. Highlighted are the areas with
the most notable differences.

centers. In forward tracking, this affects only the frames after the occurrence of
the error. However, in global optimisation, the whole sequence is influenced.

In the future, we would like to study the means of inserting centers into the
intermediate tracking results as a complementary process to filtering and global
optimisation, in order to further improve the coverage of the tracked volume.
We also believe that the volume tracking would benefit from incorporating a
notion of a particular shape associated with each center, instead of representing
it as a discrete point. A reference implementation of the algorithm is available
at https://gitlab.kiv.zcu.cz/jdvorak/arap-volume-tracking.

Acknowledgement

This work was supported by the project 20-02154S of the Czech Science Foun-
dation. Jan Dvořák and Filip Hácha were partially supported by the University
specific research project SGS-2022-015, New Methods for Medical, Spatial and
Communication Data. The authors thank Diego Gadler from AXYZ Design,
S.R.L. for providing some of the test data.

References

1. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: Registering
human bodies in motion. In: IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR) (Jul 2017)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_9

https://gitlab.kiv.zcu.cz/jdvorak/arap-volume-tracking
https://dx.doi.org/10.1007/978-3-031-36027-5_9
https://dx.doi.org/10.1007/978-3-031-36027-5_9


Global optimisation for improved volume tracking of time-varying meshes 15

2. Bojsen-Hansen, M., Li, H., Wojtan, C.: Tracking surfaces with evolving topology.
ACM Trans. Graph. 31(4) (Jul 2012)

3. Božič, A., Palafox, P., Zollhöfer, M., Dai, A., Thies, J., Nießner, M.: Neural de-
formation graphs for globally-consistent non-rigid reconstruction. arXiv preprint
arXiv:2012.01451 (2020)

4. Budd, C., Huang, P., Klaudiny, M., Hilton, A.: Global non-rigid alignment of sur-
face sequences. International Journal of Computer Vision 102(1-3), 256–270 (2013)

5. Cagniart, C., Boyer, E., Ilic, S.: Free-form mesh tracking: A patch-based approach.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. pp. 1339–1346 (2010). https://doi.org/10.1109/CVPR.2010.5539814

6. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe,
H., Kirk, A., Sullivan, S.: High-quality streamable free-viewpoint video. ACM
Trans. Graph. 34(4) (Jul 2015). https://doi.org/10.1145/2766945

7. Dvořák, J., Vaněček, P., Váša, L.: Towards understanding time varying trian-
gle meshes. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Don-
garra, J.J., Sloot, P.M. (eds.) Computational Science – ICCS 2021. pp. 45–
58. Springer International Publishing, Cham (2021). https://doi.org/10.1007/
978-3-030-77977-1_4

8. Dvořák, J., Káčereková, Z., Vaněček, P., Hruda, L., Váša, L.: As-rigid-as-possible
volume tracking for time-varying surfaces. Computers & Graphics 102, 329–338
(2022). https://doi.org/10.1016/j.cag.2021.10.015

9. Guo, K., Xu, F., Wang, Y., Liu, Y., Dai, Q.: Robust non-rigid motion tracking
and surface reconstruction using l0 regularization. In: 2015 IEEE International
Conference on Computer Vision (ICCV). pp. 3083–3091 (2015). https://doi.org/
10.1109/ICCV.2015.353

10. Huang, C.H., Allain, B., Franco, J.S., Navab, N., Ilic, S., Boyer, E.: Volumetric
3d tracking by detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2016)

11. Huang, C.H., Boyer, E., Ilic, S.: Robust human body shape and pose tracking.
In: 2013 International Conference on 3D Vision - 3DV 2013. pp. 287–294 (2013).
https://doi.org/10.1109/3DV.2013.45

12. Huang, C.H.P., Allain, B., Boyer, E., Franco, J.S., Tombari, F., Navab, N., Ilic, S.:
Tracking-by-detection of 3d human shapes: From surfaces to volumes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40(8), 1994–2008 (2018).
https://doi.org/10.1109/TPAMI.2017.2740308

13. Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and mo-
tion reconstruction. ACM Trans. Graph. 28(5), 1–10 (Dec 2009). https://doi.org/
10.1145/1618452.1618521

14. Moynihan, M., Ruano, S., Pages, R., Smolic, A.: Autonomous tracking for volu-
metric video sequences. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). pp. 1660–1669 (January 2021)

15. Myronenko, A., Song, X.: Point set registration: Coherent point drift. IEEE trans-
actions on pattern analysis and machine intelligence 32(12), 2262–2275 (2010)

16. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d recon-
struction by learning particle dynamics. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) (October 2019)

17. Prada, F., Kazhdan, M., Chuang, M., Collet, A., Hoppe, H.: Spatiotemporal atlas
parameterization for evolving meshes. ACM Trans. Graph. 36(4) (Jul 2017). https:
//doi.org/10.1145/3072959.3073679

18. Sorkine-Hornung, O., Rabinovich, M.: Least-squares rigid motion using svd (2016),
technical note

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_9

https://doi.org/10.1109/CVPR.2010.5539814
https://doi.org/10.1109/CVPR.2010.5539814
https://doi.org/10.1145/2766945
https://doi.org/10.1145/2766945
https://doi.org/10.1007/978-3-030-77977-1_4
https://doi.org/10.1007/978-3-030-77977-1_4
https://doi.org/10.1007/978-3-030-77977-1_4
https://doi.org/10.1007/978-3-030-77977-1_4
https://doi.org/10.1016/j.cag.2021.10.015
https://doi.org/10.1016/j.cag.2021.10.015
https://doi.org/10.1109/ICCV.2015.353
https://doi.org/10.1109/ICCV.2015.353
https://doi.org/10.1109/ICCV.2015.353
https://doi.org/10.1109/ICCV.2015.353
https://doi.org/10.1109/3DV.2013.45
https://doi.org/10.1109/3DV.2013.45
https://doi.org/10.1109/TPAMI.2017.2740308
https://doi.org/10.1109/TPAMI.2017.2740308
https://doi.org/10.1145/1618452.1618521
https://doi.org/10.1145/1618452.1618521
https://doi.org/10.1145/1618452.1618521
https://doi.org/10.1145/1618452.1618521
https://doi.org/10.1145/3072959.3073679
https://doi.org/10.1145/3072959.3073679
https://doi.org/10.1145/3072959.3073679
https://doi.org/10.1145/3072959.3073679
https://dx.doi.org/10.1007/978-3-031-36027-5_9
https://dx.doi.org/10.1007/978-3-031-36027-5_9

