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Abstract. Neural networks perform very well on di�cult problems such
as image or speech recognition as well as machine text translation. Clas-
si�cation based on fragmented and dispersed data representing certain
properties of images or computer's vision is a complex problem. Here,
the suitability of a Radial Basis Function (RBF) neural network was
evaluated using fragmented data in the problem of recognizing objects
in images. The great di�culty of the considered problem is, there is not
images data as such but only data on some properties of images stored
in a dispersed form. More speci�cally, it was demonstrated that applying
a k−nearest neighbors classi�er in the �rst step to generate predictions
based on fragmented data, and then using a RBF neural network to
learn how to correctly recognize the systems of generated predictions for
making a �nal classi�cation is a good approach for recognizing objects in
images. An additional step of training the weights (centers) between the
input and hidden layers of a RBF network was proposed. In general, this
investigation demonstrates that adding this step signi�cantly improves
the correctness of recognizing objects in images.

Keywords: Radial Basis Function Neural Network · Dispersed Data ·

Image Data Processing.

1 Introduction

Object detection in images is very important in today's world and many appli-
cations such as surveillance systems can be found. Examples of important uses
include: recognizing types of vehicles in road tra�c [18], recognizing types of ob-
jects in satellite images [12], or even recognizing components on a production line
[20, 2]. In literature, we can �nd numerous applications of neural networks for
processing images and recognizing objects in images [21, 19, 1]. These are mainly
applications of convolutional neural networks. A very interesting approach where
neural networks were used for recognizing handwriting can be found in [14]. In
[5], the generative adversarial network (GAN) was used to generate images. Pa-
per [15] provided an overview of very interesting approaches that used neural
networks to generate artistic patterns.
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It is very rare to �nd studies that deal with recognizing images that are
available in fragmentary form. This problem can be considered as a set of im-
ages obtained from the perspective of several cameras, each of which observes
the object from di�erent angles [16]. In such a case � when the image data is
fragmented, recognizing the object in the photo is more di�cult. In the paper
[7], the approach of assembling fragments of photos and matching parts to merge
into one can be found. This approach required that the fragmented data do not
overlap, however, in this study, fragmentation concerns the dispersion of infor-
mation about the recognized object with shared fragments and does not mean
disjointed information. We also assume that we do not have images as such, nor
its fragments, but only the characteristics extracted from these images. These
may be the average values recorded in a certain area of pixels or certain shape
characteristics such as the length and width depicted in the image. We also
assume that these data are available in tabular form � a set of decision tables.
However, the data may overlap, i.e. there may be common conditional attributes
in several decision tables. In addition, in the training set which comprises a set of
local tables, there may appear fragmentary characteristics for the same physical
object or for other objects belonging to the same decision class. The focus of this
study was not on image fusion but on object recognition, assigning the correct
decision class for an object that is seen in a fragmented way.

Other approaches used to recognize fragmented images can also be found in
literature. The paper [22] proposed the use of hidden Markov models for gesture
recognition based on fragmentary vision. In the paper [3], fuzzy rules were used
for fragmented handwritten digit recognition.

This paper proposes the use of a Radial Basis Function (RBF) neural network
with a centers training stage in combination with the k−nearest neighbors algo-
rithm to classify objects observed in images based on fragmented characteristics
� data stored as a set of local decision tables. For this purpose, three problems
were considered: classi�cation of car type based on photo's characteristics, clas-
si�cation of land type based on satellite images, and classi�cation of bean type
based on fragmentary computer vision. To the best of our knowledge, such an
issue has not been studied before in literature. In this study research results,
comparisons and statistical tests are presented. It has been justi�ed that the
proposed approach gives much better results than the RBF networks without a
centers training stage as well as the baseline approach that uses a heterogeneous
ensemble of classi�ers.

The paper is organized as follows. In Section 2, the proposed classi�cation
model using a RBF neural network is described. The algorithm's description
and the discussion about the key features of the proposed approach are given.
Section 3 addresses the datasets that were used and presents the conducted
experiments and discussion on obtained results. Section 4 is on conclusions and
future research plans.
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2 Model and methods

When data is stored in dispersed form, aggregating local tables into a table
becomes a di�cult task due to data inconsistencies. To overcome this, we con-
sider local data separately, look for patterns in them and �nd a way to com-
bine the dependencies already discovered into a single piece. More formally, we
assume that some characteristics of images are available in dispersed form �
in the form of a set of local tables. We assume that a set of decision tables
Di = (Ui, Ai, d), i ∈ {1, . . . , n} is available, where Ui is the universe comprising
a set of objects � images; Ai is a set of conditional attributes � some features
that describe the image; d is a decision attribute � object shown in the image.
Objects and attributes in local tables can be di�erent, however, some objects
may be common among local tables as we do not impose any restrictions here.

This is a case where di�erent sensors capture features of an image based on
the object identi�ed in the image. In a real-life situation, it could be pictures
taken at di�erent angles of the same object by di�erent cameras. Thus, local
tables will be generated (one local table for each camera) with di�erent sets
of conditional attributes (but some may be shared). Another instance could be
cameras set up in di�erent locations in a city where each camera takes pictures
of vehicles on the road and based on the features identi�ed, the type of vehicle
is determined. In this situation, same object could be recognized by di�erent
cameras, but most of the objects identi�ed will be di�erent.

Since aggregation of these local tables into a single table is not immediately
possible, one possible approach that can be used is to generate classi�ers based
on each local table separately. For this purpose, the k−nearest neighbors classi-
�er is chosen, as it has low computational complexity and is a suitable method
for image classi�cation based on local features [8]. We expect objects of one type
in images to have similar features. To calculate the distances between the test
objects and the objects in the local tables, the Gower measure is used [13]. This
measure allows to compute the distance even when there are attributes of dif-
ferent types (quantitative, qualitative, binary) and from di�erent ranges in the
decision table (it does not require normalization or standardization). In addition,
it should be noted that for the test objects, values of all attributes occurring in
the local tables should be known. Each base classi�er makes its classi�cation
using a subset of all attributes � more strictly, a classi�er i that is built based on
a decision table Di uses the set of attributes Ai. A modi�cation of the k−nearest
neighbors classi�er is proposed, i.e. instead of generating a prediction from the
abstract level (a decision class most frequent in the neighborhood), a predic-
tion from the measurement level is generated. That is, a classi�er i generates a
probability vector over decision classes for a test object x (denoted by µi(x)).
The dimension of vector µi(x) = [µi,1(x), . . . , µi,c(x)] is equal to the number of
decision classes c = card{V d}, where V d is a set of decision attribute values
(a set of the types of objects in the image), card{V d} is the cardinality of this
set. Each coe�cient µi,j(x) is determined using the k-nearest neighbors of the
test object x belonging to a given decision class j and decision table Di. In this
way, the information we get from the base classi�ers is more complete. These
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are average similarities determined from fragmented data for each decision class
(i.e. objects that may appear in the image).

To summarize the previous step, the base classi�ers for the test object x
generates n prediction vectors µi(x), i ∈ {1, . . . , n}, each vector is c dimensional,
i.e. a composite of similarities to decision classes obtained based on fragmented
data. The task of recognizing the correct decision class based on such vectors
� identifying the object in the image � is a di�cult task. For this purpose the
Radial Basis Function (RBF) neural network is used.

We make use of a RBF neural network because they have the property of sep-
arating spaces that are not linearly separable. This is achieved by transforming
the input vectors into a new feature space, where classes are linearly separable.
For this to be possible, there must be more neurons in the hidden layer than in
the input layer. In the considered problem, the input vector is formed through
the prediction vectors generated by the base classi�ers. So, more formally, a vec-
tor will be created [µ1(x), . . . , µn(x)] for the test object x. Its dimension is equal
to n · c because we have n base classi�ers, each generating a c dimensional vec-
tor. Thus, we have n · c neurons in the input layer. RBF neural networks always
contain only one hidden layer, thus, there are no problems with determining the
appropriate number of hidden layers for a given problem. Each neuron in the
hidden layer has a parameter called center. Formally, the k−th neuron in the
hidden layer has the center ck. The center is interpreted as a representative of a
certain group of objects. RBF networks are similar to the k−nearest neighbors
approach. However, instead of eliminating distant objects from the classi�cation
process (as it is done in the k−nearest neighbors classi�er), this time we simply
reduce the in�uence of distant objects on the output of the neural network, but
still use them in the classi�cation process. We obtain this property by using
the Gaussian function as the activation function for each of the neurons in the
hidden layer. The more the input vector is similar to the center of the neuron in
the hidden layer, the greater its in�uence on the output of the neural network.
Let us denote the vector given as the input of the network in the input layer
by y. Then for the k−th neuron of the hidden layer the Gaussian function is as
follows

Φk(y) = exp

[
− ∥ y − ck ∥

2σ2
k

]
, (1)

where ck is the center of the i−th neuron, σk is the k−th neuron's bandwidth
and ∥ · ∥ is the Euclidean norm. The Gaussian width σk of the k−th neuron
in the hidden layer was estimated as σk = ρmax

2·nH
where ρmax is the maximum

distance between the chosen centers and nH is the number of neurons in the
hidden layer. The weights and biases assigned to the connections of neurons
from the hidden layer to the output layer in the RBF network are trained using
the back-propagation algorithm.

A very important issue in RBF networks is the appropriate determination of
the center of neurons in the hidden layer. This is usually done by a clustering
algorithm realized on the training set (this is implemented before the training of
the network). Usually the k−means clustering algorithm is used and the centroids
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determined by this algorithm are used as centers connecting the input layer to
the hidden layer neurons. The Lloyd's k−means algorithm � a modi�cation of the
k−means algorithm is also very often used. In the study, one of the approaches
analyzed is the Lloyd's k−means algorithm for determining centers. But more
interesting is the proposed approach in which instead of designating centers only
once (determined by the Lloyd's k−means algorithm), a step of training these
centers is used. This is implemented as follows.

� In the �rst stage, the Lloyd's k−means algorithm is used to determine the
centers which serves as connections between the input layer and the hidden
layer.

� After, random values are assigned as weights and biases, which serve as
connections between the hidden layer and the output layer.

� Then, training the RBF network begins, however, here the propagation of
the error is extended up to the centers. This way, the centers are trained
iteratively together with the weights and biases using the back-propagation
method.

The pseudo-code for the proposed RBF neural network is given below in
Listing 2.

RBF Neural Network with a Centers Training Stage

# X: matrix of prediction vectors over all local tables

# centers: array of values determined by the Lloyd's algorithm

# neurons: number of neurons in the hidden layer

# sigma: Gaussian width

def RBFModel(X:array, centers:array, neurons:int, sigma:float):

model = Sequential()

model.add(Flatten(input_shape=(X.shape[1],)))

model.add(RBFLayer(units= neurons, gamma=sigma))

model.add(Dense(classes, activation='softmax'))

model.layers[1].set_weights([centers])

model.compile(loss='categorical_crossentropy',

optimizer='adam',metrics=['accuracy'])

return model

The above describes how to build and train the RBF network. An impor-
tant issue still is the set used for training, the number of epochs used and the
optimal batch-size. In the problem presented here, local tables were used to gen-
erate prediction vectors for objects. In addition, the local tables contain only
fragmented data, and to train the network we need objects that have values for
all attributes that are present in the local tables (in order to designate vectors
for all tables). So, to train the RBF network, a strati�ed 10-fold cross-validation
method on the test set was used. That is, the test set was divided into 10 folds
with equal number of objects and proportional shares of decision classes. At
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each iteration, the RBF network was trained using 9 folds (to be very accurate �
prediction vectors generated for test objects from these 9 folds), and the quality
of classi�cation of the model was evaluated on the last independent fold. This
procedure was repeated three times and the results was averaged to determine
the classi�cation error level of the model. To determine the number of epochs
and batch-size, di�erent values were experimented to determine the optimal val-
ues for each dataset. After numerous trials, the optimal (epoch, batch-size) for
Vehicle Silhouettes, Landsat Satellite and Dry Bean datasets were (400, 200),
(400, 500), (400,15) respectively. RBF networks trains considerable fast so the
whole process was fairly quick. A big advantage of the RBF networks was how
interpretable the results obtained from it were. This was achieved thanks to
properly selected/trained centers and their reduced in�uence in the case of large
distances.

3 Datasets and results

The system proposed in the paper for the classi�cation of objects in images based
on characteristics stored in fragmented form � a set of local decision tables � was
tested on three datasets. These datasets in their original form were retrieved from
the UC Irvine Machine Learning Repository:

� Vehicle Silhouettes: eighteen quantitative conditional attributes, four deci-
sion classes, 846 objects � 592 training, 254 test set [17]. The goal of the data
was to classify a given silhouette as one of four vehicle types, using a set of
characteristics extracted from the silhouette. The vehicle can be viewed from
one of many di�erent angles. The images were acquired by a camera looking
down at the vehicle model from a �xed elevation angle. The vehicles were
rotated and their orientation angle was measured using a radial grid placed
under the vehicle.

� Landsat Satellite: thirty-six quantitative conditional attributes, six decision
classes, 6435 objects � 4435 training, 1000 test set [6]. Multispectral pixel val-
ues in a 3×3 neighborhood in a satellite image and a classi�cation associated
with the central pixel in each neighborhood. Each row of data corresponds
to a neighborhood of pixels in a 3 × 3 square completely contained within
an 82× 100 sub-area. Each row contains the pixel values in the four spectral
bands of each of the 9 pixels in the 3×3 neighborhood and a number indicat-
ing the classi�cation label (earth type: red soil, cotton crop, grey soil, damp
grey soil, soil with vegetation stubble, very damp grey soil) of the center
pixel.

� Dry Bean: seventeen quantitative conditional attributes, seven decision classes,
13611 objects � 9527 training, 4084 test set [9]. The goal of the data was to
classify type of beans based on the characteristics obtained from the image.
Images of 7 di�erent registered dry beans were taken with a high-resolution
camera. Bean images obtained by computer vision systems were subjected
to segmentation and feature extraction stages, and a total of 16 features �
12 dimensions and 4 shape forms were obtained from the grains.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_7

https://dx.doi.org/10.1007/978-3-031-36027-5_7
https://dx.doi.org/10.1007/978-3-031-36027-5_7


Radial Basis Function Neural Network with a Centers Training Stage 7

Each of the datasets were originally available as a single decision table. How-
ever, the proposed system explored the possibilities of classi�cation based on
fragmentary data. Therefore, the data was preprocessed � randomly dispersed.
Di�erent numbers of local tables were considered during dispersion. The data
was divided into 3, 5, 7, 9 and 11 local tables. Each table contained a reduced set
of conditional attributes and all objects from the original table. Some attributes
were common between local tables. It should also be noted that, the more lo-
cal tables, the fewer attributes in each local table. The data was imbalanced �
the number of objects in individual decision classes, both in the training and
test sets, varied strongly. The speci�c cardinality are presented in Figure 1. Two
variants for each of the datasets were considered in the study. Experiments were
performed both on dispersed imbalanced data and on data that had been modi-
�ed by applying one of the known methods for imbalanced data. The Synthetic
Minority Over-sampling Technique (SMOTE) method was used in the paper
[4]. This is an over-sampling method which adds arti�cially created objects to
a dataset. The objects were created based on randomly selected minority class
objects. For this purpose, the k−nearest neighbors algorithm was used. On the
line connecting the selected object with its closest neighbors, a new object from
the minority class was created. The implementation of this algorithm available
in WEKA [11] software was used. Each local table was balanced separately. Each
decision class except the most numerous one, was changed using SMOTE method
in such a way that all decision classes had the same number of objects after bal-
ancing. Thus, in the end, we obtained 30 dispersed datasets: Vehicle Silhouettes,

Fig. 1. Imbalance of data � cardinality of decision classes in training and test sets.

Vehicle Silhouettes balanced, Landsat Satellite, Landsat Satellite balanced, Dry
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Bean, Dry Bean balanced; and for each dataset �ve versions of the dispersion:
3, 5, 7, 9, 11 local tables. The quality of classi�cation was evaluated based on the
test set. A classi�cation accuracy measure (acc) was used for this purpose. That
is, a fraction of the total number of objects in the test set that were classi�ed
correctly. As was mentioned before, a 10-fold cross-validation was used on the
test set, i.e., the neural network was trained 10 times with 9 folds and tested on
one remaining fold. In addition, each test was performed three times to ensure
that the results were reliable and not distorted by the in�uence of randomness.
The results for the neural network approach that are given below is the average
of the obtained results.

Three approaches were tested and the results are presented below. The two
tested approaches use the RBF networks described above. The �rst RBF ap-
proach used a centers training stage by means of back-propagating the error up
to the centers during training whiles the second RBF approach used only the
Lloyd's k−means algorithm to determine the centers. As a baseline approach,
the approach proposed in [10] was used. This ensemble of classi�ers method
consists of creating three base classi�ers: k−nearest neighbors, decision tree and
naive bayes classi�er (KNN, DT, NB) based on each local table. The approach
was implemented in python programming language using implementations avail-
able in the sklearn library. Based on each local table, the three classi�ers were
built. The �nal decision was made using soft voting for all classi�ers. Di�er-
ent parameter values were tested for approaches based on RBF networks. For
the generation of prediction vectors using the k−nearest neighbors classi�er,
k ∈ {1, 5, 10} parameters were studied. Due to the limited space of this paper,
only the results for the optimal k value is presented. Di�erent numbers of neurons
in the hidden layer were tested for RBF neural networks. The following values
{0.25, 0.5, 0.75, 1, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 3.75, 4, 4.5, 4.75, 5}× the number of
neurons in the input layer were tested. The results obtained for the RBF network
with a centers training stage is presented in Table 1. The results obtained for the
RBF network with the Lloyd's algorithm is shown in Tables 2. The best result
for each dispersed dataset (each line) is shown in bold. As mentioned early on,
di�erent values of the parameter k were analyzed k ∈ {1, 5, 10}. In the tables,
only the results obtained for k = 5 are presented because this value was optimal
� in most cases for this value the best results were obtained. The results obtained
for the ensemble of classi�ers approach is given in Table 3.

Let us begin the analysis of the proposed RBF network with a centers training
stage approach and RBF network with the Lloyd's algorithm by comparing the
complexity of the neural nets for which optimal results were generated. As can
be seen, signi�cantly lower network complexity is su�cient to achieve the best
results for the proposed approach. Figure 2 gives a comparison of the minimum
number of neurons in the hidden layer su�cient to achieve the optimal result.
The reduction in network's complexity using the proposed approach is signi�cant
compared to using the Lloyd's algorithm.

Now, we compare the results of classi�cation accuracy obtained using the
three analyzed approaches. Table 3 summarizes all results � the best results ob-
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Fig. 2. The minimum number of neurons in the hidden layer su�cient to achieve the
optimal result � comparison of RBF networks with a centers training stage approach
and with the Lloyd's algorithm.

tained for the proposed approach, the best results using the RBF networks with
the Lloyd's algorithm and the results for the ensemble of classi�ers approach.
The best result for each dispersed dataset (each line) is shown in bold. As can
be seen, in all cases (except one) the best results were generated using the pro-
posed approach. Statistical tests were performed in order to con�rm signi�cant
di�erences in the obtained results acc. The received classi�cation accuracy were
divided into three dependent data samples, results from Table 3. The Fried-
man test was used to detect di�erences in multiple test samples. There was a
statistically signi�cant di�erence in the results obtained for the three di�erent
approaches being considered, χ2(29, 2) = 39.467, p = 0.000001. Additionally,
comparative box-whiskers charts for the results with three approaches were cre-
ated (Fig. 3). As can be observed, the values of the classi�cation accuracy for
the proposed approach � RBF network with a centers training stage is the best
(much better than the others approaches). In the next step, the Wilcoxon each-
pair test was used. This test con�rmed that the di�erences in the classi�cation
accuracy were signi�cant between the RBF network with a centers training stage
and both the RBF network with the Lloyd's algorithm and the ensemble of classi-
�ers approach. There in no statistically signi�cant di�erence in the classi�cation
accuracy between the RBF network with the Lloyd's algorithm and the ensemble
of classi�ers approach.

For the proposed approach, a comparison of the results obtained by using bal-
anced and imbalanced datasets were also made. Figure 4 shows the comparison
of the results in a bar chart and box-whiskers charts. As can be seen for the Dry
Bean set, balancing the dataset had no e�ect on the results. For the Satellite set,
better results were obtained for the imbalanced dataset. On the other hand, for
the Vehicle dataset, for a smaller number of local tables (3 and 5 tables) we got
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Fig. 3. Comparison of the results obtained for the three approaches: the RBF network
with the centers training stage, the RBF network with the Lloyd's algorithm and the
ensemble of classi�ers approach.

better results for the imbalanced data. Also, the box-whiskers charts con�rmed
that there was no di�erence between the results for balanced and imbalanced
datasets. The Wilcoxon test con�rmed that there was no statistically signi�cant
di�erence in the average classi�cation accuracy obtained for balanced and im-
balanced sets for the proposed approach. Thus, it can be concluded that the
proposed approach performs very well for imbalanced data.

Fig. 4. Comparison of the results obtained for the RBF network with a centers training
stage and imbalanced versus balanced datasets.

For the proposed approach, a comparison of the results obtained for di�erent
versions of dispersion was made. Figure 5 shows the comparison of the results in
a bar chart and box-whiskers charts. As can be seen for the Dry Bean dataset,
degree of dispersion of the dataset had no e�ect on the results. For the Satellite
and the Vehicle datasets, better results were obtained for a smaller number of
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Table 3. Comparison of classi�cation accuracy acc obtained for approaches: the RBF
network with a centers training stage, the RBF network with the Lloyd's algorithm
and the ensemble of classi�ers approach from paper [10].

Data No. RBF network with RBF network with ensemble of classi�ers
set tables a centers training stage Lloyd's algorithm from paper [10]
Vehicle 3 0.769 0.656 0.657
imbalanced 5 0.762 0.692 0.638
k=5 7 0.709 0.676 0.626

9 0.73 0.727 0.661
11 0.718 0.698 0.61

Vehicle 3 0.764 0.761 0.728
balanced 5 0.759 0.757 0.724
k=5 7 0.734 0.741 0.736

9 0.732 0.729 0.705
11 0.727 0.722 0.677

Satellite 3 0.897 0.853 0.885
imbalanced 5 0.892 0.859 0.872
k=5 7 0.887 0.863 0.868

9 0.889 0.862 0.868
11 0.878 0.86 0.863

Satellite 3 0.875 0.849 0.87
balanced 5 0.866 0.85 0.864
k=5 7 0.862 0.851 0.856

9 0.863 0.847 0.856
11 0.861 0.851 0.854

Dry Bean 3 0.92 0.9 0.906
imbalanced 5 0.918 0.906 0.902
k=5 7 0.917 0.909 0.899

9 0.919 0.906 0.894
11 0.916 0.905 0.9

Dry Bean 3 0.918 0.896 0.909
balanced 5 0.918 0.905 0.899
k=5 7 0.917 0.91 0.9

9 0.919 0.907 0.898
11 0.918 0.904 0.903

local tables � a smaller degree of dispersion, but the di�erences were not large.
The Wilcoxon test con�rmed that there was statistically signi�cant di�erences
in the average classi�cation accuracy only between pairs of dispersion: 3 and
7 local tables; 5 and 7 local tables; 9 and 11 local tables. The conclusion of
this comparison is that the proposed approach handles both small and large
data dispersion quite well which is a very important property because often in
real situations we have to deal with large dispersion � many units providing
independent datasets. The proposed method requires optimization of several
parameters in both the k-nearest neighbors classi�er and the neural network,
which can be considered a drawback of the method.
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Fig. 5. Comparison of the results obtained for the RBF network with a centers training
stage and di�erent dispersion versions of datasets � 3, 5, 7, 9 and 11 local tables.

4 Conclusion

The study concerned analysis of the classi�cation problem of an object presented
in an image based on the characteristics of the object stored in a fragmentary
form � a set of local decision tables. For this purpose, a RBF network model
with a centers training stage was proposed. The paper shows that this approach
gives much better results than the RBF network model with the Lloyd's algo-
rithm. In addition, the network's structure is much simpler for the proposed
approach. Moreover, the proposed approach gives better results than the en-
semble of classi�ers approach. It was also shown that the proposed model copes
very well with imbalanced datasets and that the degree of dispersion does not
have a large impact on classi�cation accuracy. In future works, it is planned to
use neural networks to de�ne predictions based on local tables. The possibility
of using a global learning stage after building the RBF network that combines
predictions is also being considered. This stage would be implemented by using
some arti�cially generated data.
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